Sudokus with an original rare shape

Everything about Sudoku that doesn't fit in one of the other sections

Postby claudiarabia » Sat Dec 16, 2006 10:49 am

ravel wrote:What i remember in this context is, that in the last elections in my country some ballots were blighted with this sign, but 95% of them were the other way round (the sun symbol).


Thank you very much

Claudia:)
claudiarabia
 
Posts: 288
Joined: 14 May 2006

Postby m_b_metcalf » Sat Dec 16, 2006 4:22 pm

I was looking through my archive, and found these two 'squarish' puzzles. I was surprised that the second one is that hard, given that the central box is full.

Code: Select all
  3  .  5  4  .  2  7  .  1
  9  .  .  1  .  6  .  .  8
  .  .  .  .  .  .  .  .  .
  .  .  8  2  .  5  1  .  .
  .  .  .  .  .  .  .  .  .
  .  .  7  8  .  1  2  .  .
  .  .  .  .  .  .  .  .  .
  1  .  3  .  .  .  6  .  4
  .  .  4  9  .  7  5  .  .  SE 7.2

Code: Select all
   .  . 8  9  .  1  6  .  .
  2  .  .  .  .  .  .  .  5
  .  7  .  .  .  .  .  9  .
  .  8  .  4  5  2  .  6  .
  3  .  .  7  .  8  .  .  1
  .  5  .  1  9  3  .  8  .
  .  3  .  .  .  .  .  7  .
  4  .  .  .  .  .  .  .  9
  .  .  5  3  .  4  2  .  .  SE 7.3

Regards,

Mike Metcalf
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13624
Joined: 15 May 2006
Location: Berlin

Full diagonal boxes

Postby m_b_metcalf » Sat Dec 16, 2006 8:16 pm

Speaking of full boxes, there are over 280,000 grids that have the ordered 1-9 pattern in each of the three diagonal boxes. Below is an example of a mimimal puzzle derived from such a grid, where minimal here implies that those diagonal boxes are protected. I find the minimum number of additional clues to be 6. Are there smaller solutions?

Code: Select all
  1  2  3  .  .  .  .  9  .
  4  5  6  .  .  .  .  .  7
  7  8  9  3  .  .  .  .  .
  .  .  .  1  2  3  .  .  .
  .  .  7  4  5  6  .  .  .
  .  .  .  7  8  9  .  .  .
  .  .  .  8  .  .  1  2  3
  .  .  .  .  .  .  4  5  6
  .  .  5  .  .  .  7  8  9     six extra clues, SE 7.3


Regards,

Mike Metcalf
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13624
Joined: 15 May 2006
Location: Berlin

Postby Mauricio » Sat Dec 16, 2006 9:12 pm

A beautiful sudoku; ER 8.3, minimal, fully symmetrical and nice clues given,
note the diagonal groups of 1's, 3's, 5's, 7's

Code: Select all
9...6...3
.8.7.5.9.
..7.9.5..
.7.....5.
8.6...2.4
.1.....3.
..1.4.3..
.6.1.3.2.
7...2...1

In the same league, though not minimal
Code: Select all
5...6...7
.2.7.5.4.
..7.4.5..
.7.....5.
8.6...2.4
.1.....3.
..1.8.3..
.9.1.3.6.
3...2...9
Mauricio
 
Posts: 1175
Joined: 22 March 2006

Re: Full diagonal boxes

Postby m_b_metcalf » Sun Dec 17, 2006 4:54 pm

m_b_metcalf wrote:I find the minimum number of additional clues to be 6. Are there smaller solutions?

