I could easily modify a few of the existing functions (to make them able to read your input). Just to make sure: all your patterns lie in the first two bands? (I completed with one full band). For allowing to check what"s solved, the starting pattern is printed (in the form usable by SudoRules).
Here is what I get for the first puzzles in the 10-cells list (when only Subsets, Finned Fish and whips are loaded):
- Code: Select all
#1
+-------------------------------+-------------------------------+-------------------------------+
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123 ! 123456789 123456789 123 ! 123456789 123456789 123 !
+-------------------------------+-------------------------------+-------------------------------+
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123 !
! 123456789 123456789 123456789 ! 123456789 123456789 123 ! 123456789 123 123 !
! 123456789 123456789 123 ! 123456789 123 123 ! 123456789 123456789 123456789 !
+-------------------------------+-------------------------------+-------------------------------+
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
+-------------------------------+-------------------------------+-------------------------------+
Resolution state after Singles and whips[1]:
+-------------------------------+-------------------------------+-------------------------------+
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123 ! 123456789 123456789 123 ! 123456789 123456789 123 !
+-------------------------------+-------------------------------+-------------------------------+
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123 !
! 123456789 123456789 123456789 ! 123456789 123456789 123 ! 123456789 123 123 !
! 123456789 123456789 123 ! 123456789 123 123 ! 123456789 123456789 123456789 !
+-------------------------------+-------------------------------+-------------------------------+
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
+-------------------------------+-------------------------------+-------------------------------+
669 candidates.
naked-triplets-in-a-row: r6{c3 c5 c6}{n3 n2 n1} ==> r6c9≠3, r6c9≠2, r6c9≠1, r6c8≠3, r6c8≠2, r6c8≠1, r6c7≠3, r6c7≠2, r6c7≠1, r6c4≠3, r6c4≠2, r6c4≠1, r6c2≠3, r6c2≠2, r6c2≠1, r6c1≠3, r6c1≠2, r6c1≠1
naked-triplets-in-a-row: r5{c6 c8 c9}{n3 n2 n1} ==> r5c7≠3, r5c7≠2, r5c7≠1, r5c5≠3, r5c5≠2, r5c5≠1, r5c4≠3, r5c4≠2, r5c4≠1, r5c3≠3, r5c3≠2, r5c3≠1, r5c2≠3, r5c2≠2, r5c2≠1, r5c1≠3, r5c1≠2, r5c1≠1
naked-triplets-in-a-block: b5{r5c6 r6c5 r6c6}{n3 n2 n1} ==> r4c6≠3, r4c6≠2, r4c6≠1, r4c5≠3, r4c5≠2, r4c5≠1, r4c4≠3, r4c4≠2, r4c4≠1
naked-triplets-in-a-block: b6{r4c9 r5c8 r5c9}{n3 n2 n1} ==> r4c8≠3, r4c8≠2, r4c8≠1, r4c7≠3, r4c7≠2, r4c7≠1
naked-triplets-in-a-column: c9{r3 r4 r5}{n3 n2 n1} ==> r9c9≠3, r9c9≠2, r9c9≠1, r8c9≠3, r8c9≠2, r8c9≠1, r7c9≠3, r7c9≠2, r7c9≠1, r2c9≠3, r2c9≠2, r2c9≠1, r1c9≠3, r1c9≠2, r1c9≠1
naked-triplets-in-a-column: c6{r3 r5 r6}{n3 n2 n1} ==> r9c6≠3, r9c6≠2, r9c6≠1, r8c6≠3, r8c6≠2, r8c6≠1, r7c6≠3, r7c6≠2, r7c6≠1, r2c6≠3, r2c6≠2, r2c6≠1, r1c6≠3, r1c6≠2, r1c6≠1
naked-triplets-in-a-row: r3{c3 c6 c9}{n3 n2 n1} ==> r3c8≠3, r3c8≠2, r3c8≠1, r3c7≠3, r3c7≠2, r3c7≠1, r3c5≠3, r3c5≠2, r3c5≠1, r3c4≠3, r3c4≠2, r3c4≠1, r3c2≠3, r3c2≠2, r3c2≠1, r3c1≠3, r3c1≠2, r3c1≠1
whip[3]: r6n1{c6 c3} - r4n1{c3 c9} - r3n1{c9 .} ==> r5c6≠1
whip[1]: r5n1{c9 .} ==> r4c9≠1
whip[1]: r4n1{c3 .} ==> r6c3≠1
whip[3]: r6n2{c6 c3} - r4n2{c3 c9} - r3n2{c9 .} ==> r5c6≠2
naked-single ==> r5c6=3
hidden-single-in-a-block ==> r4c9=3
hidden-single-in-a-row ==> r3c3=3
GRID 1 HAS NO SOLUTION : NO CANDIDATE FOR FOR BN-CELL b4n3
MOST COMPLEX RULE TRIED = W[3]
- Code: Select all
#2
+-------------------------------+-------------------------------+-------------------------------+
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123 ! 123456789 123456789 123 ! 123456789 123456789 123 !
