The tridagon rule

Advanced methods and approaches for solving Sudoku puzzles

Re: The tridagon rule

Postby denis_berthier » Sat Apr 02, 2022 4:49 am

.
Here is a quick survey of the full list of 972 non-T&E(2) puzzles https://docs.google.com/spreadsheets/d/1t-PsJT-pKGQEWjSbbNBXzLcxb5Inmooszntu9ZVCW_M/edit#gid=0 introduced by mith here: http://forum.enjoysudoku.com/the-hardest-sudokus-new-thread-t6539-1231.html
It includes the previous list of 246.
Here, I'm using the new IDs given them by mith.

For completeness, let me first recall that all of them are in T&E(W2, 2), which has become the new frontier.

Using only (Naked + Hidden + Super-HIdden) Subsets + Finned Fish + the Tridagon elimination rule defined in the 1st post of this thread, 216 puzzles can be solved:
Code: Select all
4 5 9 21 22 23 25 29 30 35 36 37 38 51 52 53 54 55 56 57 58 71 73 83 84 85 86 87 88 91 92 101 106 107 108 109 112 121 122 123 124 130 134 135 136 139 140 141 154 157 163 166 167 171 177 178 179 180 192 193 194 195 198 199 200 201 204 205 206 207 208 209 228 233 247 248 249 250 251 252 253 272 273 274 300 301 302 303 304 305 306 307 320 323 324 325 326 327 328 329 330 331 332 344 345 346 347 348 349 372 375 376 388 389 390 391 392 401 403 404 405 406 438 439 443 453 455 461 463 464 465 466 467 468 469 470 501 502 507 508 525 526 527 530 531 561 568 571 572 573 598 599 631 632 633 636 644 664 665 667 668 670 671 673 679 681 697 698 699 700 701 705 707 714 716 720 721 722 723 728 729 736 737 742 743 751 752 790 795 861 862 864 865 866 867 873 874 875 876 877 895 902 904 905 906 907 908 918 921 929 941 946 949 950 954 955



Adding whips of length ≤ 12, 505 more puzzles can be solved. Notice that the Tridagon elimination rule may apply before any whip is actually used or after.
Code: Select all
1 2 3 6 7 10 11 13 14 15 16 17 18 19 24 26 27 28 31 32 33 34 39 40 41 42 43 44 45 46 47 48 49 50 59 60 61 62 63 64 65 66 67 68 69 70 72 74 75 78 79 81 82 93 94 95 96 97 98 99 100 102 103 104 105 110 111 113 114 115 116 117 118 119 120 125 126 127 129 131 132 133 137 138 142 143 144 145 146 147 148 149 150 151 152 153 158 159 160 161 162 170 172 174 175 176 181 182 183 184 185 186 187 188 189 190 191 196 197 202 203 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 227 229 230 231 238 239 240 241 242 243 244 245 246 254 255 256 257 258 259 260 261 262 263 264 268 270 271 275 276 277 278 279 280 281 282 283 284 285 286 287 292 293 294 295 313 314 315 316 317 318 319 321 322 353 354 355 356 357 362 363 364 368 369 370 371 373 374 377 378 382 383 384 402 411 412 413 414 415 416 420 429 430 433 437 440 441 444 445 446 447 448 449 450 462 479 484 503 504 505 506 509 510 511 512 513 514 516 523 528 529 559 560 562 569 574 575 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 634 635 637 638 639 640 641 642 643 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 666 669 672 674 675 676 677 678 680 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 702 703 704 706 708 709 710 711 712 713 715 717 718 719 724 725 726 727 730 731 732 733 734 735 738 739 740 741 744 745 746 747 748 749 750 753 754 755 756 757 758 759 760 761 762 763 765 767 768 769 770 771 772 773 774 775 776 777 778 782 783 784 785 786 787 788 789 791 792 793 794 796 797 798 799 800 801 802 803 809 810 811 813 814 816 817 819 820 821 822 823 824 830 831 833 835 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 863 868 869 870 871 872 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 896 897 898 899 900 901 903 909 910 911 912 913 914 916 917 919 920 922 923 924 925 926 927 928 930 931 934 935 936 938 939 940 943 944 951 961

Until now, that makes a total of 721 puzzles solved without using Tridagon links.


Adding tridagon-links and Tridagon-Forcing-Whips of length ≤ 15, 41 more puzzles can be solved, pushing the total to 762:
Code: Select all
8 12 20 76 77 80 89 90 155 156 164 165 168 169 173 226 232 234 235 236 237 265 266 267 442 459 518 522 524 563 564 565 567 570 595 596 597 932 933 945 948



Having a Tridagon-link and being solvable by Tridagon-Forcing-Whips is not equivalent: among the 972-721=251 puzzles that are not solved with the Tridagon elimination rule, only 3 puzzles don't have a tridagon-link:
Code: Select all
#827:
+-------------------+-------------------+-------------------+
! 1     23    348   ! 248   5     6     ! 7     248   9     !
! 2478  25    4578  ! 1248  248   9     ! 1248  3     6     !
! 6     29    489   ! 3     7     1248  ! 1248  5     248   !
+-------------------+-------------------+-------------------+
! 23489 2359  34589 ! 59    6     248   ! 248   7     1     !
! 248   16    1468  ! 12478 3     12478 ! 9     248   5     !
! 2489  7     14589 ! 59    248   1248  ! 3     6     248   !
+-------------------+-------------------+-------------------+
! 379   16    13679 ! 24678 248   2478  ! 5     12489 23478 !
! 5     8     167   ! 2467  9     3     ! 246   124   247   !
! 379   4     2     ! 678   1     5     ! 68    89    378   !
+-------------------+-------------------+-------------------+

#828
+-------------------+-------------------+-------------------+
! 1     248   3     ! 248   5     6     ! 24789 278   49    !
! 248   5     7     ! 1     248   9     ! 23468 238   346   !
! 6     9     248   ! 3     2478  2478  ! 5     128   14    !
+-------------------+-------------------+-------------------+
! 248   6     1     ! 5     3     248   ! 248   9     7     !
! 59    23478 59    ! 248   6     2478  ! 12348 1238  134   !
! 2478  23478 248   ! 9     2478  1     ! 2348  6     5     !
+-------------------+-------------------+-------------------+
! 3     17    2569  ! 26    29    25    ! 17    4     8     !
! 45789 1478  45689 ! 468   489   3458  ! 13679 137   2     !
! 2489  248   24689 ! 7     1     2348  ! 369   5     369   !
+-------------------+-------------------+-------------------+

#836
+-------------------+-------------------+-------------------+
! 1     248   3     ! 248   5     6     ! 24789 278   49    !
! 248   5     7     ! 1     248   9     ! 23468 238   346   !
! 6     9     248   ! 3     2478  2478  ! 5     128   14    !
+-------------------+-------------------+-------------------+
! 248   6     1     ! 5     3     248   ! 248   9     7     !
! 59    23478 59    ! 248   6     12478 ! 12348 1238  134   !
! 2478  23478 248   ! 9     2478  12478 ! 12348 6     5     !
+-------------------+-------------------+-------------------+
! 3     17    2569  ! 26    29    25    ! 17    4     8     !
! 45789 1478  45689 ! 468   489   3458  ! 13679 137   2     !
! 2489  248   24689 ! 7     1     2348  ! 369   5     369   !
+-------------------+-------------------+-------------------+


It is easy to see that these 3 puzzles have a more general pattern, with 1 (or even 2) additional candidate(s) in 3 cells. I'm curious to see if anyone can use such OR3 or OR4 relations in any smart way.

(Note. I'm making no statistical claim: due to the way it is built, the collection can only be strongly biased.)
denis_berthier
2010 Supporter
 
Posts: 3972
Joined: 19 June 2007
Location: Paris

Re: The tridagon rule

Postby marek stefanik » Sat Apr 02, 2022 12:52 pm

All three grids are closely related – after altering 69r12c69 in #827, it is isomorphic to #828 and deleting one of the clues in #828 gives us #836.

