I'm still exploring the topic in various directions, maybe there will be a bigger update in the future.
Until then, some interesting things that came up on the way:
The trivalue oddagon / Thor's Hammer can, with help of extra constraints, be realized in rows, columns or even disjoint groups instead of boxes.
Here's a row version using both diagonals (Sudoku X):
- Code: Select all
------------------------------
. . X | X . . | X . .
. X . | . X . | . X .
. . . | . . . | . . .
------------------------------
. . . | . . . | . . .
. . . | . . . | . . .
. . . | . . . | . . .
------------------------------
. . . | . . . | . . .
. . X | X . . | X . .
X . . | . X . | . . X
------------------------------
This is an anti-knight version using 5 columns instead of the 4 boxes:
- Code: Select all
------------------------------
X . . | . . . | . X .
. . . | X . X | . . .
. . X | . . . | . . .
------------------------------
. . X | . . . | . . .
. . . | X . X | . . .
X . . | . . . | . X .
------------------------------
X . . | . . . | . X .
. . . | . . X | . . .
. . X | X . . | . . .
------------------------------
With diagonals or anti-knight, 3 row or column versions can be made. But these have an extra triangle and are therefore less complex to prove not 3-colorable.
This is a version with 4 triangles in disjoint groups, marked A,B,C,D for better visibility:
- Code: Select all
------------------------------
A . . | . B . | . . .
. . D | . . . | . C .
. . . | . . . | . . .
------------------------------
. B . | . . . | A . .
. C . | . . . | . . D
. . . | . . . | . . .
------------------------------
A . . | . . . | . B .
. . D | . C . | . . .
. . . | . . . | . . .
------------------------------
Aside from Thor's Hammer here is a - maybe - promising pattern that just came up yesterday:
(classic)
- Code: Select all
------------------------------
. X . | X . . | X . .
X . . | . . . | . . .
. . . | . . . | . . .
------------------------------
X . . | . X . | X . .
. . . | X . . | . . .
. . . | . . . | . . .
------------------------------
X . . | X . . | . X .
. . . | . . . | X . .
. . . | . . . | . . .
------------------------------
It is not completely trivial to prove, needing the use of graph symmetry or a bifurcation. Ultimately it relies on the combinatorial fact that any 3-coloring of a 6-cycle produces at least one opposing pair of edges with the same two colors. The 6-cycle in question being the single cells in b236478.