.
I tried with SudoRules. (If you want to try it, don 't forget to set ?*segment-size* to 7 in the config file.)
I first checked that the puzzle is not in T&E(1). It can't therefore be solved by braids, let alone by whips. Let's however see how far one can go with whips.
Needless to say, there are lots of trivial steps at the start:
Singles:
naked-single ==> r49c37=6
naked-single ==> r48c3=3
naked-single ==> r36c36=44
naked-single ==> r25c33=25
naked-single ==> r25c29=23
naked-single ==> r25c42=43
naked-single ==> r21c2=10
naked-single ==> r20c41=38
naked-single ==> r19c25=15
naked-single ==> r14c9=27
hidden-single-in-a-row ==> r49c18=47
hidden-single-in-a-block ==> r48c42=19
naked-single ==> r48c25=1
hidden-single-in-a-block ==> r48c29=40
hidden-single-in-a-column ==> r46c39=44
hidden-single-in-a-block ==> r46c25=13
hidden-single-in-a-block ==> r44c23=19
hidden-single-in-a-block ==> r43c48=13
hidden-single-in-a-row ==> r46c16=22
hidden-single-in-a-row ==> r45c45=2
hidden-single-in-a-block ==> r45c44=20
hidden-single-in-a-column ==> r45c41=4
hidden-single-in-a-column ==> r41c41=9
hidden-single-in-a-row ==> r43c38=39
hidden-single-in-a-row ==> r43c3=33
hidden-single-in-a-row ==> r42c33=11
hidden-single-in-a-block ==> r40c29=48
hidden-single-in-a-row ==> r42c26=48
hidden-single-in-a-block ==> r42c17=4
hidden-single-in-a-block ==> r36c7=4
hidden-single-in-a-row ==> r6c46=4
hidden-single-in-a-block ==> r24c45=4
hidden-single-in-a-block ==> r43c2=4
hidden-single-in-a-block ==> r39c35=46
hidden-single-in-a-block ==> r37c35=47
hidden-single-in-a-block ==> r39c10=47
hidden-single-in-a-column ==> r38c26=3
hidden-single-in-a-column ==> r35c25=3
hidden-single-in-a-column ==> r38c6=16
hidden-single-in-a-column ==> r28c6=1
hidden-single-in-a-row ==> r36c38=46
hidden-single-in-a-block ==> r36c9=2
hidden-single-in-a-block ==> r30c1=23
hidden-single-in-a-row ==> r28c32=29
hidden-single-in-a-block ==> r25c39=28
hidden-single-in-a-column ==> r25c17=33
hidden-single-in-a-row ==> r25c21=38
hidden-single-in-a-row ==> r25c8=40
hidden-single-in-a-row ==> r25c7=16
hidden-single-in-a-row ==> r25c4=35
hidden-single-in-a-column ==> r22c44=6
hidden-single-in-a-row ==> r21c35=48
hidden-single-in-a-column ==> r21c22=32
hidden-single-in-a-row ==> r20c2=16
hidden-single-in-a-row ==> r15c34=16
hidden-single-in-a-row ==> r19c15=23
hidden-single-in-a-column ==> r18c20=3
hidden-single-in-a-column ==> r16c26=20
hidden-single-in-a-block ==> r13c45=16
hidden-single-in-a-column ==> r11c15=19
hidden-single-in-a-row ==> r10c38=23
hidden-single-in-a-column ==> r10c34=2
hidden-single-in-a-column ==> r14c7=2
hidden-single-in-a-block ==> r10c29=30
hidden-single-in-a-column ==> r9c9=6
hidden-single-in-a-column ==> r13c19=6
hidden-single-in-a-column ==> r6c27=28
hidden-single-in-a-row ==> r3c42=11
hidden-single-in-a-column ==> r1c42=6
hidden-single-in-a-block ==> r3c8=6
hidden-single-in-a-row ==> r3c37=13