To answer my own question, here's one with just 5 extra clues:


Code: Select all
  1  4  7  .  .  .  .  .  .
  2  5  8  .  3  .  4  .  .
  3  6  9  .  .  .  .  .  .
  .  .  .  1  4  7  .  .  .
  .  .  .  2  5  8  .  .  6
  .  .  .  3  6  9  .  .  .
  .  .  .  .  .  .  1  4  7
  .  .  6  .  .  .  2  5  8
  .  8  .  .  .  .  3  6  9   SE 8.4

Regards,

Mike Metcalf
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13624
Joined: 15 May 2006
Location: Berlin

Postby JPF » Sun Dec 17, 2006 11:42 pm

Interesting question !
There are 283576 solutions to this puzzle :
Code: Select all
 1 4 7 | . . . | . . .
 2 5 8 | . . . | . . .
 3 6 9 | . . . | . . .
-------+-------+-------
 . . . | 1 4 7 | . . .
 . . . | 2 5 8 | . . .
 . . . | 3 6 9 | . . .
-------+-------+-------
 . . . | . . . | 1 4 7
 . . . | . . . | 2 5 8
 . . . | . . . | 3 6 9


m_b_metcalf wrote:
m_b_metcalf wrote:I find the minimum number of additional clues to be 6. Are there smaller solutions?

To answer my own question, here's one with just 5 extra clues:
Code: Select all
 1 4 7 | . . . | . . .
 2 5 8 | . 3 . | 4 . .
 3 6 9 | . . . | . . .
-------+-------+-------
 . . . | 1 4 7 | . . .
 . . . | 2 5 8 | . . 6
 . . . | 3 6 9 | . . .
-------+-------+-------
 . . . | . . . | 1 4 7
 . . 6 | . . . | 2 5 8
 . 8 . | . . . | 3 6 9


Nice !

It looks like a question we had here.

JPF
JPF
2017 Supporter
 
Posts: 6139
Joined: 06 December 2005
Location: Paris, France

Postby m_b_metcalf » Mon Dec 18, 2006 3:53 am

JPF wrote:Nice !

It looks like a question we had here.

JPF


Yes, except that the clues in the full boxes are identically ordered. Here's another, still with 5:
Code: Select all
  1  2  3  .  .  .  .  .  5
  4  5  6  .  .  .  .  .  .
  7  8  9  .  .  .  .  .  .
  .  .  .  1  2  3  .  .  .
  .  .  .  4  5  6  .  7  .
  .  1  .  7  8  9  .  .  .
  6  .  .  .  .  .  1  2  3
  .  .  .  .  .  .  4  5  6
  .  .  .  .  4  .  7  8  9

Regards,

Mike Metcalf
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13624
Joined: 15 May 2006
Location: Berlin

Frauke

Postby claudiarabia » Tue Dec 19, 2006 10:15 am

May I introduce Frauke to you?

Code: Select all
1..3..9..
.5...7.1.
..6.....2
8..4...3.
....3....
.7...6..5
4.....7..
.9.1...4.
..8..5..6

Frauke

S.E. has the rather rare 7.9 It shows also 3 Swordfisches and one Jelly
Code: Select all

1..3..8..
.2...7.1.
..6.....4
8..4...2.
....5....
.7...6..5
3.....7..
.9.1...4.
..4..5..6

S.E. 8.4 r8c8 or r9c3 omittable

Claudia
claudiarabia
 
Posts: 288
Joined: 14 May 2006

Re: Frauke

Postby daj95376 » Tue Dec 19, 2006 12:41 pm

claudiarabia wrote:May I introduce Frauke to you?

Code: Select all
*-----------------------*
| 1 . . | 3 . . | 9 . . |
| . 5 . | . . 7 | . 1 . |
| . . 6 | . . . | . . 2 |
|-------+-------+-------|
| 8 . . | 4 . . | . 3 . |
| . . . | . 3 . | . . . |
| . 7 . | . . 6 | . . 5 |
|-------+-------+-------|
| 4 . . | . . . | 7 . . |
| . 9 . | 1 . . | . 4 . |
| . . 8 | . . 5 | . . 6 |
*-----------------------*

Hidden Single, 3x Naked Quad, 2x Swordfish, and a Kraken X-Wing for starters. Nice introduction!!!
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Postby Mauricio » Sat Dec 23, 2006 12:55 am

Chect out this sudoku, it has diagonal symmetry, but not only that, in this sudoku almost all clues given have diagonal symmetry too (ie, if a clue is given with number m, then its diagonal partner has number m too), only r1c3 and r7c9 don't follow that rule.
It is minimal and has ER 9.3.

