Sudokus with an original rare shape

Everything about Sudoku that doesn't fit in one of the other sections

Postby JPF » Tue Jan 16, 2007 12:05 am

m_b_metcalf wrote:A pair of flowers for the bouquet?

Two vases for these nice flowers :
Code: Select all
 . . . . . . . . .
 . . 6 3 . 5 2 . .
 . . . 8 . 4 . . .
 . . 2 . . . 3 . .
 . 7 . . . . . 8 .
 9 . . . . . . . 6
 7 . . . . . . . 4
 . 8 . . . . . 1 .
 . . 3 1 2 6 5 . .

SE=7.3

Code: Select all
 . . 7 . . . 3 . .
 . . . 8 . 5 . . .
 . . . 9 . 2 . . .
 . . 2 . . . 6 . .
 . 4 . . . . . 5 .
 9 . . . . . . . 7
 8 . . . . . . . 5
 . 1 . . . . . 9 .
 . . 3 5 6 4 2 . .

SE=7.1

JPF
JPF
2017 Supporter
 
Posts: 6139
Joined: 06 December 2005
Location: Paris, France

Re: Full diagonal boxes

Postby Mauricio » Wed Jan 17, 2007 11:13 pm

m_b_metcalf wrote:
m_b_metcalf wrote:I find the minimum number of additional clues to be 6. Are there smaller solutions?

To answer my own question, here's one with just 5 extra clues:


Code: Select all
  1  4  7  .  .  .  .  .  .
  2  5  8  .  3  .  4  .  .
  3  6  9  .  .  .  .  .  .
  .  .  .  1  4  7  .  .  .
  .  .  .  2  5  8  .  .  6
  .  .  .  3  6  9  .  .  .
  .  .  .  .  .  .  1  4  7
  .  .  6  .  .  .  2  5  8
  .  8  .  .  .  .  3  6  9   SE 8.4

Regards,

Mike Metcalf


I did an extensive search looking for that kind of sudokus (it took me less than 30 minutes) with just 4 more clues and I did not find a single one, so the answer is 5.

Then I did an extensive search looking for 5 more clues and I found thousands (it took me about 2 hours). I have now coded a function that canonicalizes and only 55 are different up to isomorphism, so any other sudoku of that kind with 32 clues is isomorphic to one of this list:

Code: Select all
123540000456000000789000000500123040000456000000789000008000123000000456000000789
123570000456000000789000000600123070000456000000789000000004123000000456000000789
123570000456000000789000000800123000000456900000789000000600123000000456000000789
123570000456000000789000000800123000000456900000789000000000123001000456000000789
123570000456000000789000000800123000000456900000789000000000123000000456000002789
123840000456000000789000000900123000000456010000789000000007123000000456000000789
123540000456000000789000000008123007000456000000789000500000123000000456000000789
123840000456000000789000000000123800900456000000789000000000123030000456000000789
123840000456000000789000000000123800900456000000789000000000123000001456000000789
123840000456000000789000000000123800300456000000789000000000123000000456000005789
123570000456000000789000000000123900070456000000789000004000123000000456000000789
123570000456000000789000000000123500000456000000789000040008123000000456000000789
123570000456000000789000000000123500000456000000789000008000123000200456000000789
123570000456000000789000000000123500000456000000789000008000123000300456000000789
123540000456000000789000000000123007200456000000789000000000123000900456000000789
123870000456000000789000000000123004008456000000789000000000123300000456000000789
123870000456000000789000000000123004008456000000789000000000123007000456000000789
123500060456070000789000000070123000000456000000789000004000123000000456000000789
123600007456030000789000000000123040000456000000789000040000123000000456000000789
123500000456010000789000600000123000900456000000789000060000123000000456000000789
123500000456010000789000300000123000200456000000789000000000123008000456000000789
123500000456070000789000300000123000090456000000789000000000123300000456000000789
123600000456010000789000300000123000008456000000789000000000123010000456000000789
123900000456030000789000500000123000000456000030789000000000123000000456600000789
123500000456010000789000000008123060000456000000789000500000123000000456000000789
123600900456000000789000000070123008000456000000789000004000123000000456000000789
123600900456000000789000000060123005000456000000789000000000123030000456000000789
123500800456000000789000000000123060070456000000789000000000123001000456000000789
123500800456000000789000000000123060070456000000789000000000123002000456000000789
123600900456000000789000000000123070008456000000789000000000123000008456000000789
123500070456000000789000000800123000000456900000789000005000123000000456000000789
123900070456000000789000000600123000000456008000789000000060123000000456000000789
123800040456000000789000000070123000000456010000789000600000123000000456000000789
123500040456000000789000000040123000000456000000789000000060123007000456000000789
123800070456000000789000000070123000000456000000789000000000123900000456000200789
123800070456000000789000000060123000000456000000789000000000123900000456000300789
123500090456000000789000000008123000000456007000789000000008123000000456000000789
123500040456000000789000000000123900800456000000789000000000123007000456000000789
123600040456000000789000000000123900800456000000789000000000123007000456000000789
123800070456000000789000000000123005900456000000789000000000123002000456000000789
123500040456000000789000000000123008007456000000789000000000123000300456000000789
123500040456000000789000000000123007000456000000789000000000123010200456000000789
123800070456000000789000000000123005000456000000789000000000123002000456000001789
123800070456000000789000000000123000010456000000789600000000123007000456000000789
123900000456000800789000000900123000000456000000789000000000123030000456000060789
123600000456000800789000000070123000000456090000789000004000123000000456000000789
123900000456000800789000000090123000000456001000789000500000123000000456000000789
123900000456000800789000000090123000000456002000789000500000123000000456000000789
123900000456000800789000000090123000000456007000789000500000123000000456000000789
123900000456000200789000000070123000000456000000789060000000123008000456000000789
123800000456000900789000000070123000000456000000789000004000123000000456000030789
123900000456000800789000000070123000000456000000789000004000123000000456000002789
123500000456000800789000000000123000200456000000789030000000123000000456000001789
123800000456000900789000000000123000070456000000789000000004123000000456002000789
123600000456000800789000000000123000000456090001789000000000123000000456000002789
Mauricio
 