In #836 we can use the TH with a short kraken:
Code: Select all
+-------------------+-------------------+-------------------+
! 1    #248   3     !#248   5     6     ! 24789 278   49    !
!#248   5     7     ! 1    #248   9     ! 23468 238   346   !
! 6     9    #248   ! 3     2478 #248+7 ! 5     128   14    !
+-------------------+-------------------+-------------------+
!#248   6     1     ! 5     3    #248   ! 248   9     7     !
! 59   #37–248 59   !#248   6    *12478 ! 12348 1238  134   !
! 2478  23478#248   ! 9    #248+7 12478 ! 12348 6     5     !
+-------------------+-------------------+-------------------+
! 3     17    2569  ! 26    29    25    ! 17    4     8     !
! 45789 1478  45689 ! 468   489   3458  ! 13679 137   2     !
! 2489  248   24689 ! 7     1     2348  ! 369   5     369   !
+-------------------+-------------------+-------------------+
37r5c2 == [7r3c6 | 7r6c5] – 7r5c6 = 7r5c2 => –248r5c2

At this point I struggled to find an elegant way through, and eliminated 7r8c1 with a long B2B net.
The rest should be in T&E(1) and can be solved easily with the parity argument:
Code: Select all
.------------------.----------------.---------------.
| 1   xz248  3     |xz248 5    6    | 7–248 278  9  |
| 248   5    7     | 1    248  9    | 2468  238  36 |
| 6     9    248   | 3    7    248  | 5     128  14 |
:------------------+----------------+---------------:
|x248   6    1     | 5    3   z248  |y248   9    7  |
| 59    3    59    |y248  6    7    | 1248  128  14 |
| 7    y248 z248   | 9   x248  1    | 3     6    5  |
:------------------+----------------+---------------:
| 3     17   2569  | 26   29   25   | 17    4    8  |
| 4589  17   45689 | 468  489  3458 | 1679  137  2  |
| 2489  248  24689 | 7    1    2348 | 69    5    36 |
'------------------'----------------'---------------'
Fixing the permutation in b4, then chaining through b125 gives us the permutation in b5.
NP xzr1c24, HS yb6 => –248r1c7

Code: Select all
.------------------.---------------.--------------.
| 1     248  3     | 248  5    6   | 7   y28   9  |
| 248   5    7     | 1    248  9   | 248  3    6  |
| 6     9 bxy248   | 3    7  xy248 | 5    128  14 |
:------------------+---------------+--------------:
|x248   6    1     | 5    3   z248 | 248  9    7  |
| 59    3    59    |y248  6    7   | 248  128  14 |
| 7    y248 z248   | 9   x248  1   | 3    6    5  |
:------------------+---------------+--------------:
| 3     7    269   | 26   29   5   | 1    4    8  |
|c4589  1    45689 | 468  489  3   | 69   7    2  |
| 2489  248  24689 | 7    1   a248 | 69   5    3  |
'------------------'---------------'--------------'
HS yr1 => y is not 4
NP xyr3c36 (remote triple with r4c6) => whichever digit appears in r9c6 is forced into r3c3, then in b7 into r8c1 and cannot be x (r4c1) => it must be y => y is not 2
y = 8, stte

Marek
marek stefanik
 
Posts: 358
Joined: 05 May 2021

Re: The tridagon rule

Postby denis_berthier » Sat Apr 02, 2022 2:43 pm

marek stefanik wrote:All three grids are closely related – after altering 69r12c69 in #827, it is isomorphic to #828 and deleting one of the clues in #828 gives us #836.

I've also noticed bigger clusters of puzzles closely related.
There remains too much redundancy in the database:
- normally, a puzzle isomorphic to an existing one shouldn't enter the database; the same should be true for the expansions;
- there should be a way of extracting only the smallest puzzles
denis_berthier
2010 Supporter
 
Posts: 3972
Joined: 19 June 2007
Location: Paris

Re: The tridagon rule

Postby mith » Mon Apr 04, 2022 4:46 pm

Denis, on the first point, 827 and 828 are not isomorphic themselves, but they are closely related by flipping the completed rectangle mentioned. It's necessary to keep track of these cases because, while they will solve identically from the expanded forms, they do not have the same minimals (and of course in some cases the minimals will turn out to be harder than the original puzzle).

I will be working on some tools to relate puzzles of both the "digit swapped" type (found by applying the algorithm suggested by 999_Springs earlier in the thread) and the "subset" type (found by enumerating all minimals and then singles-expanding those minimals - not all minimals will singles-expand to the original puzzle). Still not sure what the best way to notate those relationships in the database itself would be, though - we may just have to rely on the solution-minlex form and simple scripts to do that work.

836 is pretty interesting. The trivalue oddagon elimination is similar to some of the others we've looked at, where some guardian(s) force another guardian, but this one remains tough after the elimination. I don't see an elegant way through either, but I'll have to look at it some more later.
mith
 
Posts: 950
Joined: 14 July 2020

Re: The tridagon rule

Postby mith » Mon Apr 04, 2022 4:56 pm

It's worth noting that there *is* another ALS technique to get a digit in this puzzle, this time after the trivalue oddagon elims and using that new bivalue cell as one of the links:

9r9c1 =ALSc1= 7r6c1 - (7=3)r5c2 - 3r5c9 =ALSc9= 9r1c9 => -9r9c9 (and then +9r1c9)

Given the number of trivalue cells in these puzzles, the existence of ALS links involving the trivalue oddagon boxes (such as the one in c1 here) isn't too surprising; worth keeping in mind for the harder versions of the pattern.
mith
 
Posts: 950
Joined: 14 July 2020

Re: The tridagon rule

Postby denis_berthier » Tue Apr 05, 2022 4:51 am

.
Hi mith,
No doubt your last .xl version of the database is a great progress wrt to what you previously published directly on the forum.
After using it as reported in this thread, I have a few more remarks:
- it's a good thing to keep it independent of the older T&E(2) "hardest" collection; the search for hardest in the old SER sense and the search for non-T&E(2) seem to be neatly separated.
- I don't know how many different seeds you used at the start (I think not so many), but it'd be interesting to have each puzzle marked with its original seed;
- what's useful for extending the database may not be useful for analysing it: I understand you need to keep expanded forms that are not "minimal" (not a good word here, but I can't find any better one; I mean expanded forms that have no superset in the expanded database)
- a possible solution to the above would be to have a 3rd database of "minimal" expanded puzzles (or a script for easily extracting it); it should keep the same IDs as the full database of expanded forms (no problem with missing IDs)


mith wrote:I will be working on some tools to relate puzzles of both the "digit swapped" type (found by applying the algorithm suggested by 999_Springs earlier in the thread) and the "subset" type (found by enumerating all minimals and then singles-expanding those minimals - not all minimals will singles-expand to the original puzzle). Still not sure what the best way to notate those relationships in the database itself would be, though - we may just have to rely on the solution-minlex form and simple scripts to do that work.

If more than the "minimal" expanded forms are needed by anyone (3rd database solution), I think solution-minlex and scripts would be the most versatile way of proceeding.


mith wrote:836 is pretty interesting. The trivalue oddagon elimination is similar to some of the others we've looked at, where some guardian(s) force another guardian, but this one remains tough after the elimination. I don't see an elegant way through either, but I'll have to look at it some more later.

At this point, I'm not much into looking at cases with more than 2 additional candidates in different cells. A general analysis of the possibilities (along the lines I used for Tridagon-links) seems quite difficult. Moreover, the possibility for a human solver to identify such a pattern is questionable, unless he is specifically warned that there is one; but solving and solving with an oracle are two different things.
It's the usual problem of the simple cases of a pattern versus variants.
denis_berthier
2010 Supporter
 
Posts: 3972
Joined: 19 June 2007
Location: Paris

Re: The tridagon rule

Postby mith » Tue Apr 05, 2022 10:51 pm

I would disagree with the human solver part of that. Once you know about the technique (not in the puzzle specifically, just as a concept), the patterns are not hard to spot. I'd say this is a big advantage such a large scale pattern has over other types of patterns - even the complex versions with krakens on the guardians have lot of trivalue cells on the same three digits in such an arrangement that begs for further investigation.

Whether it is the case that the relevant deductions using the trivalue oddagon will always be accessible for a human solver is still to be determined, but none of the examples so far are all that complex.

(That said, I have finally just started the first new script looking for more puzzles outside T&E(singles,2), so should have some new data to look at soon.)
mith
 
Posts: 950
Joined: 14 July 2020

Re: The tridagon rule

Postby denis_berthier » Wed Apr 06, 2022 3:55 pm

.
A quick analysis of Hendrik's collection of 70 11.8s here: http://forum.enjoysudoku.com/the-hardest-sudokus-new-thread-t6539-1240.html

As I mentioned in the "hardest" thread:
- 44 of these puzzles (3 4 13 14 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 39 40 44 45 46 47 48 49 50 51 52 52 54 55 56 57 58 59 70) are in T&E(2)
- the rest (26)is in T&E(W2, 2).
- all of these puzzles have a Tridagon elimination rule of the type defined in the first post, available before the application of any whip.

