mith wrote:I'll be curious to see if any of the new ones defeat the replacement technique. I have at least one example of a puzzle with guardians in all four boxes after singles (or basics even), but after some short chains it's down to just two.
- Code: Select all
........1.....234..35.1.......4..65....6.12.36....5.1...7.4.....89.5....21.....3. ED=10.4/7.2/2.6
.
The replacement technique works - somehow. With it (and no tridagon rule), the puzzle is solved in W6.
- Code: Select all
Resolution state after Singles and whips[1]:
+----------------------+----------------------+----------------------+
! 4789 24679 2468 ! 35789 36789 346789 ! 5789 6789 1 !
! 1789 679 168 ! 5789 6789 2 ! 3 4 56789 !
! 4789 3 5 ! 789 1 46789 ! 789 26789 26789 !
+----------------------+----------------------+----------------------+
! 1789 279 1238 ! 4 23789 3789 ! 6 5 789 !
! 45789 4579 48 ! 6 789 1 ! 2 789 3 !
! 6 279 238 ! 3789 23789 5 ! 4789 1 4789 !
+----------------------+----------------------+----------------------+
! 35 56 7 ! 12389 4 3689 ! 189 2689 2689 !
! 34 8 9 ! 1237 5 367 ! 147 267 2467 !
! 2 1 46 ! 789 6789 6789 ! 45789 3 456789 !
+----------------------+----------------------+----------------------+
215 candidates
hidden-pairs-in-a-column: c4{n1 n2}{r7 r8} ==> r8c4≠7, r8c4≠3, r7c4≠9, r7c4≠8, r7c4≠3
whip[1]: b8n3{r8c6 .} ==> r1c6≠3, r4c6≠3
biv-chain[3]: r5c3{n8 n4} - c2n4{r5 r1} - b1n2{r1c2 r1c3} ==> r1c3≠8
biv-chain[4]: r5c3{n8 n4} - b7n4{r9c3 r8c1} - b7n3{r8c1 r7c1} - c1n5{r7 r5} ==> r5c1≠8
biv-chain[4]: r8c1{n4 n3} - r7c1{n3 n5} - b4n5{r5c1 r5c2} - c2n4{r5 r1} ==> r1c1≠4, r3c1≠4
hidden-single-in-a-row ==> r3c6=4
whip[1]: r3n6{c9 .} ==> r1c8≠6, r2c9≠6
hidden-pairs-in-a-block: b3{n2 n6}{r3c8 r3c9} ==> r3c9≠9, r3c9≠8, r3c9≠7, r3c8≠9, r3c8≠8, r3c8≠7
hidden-pairs-in-a-row: r1{n2 n4}{c2 c3} ==> r1c3≠6, r1c2≠9, r1c2≠7, r1c2≠6
whip[1]: r1n6{c6 .} ==> r2c5≠6
hidden-triplets-in-a-column: c1{n3 n4 n5}{r7 r8 r5} ==> r5c1≠9, r5c1≠7
biv-chain[4]: r4n3{c5 c3} - c3n1{r4 r2} - c3n6{r2 r9} - c5n6{r9 r1} ==> r1c5≠3
singles ==> r1c4=3, r2c4=5, r1c7=5, r9c9=5
hidden-pairs-in-a-block: b5{n2 n3}{r4c5 r6c5} ==> r6c5≠9, r6c5≠8, r6c5≠7, r4c5≠9, r4c5≠8, r4c5≠7
z-chain[3]: r9n6{c6 c3} - b7n4{r9c3 r8c1} - r8n3{c1 .} ==> r8c6≠6
whip[1]: r8n6{c9 .} ==> r7c8≠6, r7c9≠6
hidden-triplets-in-a-row: r7{n3 n5 n6}{c6 c1 c2} ==> r7c6≠9, r7c6≠8
whip[1]: r7n8{c9 .} ==> r9c7≠8
whip[1]: r7n9{c9 .} ==> r9c7≠9
- Code: Select all
Resolution state:
+----------------+----------------+----------------+
! 789 24 24 ! 3 6789 6789 ! 5 789 1 !
! 1789 679 168 ! 5 789 2 ! 3 4 789 !
! 789 3 5 ! 789 1 4 ! 789 26 26 !
+----------------+----------------+----------------+
! 1789 279 1238 ! 4 23 789 ! 6 5 789 !
! 45 4579 48 ! 6 789 1 ! 2 789 3 !
! 6 279 238 ! 789 23 5 ! 4789 1 4789 !