hidden-single-in-a-column ==> r3c23=32
hidden-single-in-a-row ==> r2c24=8
hidden-single-in-a-column ==> r1c1=5
6045 candidates, 75610 csp-links and 75610 links. Density = 0.41%
and whips[1]:
Entering_level_L1_with_<Fact-
776726>
whip[1]: c18n6{r48 .} ==> r48c16≠6
whip[1]: c29n6{r47 .} ==> r47c35≠6
whip[1]: r45n25{c18 .} ==> r48c18≠25, r47c17≠25, r47c18≠25
whip[1]: r43n46{c18 .} ==> r47c18≠46, r44c15≠46, r44c16≠46, r47c15≠46
hidden-single-in-a-row ==> r44c4=46
whip[1]: r44n36{c14 .} ==> r47c8≠36, r47c13≠36, r49c8≠36, r49c11≠36, r49c13≠36, r49c14≠36
whip[1]: r42n40{c6 .} ==> r41c1≠40
whip[1]: r42n2{c27 .} ==> r40c27≠2, r40c23≠2, r40c25≠2
whip[1]: c25n2{r3 .} ==> r1c23≠2, r1c27≠2, r3c27≠2, r5c23≠2, r5c27≠2
hidden-single-in-a-row ==> r5c6=2
hidden-single-in-a-row ==> r5c12=40
hidden-single-in-a-block ==> r5c10=13
hidden-single-in-a-row ==> r5c9=23
hidden-single-in-a-block ==> r2c8=16
hidden-single-in-a-block ==> r46c12=16
hidden-single-in-a-row ==> r41c34=23
whip[1]: c48n33{r38 .} ==> r39c45≠33, r37c45≠33
whip[1]: c28n12{r38 .} ==> r42c27≠12, r40c27≠12
whip[1]: r38n42{c17 .} ==> r37c19≠42, r37c16≠42
whip[1]: c19n42{r28 .} ==> r23c16≠42, r27c16≠42
whip[1]: r36n38{c26 .} ==> r42c27≠38, r38c22≠38, r38c24≠38, r39c22≠38, r39c24≠38, r39c26≠38, r40c27≠38, r42c24≠38
whip[1]: c19n22{r35 .} ==> r35c17≠22, r34c17≠22
whip[1]: r33n11{c34 .} ==> r35c34≠11, r34c29≠11, r34c34≠11
whip[1]: r33n12{c21 .} ==> r35c19≠12, r35c15≠12
whip[1]: r33n2{c21 .} ==> r32c21≠2
whip[1]: r32n37{c5 .} ==> r34c5≠37, r34c2≠37
whip[1]: r33n1{c40 .} ==> r30c41≠1, r30c36≠1, r30c40≠1
naked-single ==> r30c41=25
naked-single ==> r30c36=36
whip[1]: r35n6{c35 .} ==> r30c31≠6
whip[1]: r29n5{c20 .} ==> r35c16≠5, r34c16≠5, r34c18≠5, r35c15≠5
whip[1]: c41n11{r27 .} ==> r27c38≠11, r22c38≠11, r23c38≠11
whip[1]: c47n9{r26 .} ==> r27c43≠9, r23c43≠9, r24c43≠9, r26c43≠9
whip[1]: r25n26{c49 .} ==> r28c49≠26, r23c43≠26, r23c45≠26, r24c43≠26, r24c47≠26, r24c48≠26, r24c49≠26, r26c43≠26, r26c45≠26, r26c47≠26, r26c48≠26, r26c49≠26
whip[1]: r25n47{c46 .} ==> r26c47≠47, r26c45≠47, r26c46≠47
whip[1]: r25n13{c45 .} ==> r26c45≠13, r23c43≠13, r23c45≠13, r24c43≠13, r26c43≠13
whip[1]: r26n31{c26 .} ==> r22c28≠31, r22c24≠31, r22c26≠31
whip[1]: c9n35{r20 .} ==> r20c10≠35, r15c10≠35, r16c10≠35, r17c10≠35
whip[1]: r19n9{c35 .} ==> r21c31≠9, r21c30≠9
whip[1]: c48n6{r20 .} ==> r18c43≠6, r16c43≠6
whip[1]: r18n6{c5 .} ==> r16c4≠6, r16c5≠6, r20c1≠6
whip[1]: c19n11{r20 .} ==> r18c21≠11, r16c21≠11, r17c21≠11
whip[1]: c19n45{r21 .} ==> r16c17≠45
whip[1]: r15n22{c40 .} ==> r18c42≠22, r18c38≠22, r18c40≠22
whip[1]: c30n33{r9 .} ==> r9c31≠33
whip[1]: c14n14{r6 .} ==> r7c10≠14, r4c10≠14, r6c10≠14
whip[1]: c38n18{r5 .} ==> r5c41≠18, r4c39≠18
whip[1]: c47n29{r4 .} ==> r4c45≠29, r1c45≠29, r2c45≠29, r3c45≠29
whip[1]: r2n49{c21 .} ==> r5c21≠49, r1c16≠49, r1c18≠49, r4c16≠49, r4c20≠49, r4c21≠49, r5c18≠49
