In some recent threads (or this one), we saw many fully symmetrical puzzles.
Like this one :
- Code: Select all
. . . | . 7 . | . . .
. . 5 | . . . | 9 . .
. 3 . | 5 . 4 | . 2 .
-------+-------+-------
. . 3 | . 4 . | 1 . .
4 . . | 3 . 1 | . . 9
. . 1 | . 5 . | 8 . .
-------+-------+-------
. 8 . | 7 . 2 | . 5 .
. . 9 | . . . | 6 . .
. . . | . 1 . | . . .
with the pattern :
- Code: Select all
. . . . x . . . .
. . x . . . x . .
. x . x . x . x .
. . x . x . x . .
x . . x . x . . x
. . x . x . x . .
. x . x . x . x .
. . x . . . x . .
. . . . x . . . .
As far as I'm concern, I'm happy with some of my collection...
Here is one :
- Code: Select all
. . . | 3 . 2 | . . .
. . 2 | 6 . 1 | 7 . .
. 7 . | . . . | . 4 .
-------+-------+-------
9 3 . | . . . | . 5 4
. . . | . 8 . | . . .
6 8 . | . . . | . 3 9
-------+-------+-------
. 9 . | . . . | . 1 .
. . 8 | 5 . 4 | 6 . .
. . . | 1 . 7 | . . .
or this one :
- Code: Select all
6 . . | 3 1 9 | . . 7
. . . | 2 . 4 | . . .
. . . | . . . | . . .
-------+-------+-------
1 8 . | . . . | . 6 9
7 . . | . 6 . | . . 1
2 4 . | . . . | . 7 5
-------+-------+-------
. . . | . . . | . . .
. . . | 4 . 8 | . . .
9 . . | 7 5 3 | . . 6
but stuck with those 2 patterns, unable to get a valid puzzle (each of those 2 examples has 2 solutions).
- Code: Select all
. . . | 2 8 5 | . . .
. . 4 | . . . | 2 . .
. 6 . | . . . | . 3 .
-------+-------+-------
5 . . | . . . | . . 4
3 . . | . 7 . | . . 8
2 . . | . . . | . . 9
-------+-------+-------
. 1 . | . . . | . 7 .
. . 9 | . . . | 5 . .
. . . | 3 1 2 | . . .
- Code: Select all
. . 3 | 8 9 2 | 4 . .
. 4 . | . . . | . 6 .
8 . . | . . . | . . 3
-------+-------+-------
3 . . | . . . | . . 5
9 . . | . 4 . | . . 7
2 . . | . . . | . . 4
-------+-------+-------
7 . . | . . . | . . 8
. 9 . | . . . | . 1 .
. . 8 | 2 1 3 | 5 . .
I was wondering how many fully symmetrical patterns have at least one valid puzzle. In that case, I would call it a "fully symmetrical valid pattern"(FSVP).
More precisely, the idea would be to set up a list of all them (where ?), with an example for each one (a minimal puzzle, if possible).
So, my first move was to count the number of fully symmetrical patterns.
It's 2^15=32768, as Gordon recall it, ( the whole dihedral group D_8).
More precisely, let N(c) be the number of patterns with c clues (0<=c<=81).
We have the following relations :
N(81-c)=N(c) ; c = 0,...,81 (1)
N(4k)=N(4k+1) ; k = 0,...,20 (2)
N(4k+2)=N(4k+3)=0 ; k = 0,...,19 (3)
And the distribution of N(c) can be summarized in the table below :
- Code: Select all
Number Number
of clue of patterns
(c) N(c)
0 1
1 1
4 8
5 8
8 34
9 34
12 104
13 104
16 253
17 253
20 512
21 512
24 888
25 888
28 1344
29 1344
32 1794
33 1794
36 2128
37 2128
40 2252
41 2252
The remaining values can be calculated by symmetry (!), using the relation (1).
Evidently, each pattern with 4k+1 clues is made of one pattern with 4k clues and an x in R5C5. (2)
Assuming (conjecture A) that the minimum clues number for a valid puzzle is 17 and that there is no symmetrical puzzle with 17 clues (conjecture B), there is no FSVP for n<20.
Assuming (conjecture C) that the maximum clues for a minimal puzzle is... let's say 37 to be "safe" :
we need to look at 2x(512+888+1344+1794+2128)=2x6666=13332 patterns only !
It works fine if, for a given pattern, a valid puzzle is found quickly , and will be painfull if not.
JPF