Here are more results in the same vein as what I did with mith's collection. They show (not unexpectedly) some difference in the global distribution.
- None of these puzzles can be solved with only Subsets + FinnedFish + the Tridagon elimination rule
- If we add whips[≤12], all of them can be solved, except 3: #48, #50 and #51
- The length of the whips necessary to solve a puzzle seems unrelated to whether is is in T&E(2) or not.
- Tridagon-links are not needed.

As for the 3 not solved, I've checked #48:
98.76.5..7.54.98....6......69.8.7....57.46.8...45.....4.8...93......46.........2. 11.8/1.2/1.2 #48
Code: Select all
Resolution state after Singles and whips[1]:
   +-------------------------+-------------------------+-------------------------+
   ! 9       8       123     ! 7       6       123     ! 5       14      1234    !
   ! 7       123     5       ! 4       123     9       ! 8       16      1236    !
   ! 123     4       6       ! 123     12358   12358   ! 1237    179     12379   !
   +-------------------------+-------------------------+-------------------------+
   ! 6       9       123     ! 8       123     7       ! 1234    145     12345   !
   ! 123     5       7       ! 1239    4       6       ! 123     8       1239    !
   ! 8       123     4       ! 5       1239    123     ! 1237    1679    123679  !
   +-------------------------+-------------------------+-------------------------+
   ! 4       1267    8       ! 126     1257    125     ! 9       3       157     !
   ! 1235    1237    1239    ! 1239    1235789 4       ! 6       157     1578    !
   ! 135     1367    139     ! 1369    135789  1358    ! 147     2       14578   !
   +-------------------------+-------------------------+-------------------------+
187 candidates.

Code: Select all
hidden-pairs-in-a-row: r3{n5 n8}{c5 c6} ==> r3c6≠3, r3c6≠2, r3c6≠1, r3c5≠3, r3c5≠2, r3c5≠1
whip[5]: r3n9{c8 c9} - b6n9{r6c9 r6c8} - c8n7{r6 r8} - c9n7{r9 r6} - r6n6{c9 .} ==> r3c8≠1
   +-------------------------+-------------------------+-------------------------+
   ! 9       8       123     ! 7       6       123     ! 5       14      1234    !
   ! 7       123     5       ! 4       123     9       ! 8       16      1236    !
   ! 123     4       6       ! 123     58      58      ! 1237    79      12379   !
   +-------------------------+-------------------------+-------------------------+
   ! 6       9       123     ! 8       123     7       ! 1234    145     12345   !
   ! 123     5       7       ! 1239    4       6       ! 123     8       1239    !
   ! 8       123     4       ! 5       1239    123     ! 1237    1679    123679  !
   +-------------------------+-------------------------+-------------------------+
   ! 4       1267    8       ! 126     1257    125     ! 9       3       157     !
   ! 1235    1237    1239    ! 1239    1235789 4       ! 6       157     1578    !
   ! 135     1367    139     ! 1369    135789  1358    ! 147     2       14578   !
   +-------------------------+-------------------------+-------------------------+

tridagon type diag for digits 1, 2 and 3 in blocks:
        b5, with cells: r5c4 (target cell), r4c5, r6c6
        b4, with cells: r5c1, r4c3, r6c2
        b2, with cells: r3c4, r2c5, r1c6
        b1, with cells: r3c1, r2c2, r1c3
 ==> r5c4≠1,2,3
naked-single ==> r5c4=9
hidden-pairs-in-a-block: b6{n6 n9}{r6c8 r6c9} ==> r6c9≠7, r6c9≠3, r6c9≠2, r6c9≠1, r6c8≠7, r6c8≠1
hidden-single-in-a-block ==> r6c7=7
hidden-pairs-in-a-block: b3{n7 n9}{r3c8 r3c9} ==> r3c9≠3, r3c9≠2, r3c9≠1
naked-triplets-in-a-column: c5{r2 r4 r6}{n1 n2 n3} ==> r9c5≠3, r9c5≠1, r8c5≠3, r8c5≠2, r8c5≠1, r7c5≠2, r7c5≠1
Final resolution state:
+-------------------+-------------------+-------------------+
! 9     8     123   ! 7     6     123   ! 5     14    1234  !
! 7     123   5     ! 4     123   9     ! 8     16    1236  !
! 123   4     6     ! 123   58    58    ! 123   79    79    !
+-------------------+-------------------+-------------------+
! 6     9     123   ! 8     123   7     ! 1234  145   12345 !
! 123   5     7     ! 9     4     6     ! 123   8     123   !
! 8     123   4     ! 5     123   123   ! 7     69    69    !
+-------------------+-------------------+-------------------+
! 4     1267  8     ! 126   57    125   ! 9     3     157   !
! 1235  1237  1239  ! 123   5789  4     ! 6     157   1578  !
! 135   1367  139   ! 136   5789  1358  ! 14    2     14578 !
+-------------------+-------------------+-------------------+


After applying the Tridagon elimination rule, it remains in T&E(BRT, 2) - more precisely in T&E(W2, 1).
Last edited by denis_berthier on Thu Apr 07, 2022 2:36 am, edited 2 times in total.
denis_berthier
2010 Supporter
 
Posts: 3972
Joined: 19 June 2007
Location: Paris

Re: The tridagon rule

Postby marek stefanik » Wed Apr 06, 2022 7:22 pm

denis_berthier wrote:After applying the Tridagon elimination rule, it remains in T&E(W2, 2)
If that is true, it might be the first sub-10-SER not in T&E(2) (it is 9.7 skfr).

My first instinct was to relabel in b5, after which only finned X-wings and short XY-chains are needed, but seeing that relabeling in b4 simplifies the puzzle even further, I came up with the following:
Code: Select all
.------------------.-----------------.------------------.
| 9     8     123  | 7    6     123  | 5     14   1234  |
| 7     123   5    | 4    123   9    | 8    z16  z1236  |
| 123   4     6    | 123  58    58   | 123   79   79    |
:------------------+-----------------+------------------:
| 6     9    x123  | 8   z123   7    | 1234  145  12345 |
|y123   5     7    | 9    4     6    | 123   8    123   |
| 8    z123   4    | 5    123   123  | 7     69   69    |
:------------------+-----------------+------------------:
| 4     1267  8    | 126  57    125  | 9     3    157   |
| 1235  1237  1239 | 123  5789  4    | 6     157  1578  |
| 135   1367  139  | 136  5789  1358 | 14    2    14578 |
'------------------'-----------------'------------------'
Let xyz be the digit in b4p348, in that order. HS zb5, HP z6r2c89

Code: Select all
.------------------.-----------------.------------------.
| 9     8    ayz   | 7    6     123  | 5     14-y 1234-y|
| 7     123   5    | 4    123   9    | 8     z6    z6   |
|bxz    4     6    | 123  58    58   |cxy    79   79    |
:------------------+-----------------+------------------:
| 6     9     x    | 8    z     7    | 1234  145  12345 |
| y     5     7    | 9    4     6    | 123   8    123   |
| 8     z     4    | 5    123   123  | 7     69   69    |
:------------------+-----------------+------------------:
| 4     1267  8    | 126  57    125  | 9     3    157   |
| 1235  1237  1239 | 123  5789  4    | 6     157  1578  |
| 135   1367  139  | 136  5789  1358 | 14    2    14578 |
'------------------'-----------------'------------------'
(y=z)r1c3 – (z=x)r3c1 – (x=y)r3c7 => –yr1c89, HS yb3

Code: Select all
.------------------.-----------------.------------------.
| 9     8     yz   | 7    6     123  | 5     14   1234  |
| 7     123   5    | 4    123   9    | 8     z6    z6   |
| xz    4     6    | 123  58    58   | y     79   79    |
:------------------+-----------------+------------------:
| 6     9     x    | 8   z123   7    | 1234  145  12345 |
| y     5     7    | 9    4     6    | 123   8  xz1–23  |
| 8     z     4    | 5    123   123  | 7     69   69    |
:------------------+-----------------+------------------:
| 4     1267  8    | 126  57    125  | 9     3    157   |
| 1235  1237  1239 | 123  5789  4    | 6     157  1578  |
| 135   1367  139  | 136  5789  1358 |xz1–4  2    14578 |
'------------------'-----------------'------------------'
whichever digit appears in r5c9 is forced into r9c7 in c7 => –4r9c7, –23r5c9; then 4.2 skfr

Note that the extra cell (here r3c7) is the same as in these patterns found by eleven (in fact, they can be used to eliminate 123r4c7 directly, reducing the puzzle to 8.4 skfr).