+----------------+----------------+----------------+
! 35 56 7 ! 12 4 36 ! 189 289 289 !
! 34 8 9 ! 12 5 37 ! 147 267 2467 !
! 2 1 46 ! 789 6789 6789 ! 47 3 5 !
+----------------+----------------+----------------+
AFTER APPLYING ELEVEN''S REPLACEMENT METHOD to digits 7, 8 and 9 in cells r1c8, r2c9 and r3c7,
the resolution state is:
- Code: Select all
+----------------------+----------------------+----------------------+
! 789 24 24 ! 3 6789 6789 ! 5 7 1 !
! 1789 6789 16789 ! 5 789 2 ! 3 4 8 !
! 789 3 5 ! 789 1 4 ! 9 26 26 !
+----------------------+----------------------+----------------------+
! 1789 2789 123789 ! 4 23 789 ! 6 5 789 !
! 45 45789 4789 ! 6 789 1 ! 2 789 3 !
! 6 2789 23789 ! 789 23 5 ! 4789 1 4789 !
+----------------------+----------------------+----------------------+
! 35 56 789 ! 12 4 36 ! 1789 2789 2789 !
! 34 789 789 ! 12 5 3789 ! 14789 26789 246789 !
! 2 1 46 ! 789 6789 6789 ! 4789 3 5 !
+----------------------+----------------------+----------------------+
whip[1]: r9n9{c6 .} ==> r8c6≠9
whip[1]: b1n8{r3c1 .} ==> r4c1≠8
z-chain[5]: c5n6{r9 r1} - c5n8{r1 r5} - r5c8{n8 n9} - r4c9{n9 n7} - c6n7{r4 .} ==> r9c5≠7
z-chain[5]: b8n7{r9c6 r9c4} - r3c4{n7 n8} - b5n8{r6c4 r5c5} - r5c8{n8 n9} - r4c9{n9 .} ==> r4c6≠7
whip[1]: c6n7{r9 .} ==> r9c4≠7
biv-chain[3]: r9c4{n9 n8} - r3c4{n8 n7} - r2c5{n7 n9} ==> r9c5≠9
z-chain[5]: r9n7{c7 c6} - r9n9{c6 c4} - r6c4{n9 n8} - r4c6{n8 n9} - r4c9{n9 .} ==> r6c7≠7
whip[1]: c7n7{r9 .} ==> r7c9≠7, r8c9≠7
biv-chain[3]: r7c9{n9 n2} - r3c9{n2 n6} - b9n6{r8c9 r8c8} ==> r8c8≠9
z-chain[3]: r7n8{c8 c3} - r7n7{c3 c7} - c7n1{r7 .} ==> r8c7≠8
biv-chain[5]: r5n5{c2 c1} - c1n4{r5 r8} - c9n4{r8 r6} - r6c7{n4 n8} - r5c8{n8 n9} ==> r5c2≠9
biv-chain[5]: c9n7{r4 r6} - r6n4{c9 c7} - r9n4{c7 c3} - c3n6{r9 r2} - c3n1{r2 r4} ==> r4c3≠7
biv-chain[5]: r6c7{n8 n4} - r9n4{c7 c3} - c3n6{r9 r2} - c3n1{r2 r4} - b4n3{r4c3 r6c3} ==> r6c3≠8
z-chain[5]: c3n6{r2 r9} - r9n4{c3 c7} - c9n4{r8 r6} - c9n7{r6 r4} - c1n7{r4 .} ==> r2c3≠7
- Code: Select all
+-------------------+-------------------+-------------------+
! 89 24 24 ! 3 689 689 ! 5 7 1 !
! 179 679 169 ! 5 79 2 ! 3 4 8 !
! 78 3 5 ! 78 1 4 ! 9 26 26 !
+-------------------+-------------------+-------------------+
! 179 2789 12389 ! 4 23 89 ! 6 5 79 !
! 45 4578 4789 ! 6 789 1 ! 2 89 3 !
! 6 2789 2379 ! 789 23 5 ! 48 1 479 !
+-------------------+-------------------+-------------------+
! 35 56 789 ! 12 4 36 ! 178 289 29 !
! 34 789 789 ! 12 5 378 ! 147 268 2469 !
! 2 1 46 ! 89 68 6789 ! 478 3 5 !
+-------------------+-------------------+-------------------+
AFTER APPLYING ELEVEN''S REPLACEMENT METHOD to digits 7, 8 and 9 in cells r6c4, r5c5 and r4c6,
the resolution state is:
- Code: Select all
+----------------------+----------------------+----------------------+
! 789 24 24 ! 3 6789 6789 ! 5 789 1 !
