ronk wrote:Havard wrote:- Code: Select all
Jellyfish in columns: 3 4 6 7
(...)
. . . | 1X . 1X | 1X . 1-
. 1 . | . . . | . . .
. . . | . 1 . | . . 1
------------+-------------+------------
1 . . | 1X 1- 1X | . . 1
1- . 1X | 1X- . 1X- | 1X . 1-
1 . . | 1X . 1X | . . 1
------------+-------------+------------
1 . . | . 1 . | . . .
. . . | . . . | . 1 .
1- . 1X | 1X . 1X | . . .
Swordfish in rows: 4 6 7
(...)
3 . 3 | 3 . 3 | . . .
. . . | . . . | . 3 .
3 3 . | . 3 . | . . .
---------+----------+---------
3X . . | 3X 3X 3X | . . 3X
3 . 3 | 3 . 3 | 3 . 3
3X . . | 3X . 3X | . . 3X
---------+----------+---------
3X 3X . | . . . | . . 3X
3- . 3 | 3 . 3 | 3 . 3
3- . 3 | 3 . 3 | 3 . 3
I don't see a "fish" in either one of those. Would you please give a logical explanation of why those eliminations are valid? If those are examples of your pet "frankenfish", I've stated before I don't understand that creature. Maybe an English explanation will do the trick.
I'll try...
Lets first look at the cannibalistic eliminations, which is the most interesting... Basically it says that that part of the Jellyfish can not be true... Let's try it...
- Code: Select all
. . . | FX . 1X | 1X . 1-
. 1 . | . . . | . . .
. . . | . 1 . | . . 1
------------+-------------+------------
1 . . | FX 1- FX | . . 1
1- . FX | TX- . FX- | FX . 1-
1 . . | FX . FX | . . 1
------------+-------------+------------
1 . . | . 1 . | . . .
. . . | . . . | . 1 .
1- . 1X | FX . 1X | . . .
And we see this leads to a contradiction, so the elimination is valid!
next lets look at the elimination in r4c5. For it to be proven wrong, all the candidates in the box must be false:
- Code: Select all
. . . | 1X . 1X | 1X . 1-
. 1 . | . . . | . . .
. . . | . 1 . | . . 1
------------+-------------+------------
1 . . | FX 1- FX | . . 1
1- . 1X | FX- . FX- | 1X . 1-
1 . . | FX . FX | . . 1
------------+-------------+------------
1 . . | . 1 . | . . .
. . . | . . . | . 1 .
1- . 1X | 1X . 1X | . . .
Which creates an X-wing in columns 4 and 6, so that r9c3 and r1c7 also are false, which again creates a contradiction in row5, hence that elimination is valid too.
Next, for the row5 eliminations, we need this scenario for those eliminations not to be true:
- Code: Select all
. . . | FX . FX | TX . 1-
. 1 . | . . . | . . .
. . . | . 1 . | . . 1
------------+-------------+------------
1 . . | 1X 1- 1X | . . 1
1- . FX | FX- . FX- | FX . 1-
1 . . | 1X . 1X | . . 1
------------+-------------+------------
1 . . | . 1 . | . . .
. . . | . . . | . 1 .
1- . TX | FX . FX | . . .
Which you can see leads to no possible place for 1's in both column 4 and 6, hence those eliminations are valid too.
Because of the symmetrical structure of the puzzle, it should now be enough to show just one of the eliminations for either r9c1 or r1c9.
For the elimination in r9c1 not to be true you would have to have:
- Code: Select all
. . . | FX . FX | TX . 1-
. 1 . | . . . | . . .
. . . | . 1 . | . . 1
------------+-------------+------------
1 . . | 1X 1- 1X | . . 1
1- . TX | FX- . FX- | FX . 1-
1 . . | 1X . 1X | . . 1
------------+-------------+------------
1 . . | . 1 . | . . .
. . . | . . . | . 1 .
1- . FX | FX . FX | . . .
Which again is a contradiction... Hence those eliminations is proven as well...
phew... Now for the swordfish:
- Code: Select all
3 . 3 | 3 . 3 | . . .
. . . | . . . | . 3 .
3 3 . | . 3 . | . . .
---------+----------+---------
3X . . | 3X 3X 3X | . . 3X
3 . 3 | 3 . 3 | 3 . 3
3X . . | 3X . 3X | . . 3X
---------+----------+---------
3X 3X . | . . . | . . 3X
3- . 3 | 3 . 3 | 3 . 3
3- . 3 | 3 . 3 | 3 . 3
For those eliminations to NOT be true, we have to have this scenario:
- Code: Select all
3 . 3 | 3 . 3 | . . .
. . . | . . . | . 3 .
3 3 . | . 3 . | . . .
---------+----------+---------
FX . . | 3X 3X 3X | . . FX
3 . 3 | 3 . 3 | 3 . 3
FX . . | 3X . 3X | . . FX
---------+----------+---------
FX FX . | . . . | . . TX
3- . 3 | 3 . 3 | 3 . 3
3- . 3 | 3 . 3 | 3 . 3
Which again is a contradiction, and the elimination can be done!
ronk wrote:Havard wrote:- Code: Select all
Almost Locked Sets XZ rule
356789 567 2379 | 13789 47 13489 | 1248#a 456 45689-8
56 1 79 | 789 2 489 | 48#a 3 56
238 39 4 | 5 138 6 | 7 29 18#a
------------------------+-------------------------+---------------------------
139 47 6 | 12389 38 12389 | 5 47 123
34579 2 1379 | 3679 4567 3459 | 134-4 8 3467
13457 457 8 | 1237 4567 1234 | 9 467 123467
------------------------+-------------------------+---------------------------
123 39 5 | 4 18 7 | 6 29 38#b
467 8 237 | 236 9 235 | 234#b 1 3457-3
4679 467 12379 | 12368 56 12358 | 2348#b 457 345789-38
I see you found a very nice application of the doubly-linked ALS xz-rule. (I added it as an example
here.) Good work!
Thanks!
Havard