Code: Select all
. . 4 9 . . . . 2
. 3 . . 8 . . 6 .
2 . . . . 7 3 . .
1 . . . . 6 7 . .
. . . . 5 . . 8 .
. . 3 4 . . . . 9
. . 2 3 . . . . 6
. 7 . . . . . 3 .
. . . . . 1 2 . .


We can add 2's to get an aesthetically better sudoku, though not minimal
Code: Select all
. . 4 9 . . . . 2
. 3 . . 8 . . 6 .
2 . . . . 7 3 . .
1 . . . . 6 7 . .
. 2 . . 5 . . 8 .
. . 3 4 . . . . 9
. . 2 3 . . . . 6
. 7 . . 2 . . 3 .
. . . . . 1 2 . .


Or we can add a 3, so now there are 25 (edit: first I counted 17, I forgot to count the symmetric ones,:!: ) (9 of them in the diagonal) clues such that its diagonal partner has the same number given.
Code: Select all
. . 4 9 . . . . 2
. 3 . . 8 . . 6 .
2 . . . . 7 3 . .
1 . . . . 6 7 . .
. 2 . . 5 . . 8 .
. . 3 4 . . . . 9
. . 2 3 . . . . 6
. 7 . . 2 . . 3 .
3 . . . . 1 2 . .


In a sudoku (minimal or not minimal), what is the maximum number of clues given such that the diagonal partner of each clue given has the same number?
Last edited by Mauricio on Sat Jan 06, 2007 2:05 pm, edited 1 time in total.
Mauricio
 
Posts: 1175
Joined: 22 March 2006

The forcing chain-version for Carcul

Postby claudiarabia » Wed Jan 03, 2007 2:00 am

Code: Select all
. . . 8 . 9 . . 4
. 6 . . 5 . . 1 .
. . 9 . . . 7 . .
4 . . . . 1 . . 8
. 8 . . 3 . . 6 .
1 . . 5 . . . . 7
. . 8 . . . 4 . .
. 5 . . 9 . . 3 .
2 . . 6 . 7 . . .



Code: Select all
. . . 8 . 2 . . 4
. 7 . . 3 . . 9 .
. . 9 . . . 5 . .
4 . . . . 6 . . 8
. 8 . . . . . 6 .
1 . . 9 . . . . 5
. . 8 . . . 4 . .
. 5 . . 4 . . 3 .
2 . . 6 . 1 . . .
And an SE 9.0-version
claudiarabia
 
Posts: 288
Joined: 14 May 2006

solution4u

Postby claudiarabia » Sat Jan 06, 2007 4:07 am

JPF wrote:Here’s an other 19 clues, with diagonal symmetry.
Code: Select all
 1 . . | . . 2 | . . 3
 . 4 . | . 5 . | . . .
 . . 6 | . . . | 7 . .
-------+-------+-------
 . . . | 6 . . | . . .
 . 5 . | . 8 . | . 9 .
 7 . . | . . 3 | . . .
-------+-------+-------
 . . 3 | . . . | 2 . .
 . . . | . 9 . | . 4 .
 2 . . | . . . | . . 9
SE=7.2 JPF


I couldn't resist to solve this beautiful bee. Maybe my forcing chains are longer than needed, but nevertheless it took me 4 steps only after the Pointing/Claiming/Single-Stuff to get to the solution.