whip[1]: b46n7{r49c27 .} ==> r42c27≠7, r1c27≠7, r3c27≠7, r40c27≠7
naked-single ==> r3c27=30
naked-single ==> r2c25=24
naked-single ==> r2c26=7
naked-single ==> r2c3=34
naked-single ==> r7c26=15
naked-single ==> r7c24=35
hidden-single-in-a-row ==> r17c44=35
whip[1]: r1n24{c49 .} ==> r4c44≠24, r4c47≠24, r4c48≠24, r4c49≠24
whip[1]: c20n30{r41 .} ==> r37c16≠30, r40c16≠30, r40c21≠30, r41c16≠30
whip[1]: b46n34{r49c23 .} ==> r40c23≠34, r23c23≠34, r24c23≠34, r28c23≠34
whip[1]: b46n14{r47c27 .} ==> r27c27≠14, r22c27≠14, r23c27≠14, r24c27≠14
whip[1]: b24n35{r27c16 .} ==> r49c16≠35, r6c16≠35, r44c16≠35
whip[1]: b45n35{r44c17 .} ==> r44c7≠35
whip[1]: b26n32{r26c29 .} ==> r33c29≠32, r32c29≠32
whip[1]: b16n32{r19c8 .} ==> r49c8≠32, r13c8≠32
whip[1]: b11n40{r13c28 .} ==> r27c28≠40, r16c28≠40, r21c28≠40, r22c28≠40
whip[1]: b41n33{r39c37 .} ==> r9c37≠33, r1c37≠33
whip[1]: b40n6{r41c35 .} ==> r41c25≠6, r41c1≠6, r41c5≠6
whip[1]: b38n25{r39c18 .} ==> r39c49≠25, r39c24≠25
whip[1]: b32n8{r34c28 .} ==> r34c33≠8, r34c9≠8, r34c10≠8, r34c11≠8, r34c16≠8, r34c32≠8
hidden-single-in-a-block ==> r33c32=8
whip[1]: b32n9{r34c27 .} ==> r34c32≠9, r34c17≠9, r34c21≠9
whip[1]: b10n41{r9c19 .} ==> r9c49≠41, r9c13≠41, r9c45≠41
whip[1]: b1n3{r4c6 .} ==> r4c40≠3, r4c29≠3, r4c30≠3, r4c38≠3
Longer chains:
Entering_level_L2_with_<Fact-
777593>
biv-chain[2]: r25c1{n7 n20} - r25c5{n20 n7} ==> r25c46≠7, r25c49≠7, r23c4≠7, r23c5≠7, r24c1≠7, r24c3≠7, r24c4≠7, r24c5≠7
biv-chain[2]: r25c1{n20 n7} - r25c5{n7 n20} ==> r25c43≠20, r25c45≠20, r25c46≠20, r23c5≠20, r26c1≠20, r26c2≠20, r26c5≠20
biv-chain[2]: r47n25{c48 c42} - c36n25{r48 r26} ==> r26c48≠25
biv-chain[2]: c47n47{r13 r34} - c47n48{r34 r13} ==> r13c47≠1, r13c47≠15, r13c47≠24, r13c47≠26
biv-chain[2]: c47n47{r34 r13} - c47n48{r13 r34} ==> r34c47≠15, r34c47≠17, r34c47≠24, r34c47≠26, r34c47≠35
hidden-single-in-a-column ==> r8c47=26
z-chain[2]: r47n46{c25 c23} - b4n46{r1c23 .} ==> r34c25≠46, r33c25≠46, r31c25≠46, r29c25≠46, r27c25≠46
naked-single ==> r33c25=17
naked-single ==> r31c25=42
naked-single ==> r33c13=44
whip[1]: b4n42{r6c23 .} ==> r22c23≠42, r23c23≠42, r26c23≠42, r27c23≠42, r28c23≠42
t-whip[2]: r47n46{c23 c25} - b4n46{r4c25 .} ==> r24c23≠46, r26c23≠46, r27c23≠46, r28c23≠46, r30c23≠46, r34c23≠46
z-chain[2]: r26n46{c5 c29} - r24n46{c29 .} ==> r27c5≠46
Entering_level_L3_with_<Fact-
783965>
z-chain[3]: b40n18{r38c34 r38c32} - r48n18{c32 c47} - r2n18{c47 .} ==> r4c34≠18
z-chain[3]: b4n6{r6c23 r4c25} - r10n6{c25 c27} - r30n6{c27 .} ==> r16c23≠6, r40c23≠6, r26c23≠6, r24c23≠6, r20c23≠6
t-whip[3]: b4n6{r4c25 r6c23} - r30n6{c23 c27} - r10n6{c27 .} ==> r16c25≠6, r40c25≠6
t-whip[3]: r30n6{c27 c23} - b4n6{r6c23 r4c25} - r10n6{c25 .} ==> r16c27≠6, r20c27≠6, r24c27≠6, r26c27≠6, r40c27≠6
hidden-single-in-a-row ==> r20c48=6
whip[3]: r2n18{c34 c47} - r48n18{c47 c34} - b40n18{r37c34 .} ==> r3c32≠18
whip[3]: r2n18{c34 c47} - r48n18{c47 c34} - b40n18{r37c34 .} ==> r5c32≠18