+-------------------------------+-------------------------------+-------------------------------+
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123 !
! 123456789 123456789 123456789 ! 123456789 123456789 123 ! 123456789 123 123 !
! 123456789 123456789 123 ! 123 123 123456789 ! 123456789 123456789 123456789 !
+-------------------------------+-------------------------------+-------------------------------+
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
+-------------------------------+-------------------------------+-------------------------------+
Resolution state after Singles and whips[1]:
+-------------------------------+-------------------------------+-------------------------------+
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123 ! 123456789 123456789 123 ! 123456789 123456789 123 !
+-------------------------------+-------------------------------+-------------------------------+
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123 !
! 123456789 123456789 123456789 ! 123456789 123456789 123 ! 123456789 123 123 !
! 123456789 123456789 123 ! 123 123 123456789 ! 123456789 123456789 123456789 !
+-------------------------------+-------------------------------+-------------------------------+
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
+-------------------------------+-------------------------------+-------------------------------+
669 candidates.
naked-triplets-in-a-row: r6{c3 c4 c5}{n3 n2 n1} ==> r6c9≠3, r6c9≠2, r6c9≠1, r6c8≠3, r6c8≠2, r6c8≠1, r6c7≠3, r6c7≠2, r6c7≠1, r6c6≠3, r6c6≠2, r6c6≠1, r6c2≠3, r6c2≠2, r6c2≠1, r6c1≠3, r6c1≠2, r6c1≠1
naked-triplets-in-a-row: r5{c6 c8 c9}{n3 n2 n1} ==> r5c7≠3, r5c7≠2, r5c7≠1, r5c5≠3, r5c5≠2, r5c5≠1, r5c4≠3, r5c4≠2, r5c4≠1, r5c3≠3, r5c3≠2, r5c3≠1, r5c2≠3, r5c2≠2, r5c2≠1, r5c1≠3, r5c1≠2, r5c1≠1
naked-triplets-in-a-block: b5{r5c6 r6c4 r6c5}{n3 n2 n1} ==> r4c6≠3, r4c6≠2, r4c6≠1, r4c5≠3, r4c5≠2, r4c5≠1, r4c4≠3, r4c4≠2, r4c4≠1
naked-triplets-in-a-block: b6{r4c9 r5c8 r5c9}{n3 n2 n1} ==> r4c8≠3, r4c8≠2, r4c8≠1, r4c7≠3, r4c7≠2, r4c7≠1
naked-triplets-in-a-column: c9{r3 r4 r5}{n3 n2 n1} ==> r9c9≠3, r9c9≠2, r9c9≠1, r8c9≠3, r8c9≠2, r8c9≠1, r7c9≠3, r7c9≠2, r7c9≠1, r2c9≠3, r2c9≠2, r2c9≠1, r1c9≠3, r1c9≠2, r1c9≠1
naked-triplets-in-a-row: r3{c3 c6 c9}{n3 n2 n1} ==> r3c8≠3, r3c8≠2, r3c8≠1, r3c7≠3, r3c7≠2, r3c7≠1, r3c5≠3, r3c5≠2, r3c5≠1, r3c4≠3, r3c4≠2, r3c4≠1, r3c2≠3, r3c2≠2, r3c2≠1, r3c1≠3, r3c1≠2, r3c1≠1
whip[3]: r6n1{c5 c3} - r4n1{c3 c9} - r3n1{c9 .} ==> r5c6≠1
whip[1]: r5n1{c9 .} ==> r4c9≠1
whip[1]: r4n1{c3 .} ==> r6c3≠1
whip[3]: r6n2{c5 c3} - r4n2{c3 c9} - r3n2{c9 .} ==> r5c6≠2
naked-single ==> r5c6=3
hidden-single-in-a-block ==> r4c9=3
hidden-single-in-a-row ==> r3c3=3
GRID 2 HAS NO SOLUTION : NO CANDIDATE FOR FOR BN-CELL b4n3
MOST COMPLEX RULE TRIED = W[3]
and at the end of dealing with all the puzzles in the file:
- Code: Select all
No-sol list = (1 2 3 4 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28)
For this list in particular, the hardest rule necessary to prove a contradiction in each puzzle is a whip[3].
