Chromatic Patterns

Advanced methods and approaches for solving Sudoku puzzles

Re: Chromatic Patterns

Postby mith » Fri Apr 29, 2022 5:57 pm

Very nice list, eleven. :)

On discord, ryokousha has posted a couple more spanning more boxes:

Code: Select all
* . . | . * . | . * .
. * . | . * . | . * .
. . . | . . . | . . .
------+-------+------
. . . | . . . | . . .
* * . | . * . | . . .
. . . | . . . | . . .
------+-------+------
. . . | . . . | . * .
* * . | . . . | * . .
. . . | . . . | . . .


Code: Select all
* . . | . * . | . . .
. * . | . * . | . * .
. . . | . . . | . . .
------+-------+------
. . . | . . . | . . .
* * . | . * . | . . .
. . . | . . . | . . .
------+-------+------
. . . | . . . | . . .
. * . | . . . | * . *
. . . | . . . | . * .


We're looking at generation possibilities, limiting by number of cells rather than boxes.

Also wondering whether it makes sense to start classifying these by number of houses with full triplets. For example, a common structure in the 10 cell patterns is 2 rows, 2 columns, and 3 boxes - perhaps we can say something about these as a class.

In the first, we can see that r1c2 is r4c1 (b1c1) is r5c5 (r4b5) and this breaks b2. In the second, we have the same equivalent cells, just using a different row/box combination (b4r5 instead of r4b5) for the last. Obviously the two patterns are different in the isomorph sense, but logically they are very similar.
mith
 
Posts: 996
Joined: 14 July 2020

Re: Chromatic Patterns

Postby eleven » Fri Apr 29, 2022 11:12 pm

Yes, like mentioned, for the patterns in my list i only used 3 ways to show, that a digit X can be eliminated from a cell. They also can be expressed in extended x-chains with 3-digit links. So we just can find/verify them without memorizing single patterns.

Grouped oddagons:
Code: Select all
------
 d  d  . | .  .  . | e  .  .
 .  .  c | .  .  . | .  .  .
 .  .  . | g  .  . | .  f  f
----------------------------
*a  .  . | .  i  .
 .  .  b | h  .  .
 .  .  b | h  .  .
------

x-chain:
r56c3 = r2c3 - r1c12 = r1c7 - r3c89 = r3c4 - r56c4 = r4c5 => -xr4c1

Digit forced to 2 cells in a box
Here ar4c1 forces ar3c6, which kills a in r12 of b12 -> 2 a's in b3
Code: Select all
------
-a  .  . |-a  .  . | a  .  .
-a  .  . | . -a  . | .  a  .
 .  .  . | .  .  a | .  .  .
-------------------------------
*a  .  . | .  .  b
 .  b  b | a  .  .
 .  .  . | .  .  b


As x-chain:
Code: Select all
------
 a  .  .  X  .  .  b  .  .
 b  .  .  .  X  .  .  a  .
 .  .  .  .  .  X  .  .  .
 X  .  .  .  .  X
 .  X  X  X  .  .
 .  .  .  .  .  X
------

xr46c6 = xr3c6 - b2p15 = lc b3p15,b1p14 - r4c1 = r5c23 => -xr5c4

Digit killed in a unit
xr4c5 -> 'r1c4 and r56c3 -> 'r2c2 => killed in box 3
------
Code: Select all
-a  .  .  a  .  .  X .  .
 .  a  .  .  .  .  .  X  X
 .  . -a  .  .  .  .  .  .
 .  b  .  . *a  .
 .  .  a  b  .  .
 .  .  a  b  . 
.