Code: Select all
 *-----------*
 |1..|.62|..3|
 |.42|357|...|
 |.36|...|72.|
 |---+---+---|
 |.2.|6..|.37|
 |35.|78.|692|
 |76.|.23|...|
 |---+---+---|
 |..3|.7.|2..|
 |...|29.|34.|
 |2..|.36|.79|
 *-----------*

 
 *--------------------------------------------------------------------*
 | 1      789    5789   | 489    6      2      | 4589   58     3      |
 | 89     4      2      | 3      5      7      | 189    168    168    |
 | 589    3      6      | 1489   14     1489   | 7      2      458    |
 |----------------------+----------------------+----------------------|
 | 489    2      1489   | 6      14     59     | 1458   3      7      |
 | 3      5      14     | 7      8      14     | 6      9      2      |
 | 7      6      1489   | 59     2      3      | 1458   158    1458   |
 |----------------------+----------------------+----------------------|
 | 45689  189    3      | 1458   7      1458   | 2      1568   1568   |
 | 568    178    578    | 2      9      158    | 3      4      1568   |
 | 2      18     458    | 1458   3      6      | 158    7      9      |
 *--------------------------------------------------------------------*

I found four chains to solve this puzzle: The first and the third have subchains:

1. Elimination of 5 in r1c3=5 --> r1c2=7 --> r1c8= 8 --> r1c47=49 and r2c1=8 --> r2c7=9 and r3c1=9 --> r4c1 =4 --> r4c5=1 --> r3c5=4 --> r1c4=9 --> r1c7=4 --> r3c9=5 | if r1c4=9 --> r6c4 =5 --> r6c8=1 --> r2c8=6 --> r7c8=5 --> r7c1=6 --> r8c1=5 --> r9c4=5 ≠ r6c4=5 --> r3c1=5

2. Elimination of 5 in r1c7=5 --> r1c8=8 --> r1c23=79 --> r2c1=8 and r1c4=4 --> r3c5=1 --> r4c5=4 --> r5c6=1 --> r5c3=4--> r7c1=4-->r9c4=4 ≠ r1c4=4 --> r1c8=5

3. Elimination of 9 from r1c2: --> r2c1=8 --> r8c1=6 --> r79c2=18 and r7c1=9 --> r4c1=4 --> r4c5=1 --> r3c5=4 --> r1c4=8 --> r1c3=7 and r1c7=4 --> r2c7=9 and r3c9=8 --> r2c89=16
| if r8c1=6--> r8c2=7 --> r8c3=5 --> r8c9=1--> r2c9=6 --> r2c8=1 --> r6c8=8--> r7c8=6 --> r7c9=5 --> r9c7=8 --> r9c2=1 --> r9c4=5 --> r6c4=9 --> r4c6=5 --> r4c7= empty. (1in r4c5, 8in r6c8, 4in r4c1) -->r7c2=9

4. Elimination of 4 from r4c1 --> r4c5=1 --> r3c5=4 --> r1c7=4 --> r8c7=9 --> r2c1=8 --> r78c1=6 (one number missing) --> r7c1=4

Then the puzzle is practically solved.

Claudia
claudiarabia
 
Posts: 288
Joined: 14 May 2006

Spinning top - easier

Postby claudiarabia » Sat Jan 06, 2007 4:36 am

Mauricio wrote:We can add 2's to get an aesthetically better sudoku, though not minimal
Code: Select all
. . 4 9 . . . . 2
. 3 . . 8 . . 6 .
2 . . . . 7 3 . .
1 . . . . 6 7 . .
. 2 . . 5 . . 8 .
. . 3 4 . . . . 9
. . 2 3 . . . . 6
. 7 . . 2 . . 3 .
. . . . . 1 2 . .



the spinning top motive is always good for setting milestones in sudoku-creating. Let me present a minimal one with some lesser clues and lesser difficulty.
Code: Select all
. . . 9 . . . . .
. 4 . . 5 . . 6 .
5 . . . . 7 1 . .
4 . . . . 1 7 . .
. 2 . . . . . 5 .
. . 6 8 . . . . 9
. . 1 3 . . . . 8
. 9 . . 2 . . 3 .
. . . . . 9 . . .