Posts: 1175
Joined: 22 March 2006

Postby JPF » Thu Jan 18, 2007 7:53 am

Impressive work, Mauricio !

Congratulations to m_b_metcalf who picked the highest SE rated puzzle in the list !

JPF
JPF
2017 Supporter
 
Posts: 6139
Joined: 06 December 2005
Location: Paris, France

Postby JPF » Sun Jan 21, 2007 1:56 am

Code: Select all
 . . 5 . . . 8 . .
 . 6 . . . . . 1 .
 . 8 . . . . . 7 .
 . 3 . . . . . 6 .
 . 7 . . . . . 9 .
 . . 2 9 . 5 4 . .
 . . . . 6 . . . .
 . . . . 1 . . . .
 . . 9 3 . 4 2 . .   brandy light

JPF
JPF
2017 Supporter
 
Posts: 6139
Joined: 06 December 2005
Location: Paris, France

Postby claudiarabia » Sun Jan 21, 2007 2:34 am

JPF wrote:
Code: Select all
 . . 5 . . . 8 . .
 . 6 . . . . . 1 .
 . 8 . . . . . 7 .
 . 3 . . . . . 6 .
 . 7 . . . . . 9 .
 . . 2 9 . 5 4 . .
 . . . . 6 . . . .
 . . . . 1 . . . .
 . . 9 3 . 4 2 . .   brandy light

JPF


with this glass you proved once again to be the master of straight lines in sudoku. cheers!
claudiarabia
 
Posts: 288
Joined: 14 May 2006

Postby m_b_metcalf » Sun Jan 21, 2007 4:26 pm

JPF wrote:
Code: Select all
 . . 5 . . . 8 . .
 . 6 . . . . . 1 .
 . 8 . . . . . 7 .
 . 3 . . . . . 6 .
 . 7 . . . . . 9 .
 . . 2 9 . 5 4 . .
 . . . . 6 . . . .
 . . . . 1 . . . .
 . . 9 3 . 4 2 . .   brandy light

JPF


Beautiful. But when you invite friends for a drink, you'll need a set of six. Here are the missing five (note that r5c8 is often redundant).

À ta santé

Mike Metcalf

Code: Select all
 . . 5 . . . 8 . .
 . 6 . . . . . 1 .
 . 8 . . . . . 2 .
 . 4 . . . . . 6 .
 . 1 . . . . . 5 .
 . . 3 9 . 5 7 . .
 . . . . 1 . . . .
 . . . . 8 . . . .
 . . 9 7 . 4 5 . .

 . . 5 . . . 8 . .
 . 6 . . . . . 1 .
 . 8 . . . . . 3 .
 . 4 . . . . . 6 .
 . 1 . . . . . 5 .
 . . 2 9 . 5 7 . .
 . . . . 1 . . . .
 . . . . 8 . . . .
 . . 9 7 . 4 5 . .

 . . 5 . . . 8 . .
 . 6 . . . . . 1 .
 . 3 . . . . . 4 .
 . 4 . . . . . 6 .
 . 2 . . . . . 5 .
 . . 3 9 . 5 7 . .
 . . . . 1 . . . .
 . . . . 6 . . . .
 . . 9 7 . 8 3 . .