! 1789 6789 16789 ! 5 789 2 ! 3 4 789 !
! 789 3 5 ! 789 1 4 ! 789 26 26 !
+----------------------+----------------------+----------------------+
! 1789 2789 123789 ! 4 23 9 ! 6 5 789 !
! 45 45789 4789 ! 6 8 1 ! 2 789 3 !
! 6 2789 23789 ! 7 23 5 ! 4789 1 4789 !
+----------------------+----------------------+----------------------+
! 35 56 789 ! 12 4 36 ! 1789 2789 2789 !
! 34 789 789 ! 12 5 3789 ! 14789 26789 246789 !
! 2 1 46 ! 789 6789 6789 ! 4789 3 5 !
+----------------------+----------------------+----------------------+
whip[1]: c1n9{r3 .} ==> r2c3≠9, r2c2≠9
whip[1]: b8n9{r9c5 .} ==> r9c7≠9
z-chain[4]: r2c5{n7 n9} - r2c9{n9 n8} - r4c9{n8 n7} - c1n7{r4 .} ==> r2c2≠7, r2c3≠7
whip[1]: b1n7{r3c1 .} ==> r4c1≠7
whip[5]: r2n8{c3 c9} - r4c9{n8 n7} - r5c8{n7 n9} - r1c8{n9 n7} - r3n7{c7 .} ==> r3c1≠8
whip[6]: r3c1{n9 n7} - r1c1{n7 n8} - r2c2{n8 n6} - r7n6{c2 c6} - r1c6{n6 n7} - r2c5{n7 .} ==> r2c1≠9
z-chain[5]: r4c9{n8 n7} - r5c8{n7 n9} - b3n9{r1c8 r3c7} - c1n9{r3 r1} - b1n8{r1c1 .} ==> r2c9≠8
whip[1]: r2n8{c3 .} ==> r1c1≠8
naked-pairs-in-a-block: b1{r1c1 r3c1}{n7 n9} ==> r2c1≠7
biv-chain[3]: r1n8{c8 c6} - r3c4{n8 n9} - b1n9{r3c1 r1c1} ==> r1c8≠9
z-chain[3]: c8n9{r8 r5} - b6n7{r5c8 r4c9} - r2c9{n7 .} ==> r7c9≠9, r8c9≠9
z-chain[5]: r1c8{n8 n7} - b6n7{r5c8 r4c9} - r7c9{n7 n2} - r3n2{c9 c8} - c8n6{r3 .} ==> r8c8≠8
biv-chain[6]: r2n7{c5 c9} - r4c9{n7 n8} - r4c1{n8 n1} - b1n1{r2c1 r2c3} - c3n6{r2 r9} - c5n6{r9 r1} ==> r1c5≠7
whip[6]: c7n1{r8 r7} - r7c4{n1 n2} - r7c9{n2 n8} - r7c8{n8 n9} - r5c8{n9 n7} - r4c9{n7 .} ==> r8c7≠7
whip[6]: r6n4{c9 c7} - b6n8{r6c7 r4c9} - c1n8{r4 r2} - r2c2{n8 n6} - b7n6{r7c2 r9c3} - r9n4{c3 .} ==> r6c9≠9
singles ==> r2c9=9, r2c5=7
biv-chain[3]: r1n8{c6 c8} - b3n7{r1c8 r3c7} - r9n7{c7 c6} ==> r9c6≠8
x-wing-in-rows: n8{r3 r9}{c4 c7} ==> r8c7≠8, r7c7≠8, r6c7≠8
whip[1]: b6n8{r6c9 .} ==> r7c9≠8, r8c9≠8
biv-chain[3]: r7c9{n7 n2} - r3c9{n2 n6} - b9n6{r8c9 r8c8} ==> r8c8≠7
biv-chain[4]: b6n8{r6c9 r4c9} - b6n7{r4c9 r5c8} - r1c8{n7 n8} - r7n8{c8 c3} ==> r6c3≠8
biv-chain[4]: c7n8{r9 r3} - b3n7{r3c7 r1c8} - r5c8{n7 n9} - r6c7{n9 n4} ==> r9c7≠4
stte
742396581
186572349
935814726
821439657
457681293
693725418
568143972
379258164
214967835
Permute 7 and 8.
I've applied the technique twice (manual choice here because I wanted to see what happened) - but in my previous analysis of your 972 database it was sometimes automatically applied twice to some of the puzzles.