I think the other puzzles should also be studied, I am currently trying to make sense of this Xsudo's deduction in the second puzzle on the 11.7 list:
Code: Select all
987......6..95.....4.......3..5.261.2..31........96.32...26.5.9...1....3....3.12.
.----------------------.-----------------.-------------------.
| 9      8      7      |#46  #24   134   | 234   #456   1456 |
| 6      123    123    | 9    5    13478 | 23478  478   1478 |
| 15     4      1235   |#678 #278  1378  | 23789 #6789  1678 |
:----------------------+-----------------+-------------------:
| 3      79     489    | 5   #478  2     | 6      1    #478  |
| 2      67     468    | 3    1    478   | 4789  #59    4578 |
| 14578  157    1458   |#478  9    6     |#478    3     2    |
:----------------------+-----------------+-------------------:
| 1478   137    1348   | 2    6   #478   | 5     #478   9    |
| 4578   25679  245689 | 1   #478  59    |#478   #4678  3    |
| 4578   5679   45689  |#478  3    59    | 1      2     6–478|
'----------------------'-----------------'-------------------'


Added: Suppose 478r9c9. In c8, one of 478 must appear in r13c8. Let's call that digit x.
Code: Select all
.----------------------.-----------------.-------------------.
| 9      8      7      | 46   24   134   | 234   x45    1456 |
| 6      123    123    | 9    5    13478 | 23478  478   1478 |
| 15     4      1235   | 678  278  1378  | 23789 x789   1678 |
:----------------------+-----------------+-------------------:
| 3      79     489    | 5   a478  2     | 6      1     478  |
| 2      67     468    | 3    1    478   | 4789   59    4578 |
| 14578  157    1458   |b478  9    6     | 478    3     2    |
:----------------------+-----------------+-------------------:
| 1478   137    1348   | 2    6    478   | 5      478   9    |
| 4578   25679  245689 | 1    478  59    |a478    6     3    |
| 4578   5679   45689  | 478  3    59    | 1      2    b478  |
'----------------------'-----------------'-------------------'
x must take one of the marked cells in b9 and then one of the marked cells either (b) in c4 or (a) in c5.
If the other two cells contain the same digit, b6 is broken, if they contain different digits, (after filling in r5c6 and r7c8) b8 is broken, ie. contra.
Therefore -478r9c9, reducing the puzzle to 4.2 skfr.

Marek
marek stefanik
 
Posts: 358
Joined: 05 May 2021

Re: The tridagon rule

Postby denis_berthier » Thu Apr 07, 2022 2:39 am

marek stefanik wrote:
denis_berthier wrote:After applying the Tridagon elimination rule, it remains in T&E(W2, 2)
If that is true, it might be the first sub-10-SER not in T&E(2) (it is 9.7 skfr).

I've corrected this typo. I meant "T&E(BRT, 2), more precisely T&E(W2, 1)", also named B2B.

marek stefanik wrote:My first instinct was to relabel in b5,

Eleven's digit relabelling is a smart solving method, but it doesn't allow to conclude anything about classifications. See my new post here: http://forum.enjoysudoku.com/eleven-s-variable-replacement-method-and-its-complexity-t39277-6.html
denis_berthier
2010 Supporter
 
Posts: 3972
Joined: 19 June 2007
Location: Paris

Re: The tridagon rule

Postby denis_berthier » Wed Apr 20, 2022 12:14 pm

.
In a previous post (http://forum.enjoysudoku.com/the-tridagon-rule-t39859-39.html), I analysed mitt's full list of 972 non-T&E(2) puzzles https://docs.google.com/spreadsheets/d/1t-PsJT-pKGQEWjSbbNBXzLcxb5Inmooszntu9ZVCW_M/edit#gid=0 introduced by mith here: http://forum.enjoysudoku.com/the-hardest-sudokus-new-thread-t6539-1231.html.

I showed that:
- using only (Naked + Hidden + Super-HIdden) Subsets + Finned Fish + the Tridagon elimination rule defined in the 1st post of this thread, 216 puzzles can be solved;
- adding whips of length ≤ 12, 505 more puzzles can be solved;
- adding tridagon-links and Tridagon-Forcing-Whips of length ≤ 15, 41 more puzzles can be solved, pushing the total to 762.

That left 210 unsolved by the above-mentioned resolution rules.


Since then, I've added eleven's replacement technique to SudoRules arsenal in cases there is some trivalue oddagon pattern with additional clues in at most 3 blocks. (I'll say more on this soon in the CSP-Rules thread (http://forum.enjoysudoku.com/csp-rules-sudorules-kakurules-t38200.html).
Eleven's replacement technique, based on the relevant blocks of the tridagon pattern allows to solve all the 210 remaining puzzles.

Take a random example in the 210 remaining list, #269:
Code: Select all
     +-------+-------+-------+
     ! . 2 3 ! . . . ! . 8 9 !
     ! 4 . 6 ! . . . ! . . . !
     ! 7 8 . ! . . . ! . . . !
     +-------+-------+-------+
     ! . . . ! . . 5 ! . 9 . !
     ! . . . ! 9 2 . ! . 5 1 !
     ! . . . ! 3 . 1 ! 2 . 8 !
     +-------+-------+-------+
     ! 3 . . ! 5 . . ! . 1 . !
     ! . . . ! 8 9 . ! . 2 3 !
     ! . . . ! . 1 3 ! . . 5 !
     +-------+-------+-------+
.23....894.6......78............5.9....92..51...3.12.83..5...1....89..23....13..5;11,7;10,6;2,6;28;269;;;;;;;;;;;;;;


The resolution path starts as:
Code: Select all
Resolution state after Singles and whips[1]:
   +-------------------+-------------------+-------------------+
   ! 15    2     3     ! 1467  4567  467   ! 14567 8     9     !
   ! 4     159   6     ! 127   3578  2789  ! 157   37    27    !
   ! 7     8     159   ! 1246  3456  2469  ! 1456  346   246   !
   +-------------------+-------------------+-------------------+
   ! 1268  13467 12478 ! 467   4678  5     ! 3467  9     467   !
   ! 68    3467  478   ! 9     2     4678  ! 3467  5     1     !
   ! 569   45679 4579  ! 3     467   1     ! 2     467   8     !
   +-------------------+-------------------+-------------------+
   ! 3     4679  24789 ! 5     467   2467  ! 46789 1     467   !
   ! 156   14567 1457  ! 8     9     467   ! 467   2     3     !
   ! 2689  4679  24789 ! 2467  1     3     ! 46789 467   5     !
   +-------------------+-------------------+-------------------+
194 candidates.
hidden-pairs-in-a-column: c7{n8 n9}{r7 r9} ==> r9c7≠7, r9c7≠6, r9c7≠4, r7c7≠7, r7c7≠6, r7c7≠4
whip[4]: r7n2{c6 c3} - r7n8{c3 c7} - r7n9{c7 c2} - r2n9{c2 .} ==> r2c6≠2
whip[5]: c1n9{r6 r9} - c1n2{r9 r4} - c1n8{r4 r5} - c6n8{r5 r2} - r2n9{c6 .} ==> r6c2≠9
whip[5]: r2n9{c2 c6} - r2n8{c6 c5} - c5n3{r2 r3} - c5n5{r3 r1} - r1c1{n5 .} ==> r2c2≠1
whip[8]: r5c1{n6 n8} - c6n8{r5 r2} - r2n9{c6 c2} - r3n9{c3 c6} - c6n2{r3 r7} - r9n2{c4 c3} - r9n9{c3 c7} - r9n8{c7 .} ==> r9c1≠6


Then eleven's technique is chosen:
Code: Select all
***** STARTING ELEVEN''S REPLACEMENT TECHNIQUE in resolution state: *****
   +-------------------+-------------------+-------------------+
   ! 15    2     3     ! 1467  4567  467   ! 14567 8     9     !
   ! 4     59    6     ! 127   3578  789   ! 157   37    27    !
   ! 7     8     159   ! 1246  3456  2469  ! 1456  346   246   !
   +-------------------+-------------------+-------------------+
   ! 1268  13467 12478 ! 467   4678  5     ! 3467  9     467   !
   ! 68    3467  478   ! 9     2     4678  ! 3467  5     1     !
   ! 569   4567  4579  ! 3     467   1     ! 2     467   8     !
   +-------------------+-------------------+-------------------+
   ! 3     4679  24789 ! 5     467   2467  ! 89    1     467   !
   ! 156   14567 1457  ! 8     9     467   ! 467   2     3     !
   ! 289   4679  24789 ! 2467  1     3     ! 89    467   5     !
   +-------------------+-------------------+-------------------+


AFTER APPLYING ELEVEN''S REPLACEMENT METHOD to digits 4, 6 and 7 in cells r9c8, r8c7 and r7c9,
the resolution state is:
   +----------------------+----------------------+----------------------+
   ! 15     2      3      ! 1467   4675   467    ! 14675  8      9      !
   ! 467    59     467    ! 12467  354678 46789  ! 15467  3467   2467   !
   ! 467    8      159    ! 12467  34675  24679  ! 14675  3467   2467   !
   +----------------------+----------------------+----------------------+
   ! 124678 13467  124678 ! 467    4678   5      ! 3467   9      467    !
   ! 4678   3467   4678   ! 9      2      4678   ! 3467   5      1      !
   ! 54679  4675   46759  ! 3      467    1      ! 2      467    8      !
   +----------------------+----------------------+----------------------+
   ! 3      4679   246789 ! 5      467    2467   ! 89     1      7      !
   ! 15467  14675  14675  ! 8      9      467    ! 6      2      3      !
   ! 289    4679   246789 ! 2467   1      3      ! 89     4      5      !
   +----------------------+----------------------+----------------------+

THIS IS THE PUZZLE THAT WILL NOW BE SOLVED.
DON''T FORGET TO DO THE RELEVANT DIGIT REPLACEMENTS AT THE END, based on the original givens.