 . . 5 . . . 8 . .
 . 6 . . . . . 1 .
 . 8 . . . . . 3 .
 . 7 . . . . . 6 .
 . 1 . . . . . 5 .
 . . 2 9 . 5 4 . .
 . . . . 1 . . . .
 . . . . 8 . . . .
 . . 9 7 . 4 5 . .

 . . 5 . . . 8 . .
 . 6 . . . . . 1 .
 . 8 . . . . . 2 .
 . 4 . . . . . 6 .
 . 1 . . . . . 5 .
 . . 7 9 . 5 3 . .
 . . . . 8 . . . .
 . . . . 1 . . . .
 . . 9 3 . 4 5 . .
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13637
Joined: 15 May 2006
Location: Berlin

an adaptation of an earlier puzzle

Postby claudiarabia » Sun Jan 21, 2007 10:37 pm

Code: Select all
. . . . . . . . .
. . . 3 9 5 2 . .
4 . . 6 . . . 3 .
. . . 5 . . . 6 .
. 6 . . 8 . . 5 .
7 8 . . . 9 3 1 .
. . 8 . . . . . .
5 . . 4 1 . . . .
3 2 . 8 . . 5 . .


SE 4-4
claudiarabia
 
Posts: 288
Joined: 14 May 2006

Finally I found a solution for this

Postby claudiarabia » Sun Jan 21, 2007 11:22 pm

tso wrote:
Code: Select all
+-------+-------+-------+
| . . . | . . . | . . . |
| . 2 5 | 4 . 7 | 1 9 . |
| . 8 . | 3 . 9 | . 2 . |
+-------+-------+-------+
| . 1 3 | 5 . 4 | 9 7 . |
| . . . | . . . | . . . |
| . 6 9 | 2 . 3 | 4 1 . |
+-------+-------+-------+
| . 5 . | 9 . 2 | . 4 . |
| . 4 7 | 6 . 5 | 3 8 . |
| . . . | . . . | . . . |
+-------+-------+-------+


Code: Select all
 *-----------*
 |...|.2.|...|
 |.25|4.7|19.|
 |.8.|359|.2.|
 |---+---+---|
 |.13|5.4|97.|
 |.7.|.9.|...|
 |.69|273|41.|
 |---+---+---|
 |.58|932|.4.|
 |.47|615|38.|
 |...|748|...|
 *-----------*


 *-----------*
 |...|.2.|...|
 |.25|4.7|19.|
 |.8.|359|.2.|
 |---+---+---|
 |.13|5.4|97.|
 |.7.|.9.|...|
 |.69|273|41.|
 |---+---+---|
 |.58|932|.4.|
 |.47|615|38.|
 |...|748|...|
 *-----------*


Here is the pencilmark grid from which my solution originates
Code: Select all
 *-----------------------------------------------------------------------------*
 | 134679  39      146     | 18      2       16      | 58      356     34567   |
 | 36      2       5       | 4       68      7       | 1       9       368     |
 | 1467    8       146     | 3       5       9       | 67      2       467     |
 |-------------------------+-------------------------+-------------------------|
 | 28      1       3       | 5       68      4       | 9       7       268     |
 | 45      7       24      | 18      9       16      | 258     356     356     |
 | 58      6       9       | 2       7       3       | 4       1       58      |
 |-------------------------+-------------------------+-------------------------|
 | 16      5       8       | 9       3       2       | 67      4       167     |
 | 29      4       7       | 6       1       5       | 3       8       29      |
 | 12369   39      126     | 7       4       8       | 25      56      12569   |
 *-----------------------------------------------------------------------------*

For this puzzle SE shows some X-Wings, a Swordfish 2 turbots, 2 forcing chains and a bi-directional y-cycle. After the Singles at the beginning I found the two X-wings in r15c47 and r59 c37. I chose another method afterwards than the Explainer. For I have problems to spot these cycles I made a contradiction-forcing chain, excluding 1 from r7c9 which solves finally the puzzle.