For the other puzzles, harder techniques than the above listed ones must be used.
In case a puzzle is not proven contradictory with the chosen set of rules, here is how it appears:
- Code: Select all
#5
Resolution state after Singles and whips[1]:
+-------------------------------+-------------------------------+-------------------------------+
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123 ! 123456789 123456789 123 ! 123456789 123456789 123 !
+-------------------------------+-------------------------------+-------------------------------+
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123 !
! 123456789 123456789 123 ! 123456789 123456789 123 ! 123456789 123456789 123 !
! 123456789 123456789 123 ! 123456789 123 123456789 ! 123456789 123 123456789 !
+-------------------------------+-------------------------------+-------------------------------+
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
! 123456789 123456789 123456789 ! 123456789 123456789 123456789 ! 123456789 123456789 123456789 !
+-------------------------------+-------------------------------+-------------------------------+
669 candidates.
naked-triplets-in-a-row: r6{c3 c5 c8}{n3 n2 n1} ==> r6c9≠3, r6c9≠2, r6c9≠1, r6c7≠3, r6c7≠2, r6c7≠1, r6c6≠3, r6c6≠2, r6c6≠1, r6c4≠3, r6c4≠2, r6c4≠1, r6c2≠3, r6c2≠2, r6c2≠1, r6c1≠3, r6c1≠2, r6c1≠1
naked-triplets-in-a-row: r5{c3 c6 c9}{n3 n2 n1} ==> r5c8≠3, r5c8≠2, r5c8≠1, r5c7≠3, r5c7≠2, r5c7≠1, r5c5≠3, r5c5≠2, r5c5≠1, r5c4≠3, r5c4≠2, r5c4≠1, r5c2≠3, r5c2≠2, r5c2≠1, r5c1≠3, r5c1≠2, r5c1≠1
naked-triplets-in-a-block: b6{r4c9 r5c9 r6c8}{n3 n2 n1} ==> r4c8≠3, r4c8≠2, r4c8≠1, r4c7≠3, r4c7≠2, r4c7≠1
naked-triplets-in-a-column: c9{r3 r4 r5}{n3 n2 n1} ==> r9c9≠3, r9c9≠2, r9c9≠1, r8c9≠3, r8c9≠2, r8c9≠1, r7c9≠3, r7c9≠2, r7c9≠1, r2c9≠3, r2c9≠2, r2c9≠1, r1c9≠3, r1c9≠2, r1c9≠1
naked-triplets-in-a-row: r3{c3 c6 c9}{n3 n2 n1} ==> r3c8≠3, r3c8≠2, r3c8≠1, r3c7≠3, r3c7≠2, r3c7≠1, r3c5≠3, r3c5≠2, r3c5≠1, r3c4≠3, r3c4≠2, r3c4≠1, r3c2≠3, r3c2≠2, r3c2≠1, r3c1≠3, r3c1≠2, r3c1≠1
naked-triplets-in-a-column: c3{r3 r5 r6}{n3 n2 n1} ==> r9c3≠3, r9c3≠2, r9c3≠1, r8c3≠3, r8c3≠2, r8c3≠1, r7c3≠3, r7c3≠2, r7c3≠1, r4c3≠3, r4c3≠2, r4c3≠1, r2c3≠3, r2c3≠2, r2c3≠1, r1c3≠3, r1c3≠2, r1c3≠1
PUZZLE 5 IS NOT SOLVED. 81 VALUES MISSING.
Final resolution state:
+-------------------------------+-------------------------------+-------------------------------+
! 123456789 123456789 456789 ! 123456789 123456789 123456789 ! 123456789 123456789 456789 !
! 123456789 123456789 456789 ! 123456789 123456789 123456789 ! 123456789 123456789 456789 !
! 456789 456789 123 ! 456789 456789 123 ! 456789 456789 123 !
+-------------------------------+-------------------------------+-------------------------------+
! 123456789 123456789 456789 ! 123456789 123456789 123456789 ! 456789 456789 123 !
! 456789 456789 123 ! 456789 456789 123 ! 456789 456789 123 !
! 456789 456789 123 ! 456789 123 456789 ! 456789 123 456789 !
+-------------------------------+-------------------------------+-------------------------------+
! 123456789 123456789 456789 ! 123456789 123456789 123456789 ! 123456789 123456789 456789 !
! 123456789 123456789 456789 ! 123456789 123456789 123456789 ! 123456789 123456789 456789 !
! 123456789 123456789 456789 ! 123456789 123456789 123456789 ! 123456789 123456789 456789 !
+-------------------------------+-------------------------------+-------------------------------+
Before I try the other files and harder techniques, is this the kind of result you were looking for?