Code: Select all
Resolution state after Singles and whips[1]:
   +----------------------+----------------------+----------------------+
   ! 15     2      3      ! 1467   4567   467    ! 1457   8      9      !
   ! 467    59     467    ! 1247   34578  4789   ! 1457   367    246    !
   ! 467    8      159    ! 1247   3457   2479   ! 1457   367    246    !
   +----------------------+----------------------+----------------------+
   ! 124678 13467  124678 ! 467    4678   5      ! 347    9      46     !
   ! 4678   3467   4678   ! 9      2      4678   ! 347    5      1      !
   ! 45679  4567   45679  ! 3      467    1      ! 2      67     8      !
   +----------------------+----------------------+----------------------+
   ! 3      469    24689  ! 5      46     246    ! 89     1      7      !
   ! 1457   1457   1457   ! 8      9      47     ! 6      2      3      !
   ! 289    679    26789  ! 267    1      3      ! 89     4      5      !
   +----------------------+----------------------+----------------------+

188 candidates.

z-chain[3]: b1n4{r2c3 r3c1} - c9n4{r3 r4} - c4n4{r4 .} ==> r2c5≠4, r2c6≠4
z-chain[3]: r1n4{c6 c7} - c9n4{r2 r4} - c4n4{r4 .} ==> r3c5≠4, r3c6≠4
z-chain[4]: r4c9{n4 n6} - r4c4{n6 n7} - r6c5{n7 n6} - r7c5{n6 .} ==> r4c5≠4
z-chain[4]: r4c9{n6 n4} - r4c4{n4 n7} - r6c5{n7 n4} - r7c5{n4 .} ==> r4c5≠6
z-chain[5]: r7c5{n4 n6} - r6c5{n6 n7} - r6c8{n7 n6} - r4c9{n6 n4} - c4n4{r4 .} ==> r1c5≠4
whip[5]: b8n7{r8c6 r9c4} - b8n2{r9c4 r7c6} - c6n6{r7 r5} - r4c4{n6 n4} - b2n4{r1c4 .} ==> r1c6≠7
whip[4]: r5n6{c3 c6} - r1c6{n6 n4} - c4n4{r1 r4} - r4c9{n4 .} ==> r4c3≠6
whip[4]: r5n6{c3 c6} - r1c6{n6 n4} - c4n4{r1 r4} - r4c9{n4 .} ==> r4c2≠6
whip[4]: r5n6{c3 c6} - r1c6{n6 n4} - c4n4{r1 r4} - r4c9{n4 .} ==> r4c1≠6
whip[5]: r1c6{n6 n4} - c4n4{r1 r4} - r6c5{n4 n7} - r6c8{n7 n6} - r4c9{n6 .} ==> r1c5≠6
hidden-pairs-in-a-column: c5{n4 n6}{r6 r7} ==> r6c5≠7
whip[3]: r1c6{n6 n4} - b8n4{r7c6 r7c5} - r6c5{n4 .} ==> r5c6≠6
whip[1]: r5n6{c3 .} ==> r6c1≠6, r6c2≠6, r6c3≠6
z-chain[3]: r6n4{c3 c5} - b5n6{r6c5 r4c4} - r4c9{n6 .} ==> r4c3≠4, r4c2≠4, r4c1≠4
z-chain[5]: b5n7{r4c5 r5c6} - r8c6{n7 n4} - c5n4{r7 r6} - r6n6{c5 c8} - r6n7{c8 .} ==> r4c3≠7, r4c2≠7, r4c1≠7
z-chain[5]: b1n7{r2c3 r3c1} - c8n7{r3 r6} - r6n6{c8 c5} - c5n4{r6 r7} - r8c6{n4 .} ==> r2c6≠7
z-chain[5]: r1n7{c5 c7} - c8n7{r2 r6} - r6n6{c8 c5} - c5n4{r6 r7} - r8c6{n4 .} ==> r3c6≠7
whip[4]: c6n7{r8 r5} - r4n7{c4 c7} - r4n3{c7 c2} - c2n1{r4 .} ==> r8c2≠7
biv-chain[5]: r9c7{n9 n8} - r7n8{c7 c3} - r7n2{c3 c6} - r3c6{n2 n9} - b1n9{r3c3 r2c2} ==> r9c2≠9
biv-chain[5]: b5n8{r4c5 r5c6} - r2c6{n8 n9} - r3c6{n9 n2} - r7n2{c6 c3} - b4n2{r4c3 r4c1} ==> r4c1≠8
z-chain[5]: r7c5{n6 n4} - r7c2{n4 n9} - r2n9{c2 c6} - r3c6{n9 n2} - r7n2{c6 .} ==> r7c3≠6
z-chain[5]: r7c5{n4 n6} - r7c2{n6 n9} - r2n9{c2 c6} - r3c6{n9 n2} - r7n2{c6 .} ==> r7c3≠4
whip[6]: c2n1{r8 r4} - r4c1{n1 n2} - r4c3{n2 n8} - c5n8{r4 r2} - r2c6{n8 n9} - r2c2{n9 .} ==> r8c2≠5
biv-chain[3]: c2n5{r6 r2} - b1n9{r2c2 r3c3} - b4n9{r6c3 r6c1} ==> r6c1≠5
z-chain[4]: c6n7{r8 r5} - c2n7{r5 r6} - c2n5{r6 r2} - c1n5{r1 .} ==> r8c1≠7
z-chain[5]: b8n7{r8c6 r9c4} - c2n7{r9 r6} - c2n5{r6 r2} - r2n9{c2 c6} - c6n8{r2 .} ==> r5c6≠7
hidden-single-in-a-column ==> r8c6=7
whip[1]: r8n4{c3 .} ==> r7c2≠4
whip[1]: b5n7{r4c5 .} ==> r4c7≠7
biv-chain[3]: r2n2{c9 c4} - r9c4{n2 n6} - r4n6{c4 c9} ==> r2c9≠6
biv-chain[4]: r6c8{n7 n6} - c5n6{r6 r7} - r7c2{n6 n9} - c1n9{r9 r6} ==> r6c1≠7
z-chain[4]: r6n4{c3 c5} - r6n6{c5 c8} - b6n7{r6c8 r5c7} - r5n3{c7 .} ==> r5c2≠4
biv-chain[3]: c2n4{r8 r6} - c2n5{r6 r2} - c1n5{r1 r8} ==> r8c1≠4
naked-pairs-in-a-column: c1{r1 r8}{n1 n5} ==> r4c1≠1
naked-single ==> r4c1=2
naked-pairs-in-a-row: r9{c1 c7}{n8 n9} ==> r9c3≠9, r9c3≠8
biv-chain[4]: r1c5{n5 n7} - r4c5{n7 n8} - r4c3{n8 n1} - b1n1{r3c3 r1c1} ==> r1c1≠5
singles ==> r1c1=1, r8c1=5
biv-chain[4]: b1n5{r3c3 r2c2} - r2n9{c2 c6} - r2n8{c6 c5} - b2n3{r2c5 r3c5} ==> r3c5≠5
z-chain[3]: r2n3{c8 c5} - r3c5{n3 n7} - b1n7{r3c1 .} ==> r2c8≠7
biv-chain[5]: c2n5{r2 r6} - c2n4{r6 r8} - c2n1{r8 r4} - r4c3{n1 n8} - c5n8{r4 r2} ==> r2c5≠5
hidden-single-in-a-block ==> r1c5=5
hidden-pairs-in-a-block: b3{n1 n5}{r2c7 r3c7} ==> r3c7≠7, r3c7≠4, r2c7≠7, r2c7≠4
biv-chain[4]: r3c6{n2 n9} - r3c3{n9 n5} - c7n5{r3 r2} - r2n1{c7 c4} ==> r2c4≠2
hidden-single-in-a-row ==> r2c9=2
naked-quads-in-a-row: r3{c1 c5 c8 c9}{n4 n7 n3 n6} ==> r3c4≠7, r3c4≠4
z-chain[4]: r3n4{c1 c9} - c9n6{r3 r4} - b5n6{r4c4 r6c5} - r6n4{c5 .} ==> r5c1≠4
biv-chain[5]: r6c1{n9 n4} - c2n4{r6 r8} - c2n1{r8 r4} - r4c3{n1 n8} - b7n8{r7c3 r9c1} ==> r9c1≠9
singles ==> r9c1=8, r9c7=9, r7c7=8, r6c1=9
whip[1]: c1n4{r3 .} ==> r2c3≠4
biv-chain[4]: r5c1{n6 n7} - c7n7{r5 r1} - b3n4{r1c7 r3c9} - c1n4{r3 r2} ==> r2c1≠6
biv-chain[4]: r2n6{c3 c8} - r2n3{c8 c5} - r2n8{c5 c6} - r5n8{c6 c3} ==> r5c3≠6
biv-chain[5]: r6c8{n7 n6} - c5n6{r6 r7} - r7c2{n6 n9} - c3n9{r7 r3} - c3n5{r3 r6} ==> r6c3≠7
biv-chain[5]: r2n6{c3 c8} - r2n3{c8 c5} - b2n8{r2c5 r2c6} - r2n9{c6 c2} - r7c2{n9 n6} ==> r9c3≠6
singles ==> r2c3=6, r2c8=3, r3c5=3, r5c1=6
biv-chain[5]: r5n8{c3 c6} - r2c6{n8 n9} - c2n9{r2 r7} - c2n6{r7 r9} - r9n7{c2 c3} ==> r5c3≠7
stte
   123756489
   756489132
   489132576
   218675394
   634928751
   975341268
   392564817
   541897623
   867213945