If r7c9 = 1 --> r7c7=7--> r3c7=6|-->r7c1=6-->r2c1=3 --> r2c9=8--> r2c5=6-->r4c5=8-->r5c4=1-->r5c6=6
If r2c9=8-->r1c7=5--> r9c7=2-->r5c7=8-->r6c9=5-->r4c9=2--> r5c89=36 ≠ r5c6=6

Then you can eliminate 1 from r7c9 --> r9c9=1 and you can make UR1 in r3c79; r7c79 upon 67--> r3c9=4

The puzzle is solved now!
claudiarabia
 
Posts: 288
Joined: 14 May 2006

Postby ravel » Mon Jan 22, 2007 9:56 am

There is a shortcut of your forcing chain, that eliminates 8 from r2c9, which leads to the same result:
r2c9=8 => r2c5=6 => r4c5=8 => r4c9=6 => r5c89=35 => r6c9=8
(or r2c9=8 => r2c5=6 => r4c5=8 => r4c9=6 => r5c7=2 => r1c7=8)
ravel
 
Posts: 998
Joined: 21 February 2006

Re: Finally I found a solution for this

Postby udosuk » Mon Jan 22, 2007 2:02 pm

claudiarabia wrote:For this puzzle SE shows some X-Wings, a Swordfish 2 turbots, 2 forcing chains and a bi-directional y-cycle. After the Singles at the beginning I found the two X-wings in r15c47 and r59 c37. I chose another method afterwards than the Explainer. For I have problems to spot these cycles I made a contradiction-forcing chain, excluding 1 from r7c9 which solves finally the puzzle.

If r7c9 = 1 --> r7c7=7--> r3c7=6|-->r7c1=6-->r2c1=3 --> r2c9=8--> r2c5=6-->r4c5=8-->r5c4=1-->r5c6=6
If r2c9=8-->r1c7=5--> r9c7=2-->r5c7=8-->r6c9=5-->r4c9=2--> r5c89=36 ≠ r5c6=6

Then you can eliminate 1 from r7c9 --> r9c9=1 and you can make UR1 in r3c79; r7c79 upon 67--> r3c9=4

The puzzle is solved now!

Claudia, no offense but I think your chain is way too messy... There're neater ways to solve this puzzle...

For one, there is a "locked candidates"/"box-line elimination" move about the 1s in r1c13 which you didn't take... If you take the x-wings and the naked pairs I can't see why you don't take it as well...:?:

So, here is the state after the "locked candidates" move:
Code: Select all
 *--------------------------------------------------------------------*
 | 34679  39     46     | 18     2      16     | 58     356    34567  |
 | 36     2      5      | 4      68     7      | 1      9      368    |
 | 1467   8      146    | 3      5      9      | 67     2      467    |
 |----------------------+----------------------+----------------------|
 | 28     1      3      | 5      68     4      | 9      7      268    |
 | 45     7      24     |@18     9     @16     |-258   #356   #356    |
 | 58     6      9      | 2      7      3      | 4      1     #58     |
 |----------------------+----------------------+----------------------|
 | 16     5      8      | 9      3      2      | 67     4      167    |
 | 29     4      7      | 6      1      5      | 3      8      29     |
 | 1369   39     126    | 7      4      8      | 25     56     1569   |
 *--------------------------------------------------------------------*

Note that there is an ALS(almost locked subsets)-xz move in r56/b56:

@: r5c46={168}
#: r5c89+r6c9={3568}
Restricted common=6 (r5c6 vs r5c89)
Eliminated common: r5c7<>8

Or to view it as chains:

r5c7=8 => r5c4=1 => r5c6=6
r5c7=8 => r6c9=5 => r5c89={36}
=> Two 6s on r5! Therefore r5c7<>8

Afterwards you can take some singles and naked pairs and reach:
Code: Select all
 *--------------------------------------------------*
 |-379 #39   4    | 1    2    6    | 8    35   57   |
 | 36   2    5    | 4    8    7    | 1    9    36   |
 | 167  8   @16   | 3    5    9    |@67   2    4    |
 |----------------+----------------+----------------|
 | 8    1    3    | 5    6    4    | 9    7    2    |
 | 4    7    2    | 8    9    1    | 5    36   36   |
 | 5    6    9    | 2    7    3    | 4    1    8    |
 |----------------+----------------+----------------|
 |-16   5    8    | 9    3    2    |@67   4    17   |
 | 2    4    7    | 6    1    5    | 3    8    9    |
 |#39  #39  @16   | 7    4    8    | 2   -56   15   |
 *--------------------------------------------------*

Here you can apply a turbot fish (@) or a UR-type 1 (#) to finish it off...

:idea:
udosuk
 
Posts: 2698
Joined: 17 July 2005

Re: an adaptation of an earlier puzzle

Postby m_b_metcalf » Mon Jan 22, 2007 2:23 pm

claudiarabia wrote:
Code: Select all
. . . . . . . . .
. . . 3 9 5 2 . .
4 . . 6 . . . 3 .
. . . 5 . . . 6 .
. 6 . . 8 . . 5 .
7 8 . . . 9 3 1 .
. . 8 . . . . . .
5 . . 4 1 . . . .
3 2 . 8 . . 5 . .