Minimal, ER 7.1. When you cange r8c2 to 5 you will get an ultra-easy sudoku out of this.


Code: Select all
. . . 9 . . . . .
. 3 . . 5 . . 6 .
5 . . . . 7 1 . .
4 . . . . 1 7 . .
. 2 . . . . . 5 .
. . 6 8 . . . . 9
. . 1 3 . . . . 8
. 9 . . 2 . . 4 .
. . . . . 9 . . .
Something more difficult (ER 8.5)

claudia
claudiarabia
 
Posts: 288
Joined: 14 May 2006

Postby JPF » Sat Jan 06, 2007 11:23 am

Mauricio wrote:
Code: Select all
. . 4 9 . . . . 2
. 3 . . 8 . . 6 .
2 . . . . 7 3 . .
1 . . . . 6 7 . .
. 2 . . 5 . . 8 .
. . 3 4 . . . . 9
. . 2 3 . . . . 6
. 7 . . 2 . . 3 .
3 . . . . 1 2 . .


In a sudoku (minimal or not minimal), what is the maximum number of clues given such that the diagonal partner of each clue given has the same number?


Here is a puzzle with 35 clues.
33 clues have their diagonal partner with the same digit.
Code: Select all
 3 . . | . 4 . | 5 . .
 . 6 . | . . . | 3 . 7
 . . 1 | 9 . 3 | . 8 .
-------+-------+-------
 . . 9 | 4 . . | . 5 .
 4 . . | . 8 . | 7 6 9
 . . 7 | . . 9 | 1 . 4
-------+-------+-------
 5 3 . | . 7 1 | 9 . .
 . . 8 | 5 6 . | . 7 .
 . 7 . | . 9 4 | . . 5



and better :
Here is a puzzle with 39 clues.
37 clues have their diagonal partner with the same digit :
Code: Select all
 7 . . | 5 . . | . 6 .
 . 5 . | . 6 . | 4 7 3
 . . 6 | . . 7 | 5 2 1
-------+-------+-------
 5 . . | 3 . . | . 9 7
 . 6 . | . 7 . | 2 . .
 . . 7 | . . 1 | 3 . 4
-------+-------+-------
 . 4 5 | . 2 3 | 7 . .
 6 7 2 | 9 . . | . 3 .
 . 3 1 | 7 . 6 | . . 2


JPF
JPF
2017 Supporter
 
Posts: 6139
Joined: 06 December 2005
Location: Paris, France

Postby Mauricio » Sat Jan 06, 2007 6:00 pm

JPF wrote:Here is a puzzle with 39 clues.
37 clues have their diagonal partner with the same digit :
Code: Select all
 7 . . | 5 . . | . 6 .
 . 5 . | . 6 . | 4 7 3
 . . 6 | . . 7 | 5 2 1
-------+-------+-------
 5 . . | 3 . . | . 9 7
 . 6 . | . 7 . | 2 . .
 . . 7 | . . 1 | 3 . 4
-------+-------+-------
 . 4 5 | . 2 3 | 7 . .
 6 7 2 | 9 . . | . 3 .
 . 3 1 | 7 . 6 | . . 2


JPF


Very impressive, JPF.

Here is one with 42 clues, 39 of them "partnered".

Code: Select all
1 2 3 . 6 . . . 8
4 5 6 . . 8 . 1 .
7 8 9 . . 1 6 . .
. . . 2 . 6 1 8 .
8 . . . 1 3 . . 6
. 6 1 8 7 . . . .
. . 8 1 . . 9 6 3
. 1 . 6 . . 8 5 2
6 . . . 8 . 7 4 1
Mauricio
 
Posts: 1175
Joined: 22 March 2006

PreviousNext

Return to General