(In the present case, no final digit permutation is needed.)

The last part could probably be shortened, but this is not my point.
denis_berthier
2010 Supporter
 
Posts: 3972
Joined: 19 June 2007
Location: Paris

Re: The tridagon rule

Postby denis_berthier » Fri Apr 22, 2022 11:43 am

.
Consider the classical "trivalue oddagon" impossible pattern in four blocks forming a rectangle:
Code: Select all
+-------------------------------+-------------------------------+
! 123       .         .         ! 123       .         .         !
! .         123       .         ! .         123       .         !
! .         .         123       ! .         .         123       !
+-------------------------------+-------------------------------+
! 123       .         .         ! .         .         123       !
! .         123       .         ! .         123       .         !
! .         .         123       ! 123       .         .         !
+-------------------------------+-------------------------------+

where "." can be anything.

Without making any other assumption, the most general possible resolution state is:
Code: Select all
    +-------------------------------+-------------------------------+-------------------------------+
    ! 123       123456789 123456789 ! 123       123456789 123456789 ! 123456789 123456789 123456789 !
    ! 123456789 123       123456789 ! 123456789 123       123456789 ! 123456789 123456789 123456789 !
    ! 123456789 123456789 123       ! 123456789 123456789 123       ! 123456789 123456789 123456789 !
    +-------------------------------+-------------------------------+-------------------------------+
    ! 123       123456789 123456789 ! 123456789 123456789 123       ! 123456789 123456789 123456789 !
    ! 123456789 123       123456789 ! 123456789 123       123456789 ! 123456789 123456789 123456789 !
    ! 123456789 123456789 123       ! 123       123456789 123456789 ! 123456789 123456789 123456789 !
    +-------------------------------+-------------------------------+-------------------------------+
    ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
    ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
    ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
    +-------------------------------+-------------------------------+-------------------------------+



Theorem 1: the trivalue oddagon pattern can be proven contradictory in T&E(Singles, 4).
Proof: whichever way one choses values for r1c1, r2c2, r1c4 and r4c1, one of the 123-cells in b4 has no possible value.
[Edit:] corrected the typo.

Theorem 2: after using eleven's replacement technique, the trivalue oddagon pattern can be proven contradictory in T&E(Singles, 1)

More precisely and somehow surprisingly:

Theorem 3: after using eleven's replacement technique, the trivalue oddagon pattern can be proven contradictory in Z5
Proof:
Applying eleven's replacement to block b1 gives the following RS:
Code: Select all
    +-------------------------------+-------------------------------+-------------------------------+
    ! 1         123456789 123456789 ! 123       123456789 123456789 ! 123456789 123456789 123456789 !
    ! 123456789 2         123456789 ! 123456789 123       123456789 ! 123456789 123456789 123456789 !
    ! 123456789 123456789 3         ! 123456789 123456789 123       ! 123456789 123456789 123456789 !
    +-------------------------------+-------------------------------+-------------------------------+
    ! 123       123456789 123456789 ! 123456789 123456789 123       ! 123456789 123456789 123456789 !
    ! 123456789 123       123456789 ! 123456789 123       123456789 ! 123456789 123456789 123456789 !
    ! 123456789 123456789 123       ! 123       123456789 123456789 ! 123456789 123456789 123456789 !
    +-------------------------------+-------------------------------+-------------------------------+
    ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
    ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
    ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
    +-------------------------------+-------------------------------+-------------------------------+


Select resolution theory Z5 and apply function solve-sukaku-grid to it (using SudoRules as an assistant theorem prover):

Code: Select all
biv-chain[3]: r1c4{n2 n3} - r2c5{n3 n1} - r3c6{n1 n2} ==> r1c5≠2, r1c6≠2, r3c4≠2, r3c5≠2
biv-chain[3]: r1c4{n3 n2} - r3c6{n2 n1} - r2c5{n1 n3} ==> r1c5≠3, r1c6≠3, r2c4≠3, r2c6≠3
biv-chain[3]: r2c5{n1 n3} - r1c4{n3 n2} - r3c6{n2 n1} ==> r2c4≠1, r2c6≠1, r3c4≠1, r3c5≠1
biv-chain[3]: r4c1{n2 n3} - r5c2{n3 n1} - r6c3{n1 n2} ==> r4c3≠2, r5c1≠2, r5c3≠2, r6c1≠2
biv-chain[3]: r4c1{n3 n2} - r6c3{n2 n1} - r5c2{n1 n3} ==> r4c2≠3, r5c1≠3, r6c1≠3, r6c2≠3
biv-chain[3]: r5c2{n1 n3} - r4c1{n3 n2} - r6c3{n2 n1} ==> r4c2≠1, r4c3≠1, r5c3≠1, r6c2≠1
z-chain[4]: b4n1{r6c3 r5c2} - b4n3{r5c2 r4c1} - r4c6{n3 n2} - r3c6{n2 .} ==> r6c6≠1
z-chain[4]: b4n3{r4c1 r5c2} - b4n1{r5c2 r6c3} - r6c4{n1 n2} - r1c4{n2 .} ==> r4c4≠3
z-chain[4]: r4c1{n2 n3} - r4c6{n3 n1} - r6c4{n1 n3} - r1c4{n3 .} ==> r4c4≠2
z-chain[4]: r6c3{n2 n1} - r6c4{n1 n3} - r4c6{n3 n1} - r3c6{n1 .} ==> r6c6≠2
z-chain[5]: b4n1{r6c3 r5c2} - b4n3{r5c2 r4c1} - r4c6{n3 n2} - r5c5{n2 n3} - r2c5{n3 .} ==> r6c5≠1
z-chain[5]: b4n3{r4c1 r5c2} - b4n1{r5c2 r6c3} - r6c4{n1 n2} - r5c5{n2 n1} - r2c5{n1 .} ==> r4c5≠3
z-chain[5]: b4n2{r6c3 r4c1} - b4n3{r4c1 r5c2} - r5c5{n3 n1} - b2n1{r2c5 r3c6} - b2n2{r3c6 .} ==> r6c4≠2
biv-chain[3]: r6c4{n1 n3} - r1c4{n3 n2} - r3c6{n2 n1} ==> r4c6≠1, r5c6≠1
biv-chain[2]: r4c6{n3 n2} - r4c1{n2 n3} ==> r4c7≠3, r4c8≠3, r4c9≠3
biv-chain[2]: r4c1{n2 n3} - r4c6{n3 n2} ==> r4c7≠2, r4c8≠2, r4c9≠2, r4c5≠2
biv-chain[3]: b4n2{r6c3 r4c1} - r4c6{n2 n3} - r6c4{n3 n1} ==> r6c3≠1
singles ==> r6c3=2, r4c1=3, r4c6=2, r3c6=1, r2c5=3, r1c4=2, r5c5=1
GRID 0 HAS NO SOLUTION : NO CANDIDATE FOR FOR BN-CELL b4n1


Note: a simpler resolution path can be obtained if Subsets are allowed, but this is not my point here, and anyway, it still requires Z5.

