Hi, all!
Afmob has done huge amount of work very, very fast, and
coloin accelerated the work by his finding, so the first result of this project can be published. These results are preliminary, because not all
Afmob's results are crosschecked yet.
It is known, that there are 6016 essentially different fully symmetrical patterns. It turns out, that 5145 of them have valid puzzles and 871 patterns have no valid puzzles. (85.5 % valid patterns.) I think, similar ratio should be for arbitrary (not fully symmetrical) patterns.
Collections of essentially different fully symmetrical valid and invalid patternsare attached to this post. All patterns are shown in "fully symmetrical essential form" or simply "essential form". Below is cells ordering schema (15 cells have hexadecimal sequence numbers: 1,2,...,9,A,B,C,D,E,F).
- Code: Select all
A B C 1 2 . . . .
. D E 3 4 . . . .
. . F 5 6 . . . .
. . . 7 8 . . . .
. . . . 9 . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
Metric is 15-digit binary number (cell 1 is accounted as 2^14, cell F is accounted as 2^0 (1)). All isomorphic transformations preserving "full symmetry" are considered to maximize metric.
Here is distribution of valid patterns by number of clues.
- Code: Select all
Clues Patterns
20 16
21 22
24 87
25 89
28 178
29 180
32 271
33 272
36 345
37 346
40 381
41 382
44 370
45 370
48 319
49 319
52 245
53 245
56 165
57 165
60 98
61 98
64 52
65 52
68 24
69 24
72 10
73 10
76 4
77 4
80 1
81 1
It's not surprise, that valid fully symmetrical puzzles must have not less than 20 clues. This study proves it.
There are 16 ed 20-clue valid fully symmetrical patterns. It looks like 2 or 3 new patterns are found (I'll analyze it in details in some time). Here are all 20-clue valid fully symmetrical patterns in "essential form".
- Code: Select all
Patterns with 20 clues
Pattern 1
. . . . x . . . .
. x x . . . x x .
. x . . . . . x .
. . . x . x . . .
x . . . . . . . x
. . . x . x . . .
. x . . . . . x .
. x x . . . x x .
. . . . x . . . .
Pattern 2
. x . . x . . x .
x . . . . . . . x
. . x . . . x . .
. . . x . x . . .
x . . . . . . . x
. . . x . x . . .
. . x . . . x . .
x . . . . . . . x
. x . . x . . x .
Pattern 3
x . . . x . . . x
. x . . . . . x .
. . x . . . x . .
. . . x . x . . .
x . . . . . . . x
. . . x . x . . .
. . x . . . x . .
. x . . . . . x .
x . . . x . . . x
Pattern 4
. . . x . x . . .
. x . . . . . x .
. . x . . . x . .
x . . . x . . . x
. . . x . x . . .
x . . . x . . . x
. . x . . . x . .
. x . . . . . x .
. . . x . x . . .
Pattern 5
. x . x . x . x .
x . . . . . . . x
. . . . . . . . .
x . . . x . . . x
. . . x . x . . .
x . . . x . . . x
. . . . . . . . .
x . . . . . . . x
. x . x . x . x .
Pattern 6
x . . x . x . . x
. x . . . . . x .
. . . . . . . . .
x . . . x . . . x
. . . x . x . . .
x . . . x . . . x
. . . . . . . . .
. x . . . . . x .
x . . x . x . . x
Pattern 7
. . . x . x . . .
. x . . . . . x .
. . x . . . x . .
x . . x . x . . x
. . . . . . . . .
x . . x . x . . x
. . x . . . x . .
. x . . . . . x .
. . . x . x . . .
Pattern 8
. . . x . x . . .
. . x . x . x . .
. x . . . . . x .
x . . . . . . . x
. x . . . . . x .
x . . . . . . . x
. x . . . . . x .
. . x . x . x . .
. . . x . x . . .
Pattern 9
. . . x . x . . .
. x . . x . . x .
. . x . . . x . .
x . . . . . . . x
. x . . . . . x .
x . . . . . . . x
. . x . . . x . .
. x . . x . . x .
. . . x . x . . .
Pattern 10
. . x x . x x . .
. . . . x . . . .
x . . . . . . . x
x . . . . . . . x
. x . . . . . x .
x . . . . . . . x
x . . . . . . . x
. . . . x . . . .
. . x x . x x . .
Pattern 11
. x . x . x . x .
x . . . x . . . x
. . . . . . . . .
x . . . . . . . x
. x . . . . . x .
x . . . . . . . x
. . . . . . . . .
x . . . x . . . x
. x . x . x . x .
Pattern 12
x . . x . x . . x
. . . . x . . . .
. . x . . . x . .
x . . . . . . . x
. x . . . . . x .
x . . . . . . . x
. . x . . . x . .
. . . . x . . . .
x . . x . x . . x
Pattern 13
x . . x . x . . x
. x . . x . . x .
. . . . . . . . .
x . . . . . . . x
. x . . . . . x .
x . . . . . . . x
. . . . . . . . .
. x . . x . . x .
x . . x . x . . x
Pattern 14
. . . x . x . . .
. . . . x . . . .
. . x . . . x . .
x . . . x . . . x
. x . x . x . x .
x . . . x . . . x
. . x . . . x . .
. . . . x . . . .
. . . x . x . . .
Pattern 15
. . . x . x . . .
. x . . x . . x .
. . . . . . . . .
x . . . x . . . x
. x . x . x . x .
x . . . x . . . x
. . . . . . . . .
. x . . x . . x .
. . . x . x . . .
Pattern 16
. . . x x x . . .
. . . . x . . . .
. . x . . . x . .
x . . . . . . . x
x x . . . . . x x
x . . . . . . . x
. . x . . . x . .
. . . . x . . . .
. . . x x x . . .
Here is distribution of invalid patterns by number of clues.
- Code: Select all
Clues Patterns
0 1
1 1
4 4
5 4
8 10
9 10
12 24
13 24
16 52
17 52
20 82
21 76
24 78
25 76
28 68
29 66
32 52
33 51
36 35
37 34
40 21
41 20
44 10
45 10
48 4
49 4
52 1
53 1
Here is invalid pattern with largest number of clues (53 clues):
- Code: Select all
x x x . x . x x x
x x x . x . x x x
x x x . x . x x x
. . . . x . . . .
x x x x x x x x x
. . . . x . . . .
x x x . x . x x x
x x x . x . x x x
x x x . x . x x x
This is well known maximal pattern from "40 maximal patterns list".
I crosschecked numbers for valid and invalid patterns with
JPF numbers, posted by
coloin. Sums of valid and invalid patterns for given number of clues coincide with
JPF numbers in all cases.
Continuation follows ...
Serg