Entering_level_L4_with_<Fact-
794123>
biv-chain[4]: r21c20{n31 n9} - r21c15{n9 n40} - b19n40{r21c31 r20c31} - r20n41{c31 c19} ==> r20c19≠31
whip[1]: r20n31{c14 .} ==> r17c13≠31, r17c14≠31
whip[4]: c32n22{r18 r34} - r34n20{c32 c33} - b19n20{r18c33 r18c30} - r18n22{c30 .} ==> r18c32≠10
whip[4]: c32n22{r18 r34} - r34n20{c32 c33} - b19n20{r18c33 r18c30} - r18n22{c30 .} ==> r18c32≠21
whip[4]: c32n22{r18 r34} - r34n20{c32 c33} - b19n20{r18c33 r18c30} - r18n22{c30 .} ==> r18c32≠26
whip[4]: c32n22{r18 r34} - r34n20{c32 c33} - b19n20{r18c33 r18c30} - r18n22{c30 .} ==> r18c32≠30
whip[4]: c32n22{r18 r34} - r34n20{c32 c33} - b19n20{r18c33 r18c30} - r18n22{c30 .} ==> r18c32≠36
hidden-single-in-a-block ==> r17c32=36
biv-chain[2]: r18n36{c40 c38} - b6n36{r7c38 r7c40} ==> r9c40≠36, r10c40≠36, r11c40≠36, r22c40≠36
biv-chain[2]: b6n36{r7c38 r7c40} - r18n36{c40 c38} ==> r12c38≠36, r14c38≠36, r22c38≠36, r24c38≠36, r26c38≠36, r27c38≠36
whip[4]: c32n22{r18 r34} - r34n20{c32 c33} - b19n20{r18c33 r18c30} - r18n22{c30 .} ==> r18c32≠39
Entering_level_L5_with_<Fact-
801695>
Entering_level_L6_with_<Fact-
806211>
whip[6]: r15c25{n30 n18} - r29c25{n18 n16} - r34c25{n16 n37} - r17c25{n37 n47} - r16c25{n47 n40} - r21c25{n40 .} ==> r23c25≠30
whip[1]: c25n30{r16 .} ==> r16c23≠30, r16c24≠30, r20c23≠30
whip[6]: r15c25{n30 n18} - r29c25{n18 n16} - r34c25{n16 n37} - r21c25{n37 n40} - c31n40{r21 r20} - r20n30{c31 .} ==> r15c40≠30
whip[6]: b24n40{r22c18 r27c16} - c25n40{r27 r21} - c31n40{r21 r20} - r20n41{c31 c19} - b24n41{r27c19 r23c16} - c16n35{r23 .} ==> r16c18≠40
Entering_level_L7_with_<Fact-
809550>
Entering_level_L8_with_<Fact-
812034>
whip[8]: r27n16{c23 c25} - r29c25{n16 n18} - r34c25{n18 n37} - r21c25{n37 n40} - r20c23{n40 n37} - r17c25{n37 n47} - r16c25{n47 n30} - r15c25{n30 .} ==> r27c23≠35
Entering_level_L9_with_<Fact-
814033>
Entering_level_L10_with_<Fact-
815434>
whip[10]: r29c25{n16 n18} - r34c25{n18 n37} - r21c25{n37 n40} - r21c31{n40 n44} - r21c30{n44 n26} - r21c48{n26 n18} - r15n18{c48 c41} - r15c25{n18 n30} - r16c25{n30 n47} - r17c25{n47 .} ==> r34c23≠16
hidden-single-in-a-column ==> r27c23=16
whip[10]: r29c25{n18 n16} - r34c25{n16 n37} - r21c25{n37 n40} - r21c31{n40 n44} - r21c30{n44 n26} - r21c48{n26 n18} - r15n18{c48 c41} - r15c25{n18 n30} - r16c25{n30 n47} - r17c25{n47 .} ==> r27c25≠18
Entering_level_L11_with_<Fact-
816456>
...
PUZZLE 0 IS NOT SOLVED. 965 VALUES MISSING.
init-time = 4m 47.64s, solve-time = 3m 52.58s, total-time = 8m 40.22s
There's no memory overflow problem (only 30 GB used). But that's all one can get with whips.
I've shown the levels and the numbers of facts (in bold) used at each level (the difference between levels n and n+1 is roughly the number of partial-whips[n] examined in the search for full whips[n+1]. For so large a puzzle, this is quite moderate and the number doesn't increase fast. Indeed, we're in a case where there are too few partial-whips.
.