I think this is the most powerful example of eleven's replacement technique as of now: from T&E(4) to Z5.
Last edited by denis_berthier on Sun Apr 24, 2022 11:22 pm, edited 1 time in total.
denis_berthier
2010 Supporter
 
Posts: 3972
Joined: 19 June 2007
Location: Paris

Re: The tridagon rule

Postby denis_berthier » Sat Apr 23, 2022 7:23 am

.
Theorem 4 in my previous post has a theoretical interest, but does it have any practical one?

A priori, it doesn't imply anything on non contradictory puzzles, as they can't have the trivalue-oddagon impossible pattern. Any real puzzle will have additional candidates in at least one cell of the pattern.
One may however suppose that it generally implies some restrictions to the possible complexity of a puzzle that has the trivalue-oddagon impossible pattern plus a few candidates.
The only way to test this is to use existing puzzles and as of today the largest such collection is the mith's 972 one already studied in my previous posts.

So, the question in this post will be: in this 972 database, if not using any tridagon related resolution rule, but using eleven's replacement technique, can all the puzzles be solved in Z5 and otherwise how far must one go?

78 (i.e. 8%) are not solved in Z5: 8 12 20 76 77 80 89 90 128 129 155 156 164 165 168 169 173 226 232 234 235 236 237 265 266 267 269 271 396 442 459 517 518 522 524 563 564 565 567 570 595 596 597 677 776 827 828 836 837 846 884 915 932 933 937 942 944 945 947 948 952 953 956 957 958 959 960 962 963 964 965 966 967 968 969 970 971 972

Of those 78:
- 67 are solved in W6: 20 76 77 80 89 90 129 155 164 165 168 169 173 226 232 234 235 236 237 266 267 269 271 442 518 522 524 563 564 565 567 570 595 596 597 677 776 837 846 884 915 932 933 937 942 944 945 947 948 952 953 956 957 958 959 960 962 963 964 965 966 967 968 969 970 971 972

- 2 are solved in W7: 156 265

- 8 are solved in W8: 8 12 128 459 517 827 828 836

- the last one is solved in W9: 396


Notice that in these quick calculations, eleven's replacement is (automatically) tried only in the blocks of the possible trivalue-oddagons that have the 3 candidates and only them in each of their 3 cells.
denis_berthier
2010 Supporter
 
Posts: 3972
Joined: 19 June 2007
Location: Paris

Re: The tridagon rule

Postby mith » Sun Apr 24, 2022 11:17 pm

I'll be curious to see if any of the new ones defeat the replacement technique. I have at least one example of a puzzle with guardians in all four boxes after singles (or basics even), but after some short chains it's down to just two.

Code: Select all
........1.....234..35.1.......4..65....6.12.36....5.1...7.4.....89.5....21.....3.  ED=10.4/7.2/2.6


I'll have to code up a systematic search for these, it would be somewhat surprising if this is the only one found so far.
mith
 
Posts: 950
Joined: 14 July 2020

Re: The tridagon rule

Postby denis_berthier » Sun Apr 24, 2022 11:55 pm

mith wrote:I'll be curious to see if any of the new ones defeat the replacement technique. I have at least one example of a puzzle with guardians in all four boxes after singles (or basics even), but after some short chains it's down to just two.
Code: Select all
........1.....234..35.1.......4..65....6.12.36....5.1...7.4.....89.5....21.....3.  ED=10.4/7.2/2.6
.

The replacement technique works - somehow. With it (and no tridagon rule), the puzzle is solved in W6.

Code: Select all
Resolution state after Singles and whips[1]:
   +----------------------+----------------------+----------------------+
   ! 4789   24679  2468   ! 35789  36789  346789 ! 5789   6789   1      !
   ! 1789   679    168    ! 5789   6789   2      ! 3      4      56789  !
   ! 4789   3      5      ! 789    1      46789  ! 789    26789  26789  !
   +----------------------+----------------------+----------------------+
   ! 1789   279    1238   ! 4      23789  3789   ! 6      5      789    !
   ! 45789  4579   48     ! 6      789    1      ! 2      789    3      !
   ! 6      279    238    ! 3789   23789  5      ! 4789   1      4789   !
   +----------------------+----------------------+----------------------+
   ! 35     56     7      ! 12389  4      3689   ! 189    2689   2689   !
   ! 34     8      9      ! 1237   5      367    ! 147    267    2467   !
   ! 2      1      46     ! 789    6789   6789   ! 45789  3      456789 !
   +----------------------+----------------------+----------------------+
215 candidates

hidden-pairs-in-a-column: c4{n1 n2}{r7 r8} ==> r8c4≠7, r8c4≠3, r7c4≠9, r7c4≠8, r7c4≠3
whip[1]: b8n3{r8c6 .} ==> r1c6≠3, r4c6≠3
biv-chain[3]: r5c3{n8 n4} - c2n4{r5 r1} - b1n2{r1c2 r1c3} ==> r1c3≠8
biv-chain[4]: r5c3{n8 n4} - b7n4{r9c3 r8c1} - b7n3{r8c1 r7c1} - c1n5{r7 r5} ==> r5c1≠8
biv-chain[4]: r8c1{n4 n3} - r7c1{n3 n5} - b4n5{r5c1 r5c2} - c2n4{r5 r1} ==> r1c1≠4, r3c1≠4
hidden-single-in-a-row ==> r3c6=4
whip[1]: r3n6{c9 .} ==> r1c8≠6, r2c9≠6
hidden-pairs-in-a-block: b3{n2 n6}{r3c8 r3c9} ==> r3c9≠9, r3c9≠8, r3c9≠7, r3c8≠9, r3c8≠8, r3c8≠7
hidden-pairs-in-a-row: r1{n2 n4}{c2 c3} ==> r1c3≠6, r1c2≠9, r1c2≠7, r1c2≠6
whip[1]: r1n6{c6 .} ==> r2c5≠6
hidden-triplets-in-a-column: c1{n3 n4 n5}{r7 r8 r5} ==> r5c1≠9, r5c1≠7
biv-chain[4]: r4n3{c5 c3} - c3n1{r4 r2} - c3n6{r2 r9} - c5n6{r9 r1} ==> r1c5≠3
singles ==> r1c4=3, r2c4=5, r1c7=5, r9c9=5
hidden-pairs-in-a-block: b5{n2 n3}{r4c5 r6c5} ==> r6c5≠9, r6c5≠8, r6c5≠7, r4c5≠9, r4c5≠8, r4c5≠7
z-chain[3]: r9n6{c6 c3} - b7n4{r9c3 r8c1} - r8n3{c1 .} ==> r8c6≠6
whip[1]: r8n6{c9 .} ==> r7c8≠6, r7c9≠6
hidden-triplets-in-a-row: r7{n3 n5 n6}{c6 c1 c2} ==> r7c6≠9, r7c6≠8
whip[1]: r7n8{c9 .} ==> r9c7≠8
whip[1]: r7n9{c9 .} ==> r9c7≠9
Code: Select all
Resolution state:
   +----------------+----------------+----------------+
   ! 789  24   24   ! 3    6789 6789 ! 5    789  1    !
   ! 1789 679  168  ! 5    789  2    ! 3    4    789  !
   ! 789  3    5    ! 789  1    4    ! 789  26   26   !
   +----------------+----------------+----------------+
   ! 1789 279  1238 ! 4    23   789  ! 6    5    789  !
   ! 45   4579 48   ! 6    789  1    ! 2    789  3    !
   ! 6    279  238  ! 789  23   5    ! 4789 1    4789 !
   +----------------+----------------+----------------+
   ! 35   56   7    ! 12   4    36   ! 189  289  289  !
   ! 34   8    9    ! 12   5    37   ! 147  267  2467 !
   ! 2    1    46   ! 789  6789 6789 ! 47   3    5    !
   +----------------+----------------+----------------+