SE 4-4


Dear Claudia,
Another for the collection.
Code: Select all
 . . . . . . . . .
 . . . 1 9 3 2 . .
 8 . . 4 . . . 5 .
 . . . 9 . . . 4 .
 . 3 . . 5 . . 1 .
 1 5 . . . 8 3 9 .
 . . 9 . . . . . .
 6 . . 3 7 . . . .
 2 1 . 6 . . 5 . .        SE 8.3, minimal

Regards,

Mike Metcalf
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13637
Joined: 15 May 2006
Location: Berlin

Re: Finally I found a solution for this

Postby claudiarabia » Sat Jan 27, 2007 9:22 pm

udosuk wrote:....(Note that there is an ALS(almost locked subsets)-xz move in r56/b56:

@: r5c46={168}
#: r5c89+r6c9={3568}
Restricted common=6 (r5c6 vs r5c89)
Eliminated common: r5c7<>8

Or to view it as chains:

r5c7=8 => r5c4=1 => r5c6=6
r5c7=8 => r6c9=5 => r5c89={36}
=> Two 6s on r5! Therefore r5c7<>8

Afterwards you can take some singles and naked pairs and reach:
Code: Select all
 *--------------------------------------------------*
 |-379 #39   4    | 1    2    6    | 8    35   57   |
 | 36   2    5    | 4    8    7    | 1    9    36   |
 | 167  8   @16   | 3    5    9    |@67   2    4    |
 |----------------+----------------+----------------|
 | 8    1    3    | 5    6    4    | 9    7    2    |
 | 4    7    2    | 8    9    1    | 5    36   36   |
 | 5    6    9    | 2    7    3    | 4    1    8    |
 |----------------+----------------+----------------|
 |-16   5    8    | 9    3    2    |@67   4    17   |
 | 2    4    7    | 6    1    5    | 3    8    9    |
 |#39  #39  @16   | 7    4    8    | 2   -56   15   |
 *--------------------------------------------------*

Here you can apply a turbot fish (@) or a UR-type 1 (#) to finish it off...

:idea:


Thank you for the ALS and Turbot hints. So I'm not the only one to spot the UR-type 1.
claudiarabia
 
Posts: 288
Joined: 14 May 2006

A 21-clue SE 8.9 Sudoku

Postby claudiarabia » Tue Jan 30, 2007 4:53 pm

Code: Select all
. . 3 . 4 . 1 . 2
. 7 5 1 . . . . .
8 . . . . . . . .
. . . . . 8 . . .
. . 1 . 3 . 4 . .
. . . 2 . . . . .
. . . . . . . . 7
. . . . . 5 8 6 .
4 . 6 . 9 . 5 . .
claudiarabia
 
Posts: 288
Joined: 14 May 2006

A 19-clue-Sudoku with some attitude - Bruzilla

Postby claudiarabia » Tue Jan 30, 2007 6:30 pm

Code: Select all
1 . . . . . . . .
. . . 5 . . . 9 .
3 . 6 . 4 . . . .
. . . . . 9 . 1 .
4 . . . 3 . . . 8
. 2 . 7 . . . . .
. . . . 8 . 3 . 4
. 7 . . . 2 . . .
. . . . . . . . 6
Bruzilla has mutable clues in r5c5 (3,6) and in
r6c2 [2 (SE 7.2), 5 (SE 4.4), 9 (SE 2.8)]. You'll have three different difficulty-levels.
claudiarabia
 
Posts: 288
Joined: 14 May 2006

Postby JPF » Sun Feb 04, 2007 7:44 pm

Here is a 18 clues puzzle with symmetry :

Code: Select all
 . . 3 | 7 . . | . . .
 . 1 . | . . . | . 5 .
 . . . | . 9 . | . . 4
-------+-------+-------
 . . . | . . 5 | . . 2
 . . 9 | . . . | 1 . .
 8 . . | 4 . . | . . .
-------+-------+-------
 9 . . | . 5 . | . . .
 . 8 . | . . . | . 4 .
 . . . | . . 1 | 3 . .


Not easy to design, but easy to solve:)

and
Code: Select all
 . . . . . . . . 5
 . 9 6 4 . . . 8 .
 . 7 . . . . 2 . .
 . 6 . 8 . 2 . . .
 . . . . . . . . .
 . . . 1 . 5 . 9 .
 . . 4 . . . . 3 .
 . 8 . . . 7 4 6 .
 5 . . . . . . . .

SE=4.5

JPF
JPF
2017 Supporter
 
Posts: 6139
Joined: 06 December 2005
Location: Paris, France

PreviousNext

Return to General