AFTER APPLYING ELEVEN''S REPLACEMENT METHOD to digits 7, 8 and 9 in cells r1c8, r2c9 and r3c7,
the resolution state is:
Code: Select all
   +----------------------+----------------------+----------------------+
   ! 789    24     24     ! 3      6789   6789   ! 5      7      1      !
   ! 1789   6789   16789  ! 5      789    2      ! 3      4      8      !
   ! 789    3      5      ! 789    1      4      ! 9      26     26     !
   +----------------------+----------------------+----------------------+
   ! 1789   2789   123789 ! 4      23     789    ! 6      5      789    !
   ! 45     45789  4789   ! 6      789    1      ! 2      789    3      !
   ! 6      2789   23789  ! 789    23     5      ! 4789   1      4789   !
   +----------------------+----------------------+----------------------+
   ! 35     56     789    ! 12     4      36     ! 1789   2789   2789   !
   ! 34     789    789    ! 12     5      3789   ! 14789  26789  246789 !
   ! 2      1      46     ! 789    6789   6789   ! 4789   3      5      !
   +----------------------+----------------------+----------------------+

whip[1]: r9n9{c6 .} ==> r8c6≠9
whip[1]: b1n8{r3c1 .} ==> r4c1≠8
z-chain[5]: c5n6{r9 r1} - c5n8{r1 r5} - r5c8{n8 n9} - r4c9{n9 n7} - c6n7{r4 .} ==> r9c5≠7
z-chain[5]: b8n7{r9c6 r9c4} - r3c4{n7 n8} - b5n8{r6c4 r5c5} - r5c8{n8 n9} - r4c9{n9 .} ==> r4c6≠7
whip[1]: c6n7{r9 .} ==> r9c4≠7
biv-chain[3]: r9c4{n9 n8} - r3c4{n8 n7} - r2c5{n7 n9} ==> r9c5≠9
z-chain[5]: r9n7{c7 c6} - r9n9{c6 c4} - r6c4{n9 n8} - r4c6{n8 n9} - r4c9{n9 .} ==> r6c7≠7
whip[1]: c7n7{r9 .} ==> r7c9≠7, r8c9≠7
biv-chain[3]: r7c9{n9 n2} - r3c9{n2 n6} - b9n6{r8c9 r8c8} ==> r8c8≠9
z-chain[3]: r7n8{c8 c3} - r7n7{c3 c7} - c7n1{r7 .} ==> r8c7≠8
biv-chain[5]: r5n5{c2 c1} - c1n4{r5 r8} - c9n4{r8 r6} - r6c7{n4 n8} - r5c8{n8 n9} ==> r5c2≠9
biv-chain[5]: c9n7{r4 r6} - r6n4{c9 c7} - r9n4{c7 c3} - c3n6{r9 r2} - c3n1{r2 r4} ==> r4c3≠7
biv-chain[5]: r6c7{n8 n4} - r9n4{c7 c3} - c3n6{r9 r2} - c3n1{r2 r4} - b4n3{r4c3 r6c3} ==> r6c3≠8
z-chain[5]: c3n6{r2 r9} - r9n4{c3 c7} - c9n4{r8 r6} - c9n7{r6 r4} - c1n7{r4 .} ==> r2c3≠7
Code: Select all
   +-------------------+-------------------+-------------------+
   ! 89    24    24    ! 3     689   689   ! 5     7     1     !
   ! 179   679   169   ! 5     79    2     ! 3     4     8     !
   ! 78    3     5     ! 78    1     4     ! 9     26    26    !
   +-------------------+-------------------+-------------------+
   ! 179   2789  12389 ! 4     23    89    ! 6     5     79    !
   ! 45    4578  4789  ! 6     789   1     ! 2     89    3     !
   ! 6     2789  2379  ! 789   23    5     ! 48    1     479   !
   +-------------------+-------------------+-------------------+
   ! 35    56    789   ! 12    4     36    ! 178   289   29    !
   ! 34    789   789   ! 12    5     378   ! 147   268   2469  !
   ! 2     1     46    ! 89    68    6789  ! 478   3     5     !
   +-------------------+-------------------+-------------------+


AFTER APPLYING ELEVEN''S REPLACEMENT METHOD to digits 7, 8 and 9 in cells r6c4, r5c5 and r4c6,
the resolution state is:
Code: Select all
   +----------------------+----------------------+----------------------+
   ! 789    24     24     ! 3      6789   6789   ! 5      789    1      !
   ! 1789   6789   16789  ! 5      789    2      ! 3      4      789    !
   ! 789    3      5      ! 789    1      4      ! 789    26     26     !
   +----------------------+----------------------+----------------------+
   ! 1789   2789   123789 ! 4      23     9      ! 6      5      789    !
   ! 45     45789  4789   ! 6      8      1      ! 2      789    3      !
   ! 6      2789   23789  ! 7      23     5      ! 4789   1      4789   !
   +----------------------+----------------------+----------------------+
   ! 35     56     789    ! 12     4      36     ! 1789   2789   2789   !
   ! 34     789    789    ! 12     5      3789   ! 14789  26789  246789 !
   ! 2      1      46     ! 789    6789   6789   ! 4789   3      5      !
   +----------------------+----------------------+----------------------+

whip[1]: c1n9{r3 .} ==> r2c3≠9, r2c2≠9
whip[1]: b8n9{r9c5 .} ==> r9c7≠9
z-chain[4]: r2c5{n7 n9} - r2c9{n9 n8} - r4c9{n8 n7} - c1n7{r4 .} ==> r2c2≠7, r2c3≠7
whip[1]: b1n7{r3c1 .} ==> r4c1≠7
whip[5]: r2n8{c3 c9} - r4c9{n8 n7} - r5c8{n7 n9} - r1c8{n9 n7} - r3n7{c7 .} ==> r3c1≠8
whip[6]: r3c1{n9 n7} - r1c1{n7 n8} - r2c2{n8 n6} - r7n6{c2 c6} - r1c6{n6 n7} - r2c5{n7 .} ==> r2c1≠9
z-chain[5]: r4c9{n8 n7} - r5c8{n7 n9} - b3n9{r1c8 r3c7} - c1n9{r3 r1} - b1n8{r1c1 .} ==> r2c9≠8
whip[1]: r2n8{c3 .} ==> r1c1≠8
naked-pairs-in-a-block: b1{r1c1 r3c1}{n7 n9} ==> r2c1≠7
biv-chain[3]: r1n8{c8 c6} - r3c4{n8 n9} - b1n9{r3c1 r1c1} ==> r1c8≠9
z-chain[3]: c8n9{r8 r5} - b6n7{r5c8 r4c9} - r2c9{n7 .} ==> r7c9≠9, r8c9≠9
z-chain[5]: r1c8{n8 n7} - b6n7{r5c8 r4c9} - r7c9{n7 n2} - r3n2{c9 c8} - c8n6{r3 .} ==> r8c8≠8
biv-chain[6]: r2n7{c5 c9} - r4c9{n7 n8} - r4c1{n8 n1} - b1n1{r2c1 r2c3} - c3n6{r2 r9} - c5n6{r9 r1} ==> r1c5≠7
whip[6]: c7n1{r8 r7} - r7c4{n1 n2} - r7c9{n2 n8} - r7c8{n8 n9} - r5c8{n9 n7} - r4c9{n7 .} ==> r8c7≠7
whip[6]: r6n4{c9 c7} - b6n8{r6c7 r4c9} - c1n8{r4 r2} - r2c2{n8 n6} - b7n6{r7c2 r9c3} - r9n4{c3 .} ==> r6c9≠9
singles ==> r2c9=9, r2c5=7
biv-chain[3]: r1n8{c6 c8} - b3n7{r1c8 r3c7} - r9n7{c7 c6} ==> r9c6≠8
x-wing-in-rows: n8{r3 r9}{c4 c7} ==> r8c7≠8, r7c7≠8, r6c7≠8
whip[1]: b6n8{r6c9 .} ==> r7c9≠8, r8c9≠8
biv-chain[3]: r7c9{n7 n2} - r3c9{n2 n6} - b9n6{r8c9 r8c8} ==> r8c8≠7
biv-chain[4]: b6n8{r6c9 r4c9} - b6n7{r4c9 r5c8} - r1c8{n7 n8} - r7n8{c8 c3} ==> r6c3≠8
biv-chain[4]: c7n8{r9 r3} - b3n7{r3c7 r1c8} - r5c8{n7 n9} - r6c7{n9 n4} ==> r9c7≠4
stte
742396581
186572349
935814726
821439657
457681293
693725418
568143972
379258164
214967835
Permute 7 and 8.

I've applied the technique twice (manual choice here because I wanted to see what happened) - but in my previous analysis of your 972 database it was sometimes automatically applied twice to some of the puzzles.
denis_berthier
2010 Supporter
 
Posts: 3972
Joined: 19 June 2007
Location: Paris

PreviousNext

Return to Advanced solving techniques