As x-chain
Code: Select all
------
 c  .  .  c  .  .  d  .  .
 .  f  .  .  .  .  .  e  e
 .  .  g  .  .  .  .  .  .
 b  .  .  .  a  a
 .  .  h  b  .  .
 .  .  h  .  .  .

xr4c56 = r4c1 & r5c4 - r1c1 | r1c4 = r1c7 - r2c89 = r2c2 - r3c3 = r56c3 => -xr4c1

I wondered, if the nice new patterns are also 1-digit patterns, thought yes, then no, maybe the first one is, seen it this way:
Starting with 1 in r8c7 we either have 1r1c8 or 1r2c8.
Then the 1 in r5c12 is fixed, and in r12c5, which kills all 1's in c2 or c1.
Code: Select all
    x . . | . x . | . 1 .     x . . | . x . | . x .
    . x . | . 1 . | . x .     . x . | . x . | . 1 .
    . . . | . . . | . . .     . . . | . . . | . . .
    ------+-------+------     ------+-------+------
    . . . | . . . | . . .     . . . | . . . | . . .
    1 x . | . x . | . . .     x 1 . | . x . | . . .
    . . . | . . . | . . .     . . . | . . . | . . .
    ------+-------+------     ------+-------+------
    . . . | . . . | . x .     . . . | . . . | . x .
    x x . | . . . |*1 . .     x x . | . . . |*1 . .
    . . . | . . . | . . .     . . . | . . . | . . .


In the second one i need the oddagon for the other 2 digits.
eleven
 
Posts: 3173
Joined: 10 February 2008

Re: Chromatic Patterns

Postby eleven » Sat Apr 30, 2022 9:06 am

I am not good in fish patterns, but now i saw, that the first of ryokousha's patterns above is a finned jellyfish in cols 1258,rows 1258, and fin r7c8.
Code: Select all
   1 2       3       4
1  1 . . | . 1 . | . 1 .
2  . 1 . | . 1 . | . 1 .
   . . . | . . . | . . .
   ------+-------+------
   . . . | . . . | . . .
3  1 1 . | . 1 . | . . .
   . . . | . . . | . . .
   ------+-------+------
   . . . | . . . | . f .
4  1 1 . | . . . |-1 . .
   . . . | . . . | . . .


PS: 2 more with 14 cells in 6 boxes.
Code: Select all
 +-------+-------+-------+
 | X . . | X . . | X . . |
 | . X . | . X . | . X . |
 | . . X | . X . | . . . |
 +-------+-------+-------+
 | X . . | . . . | . . X |
 | . . X | . X . | X . . |
 | . . . | . . . | . X . |
 +-------+-------+-------+

Code: Select all
 +-------+-------+-------+
 | X X . | X . . | . . . |
 | . X . | . X . | X . . |
 | . . . | . . X | . . . |
 +-------+-------+-------+
 | . X . | . . . | X . . |
 | . . X | . . X | X . . |
 | . . . | . X . | . X . |
 +-------+-------+-------+
eleven
 
Posts: 3173
Joined: 10 February 2008

Re: Chromatic Patterns

Postby ryokousha » Sat Apr 30, 2022 9:49 am

Hi everyone. Decided to make an account to spare mith some work ;)

Eleven, that's an interesting observation. There is also this variation which I struggle to see as a fish, but it might be possible?

Code: Select all
* . . | . * . | . . *
. * . | . * . | . * .
. . . | . . . | . . .
------+-------+------
. . . | . . . | . . .
* * . | . * . | . . .
. . . | . . . | . . .
------+-------+------
. . . | . . . | . . .
. * . | . . . | . . *
* . . | . . . | . * .


The way I think about these currently is along these lines:
Any three "parallel pairs" of cells restricted to 3 values must take all three combinations of two digits
Code: Select all
* . . | . * . | . . *
. * . | . * . | . * .
. . . | . . . | . . .

Boxes 2 and 4 have the same digits. Boxes 3 and 7 cannot have the same two digits, as that would put the third digit twice either in box 1 or box 9 (depending on the relative orientation). But this is a contradiction for box 1, which has to take two different two-digit combinations simultaneously.
ryokousha
 
Posts: 37
Joined: 30 April 2022

Re: Chromatic Patterns

Postby eleven » Sat Apr 30, 2022 2:02 pm

This one seems to be harder to prove (but it cannot be a full pattern in a valid sudoku)
Code: Select all
 X  .  . | X  .  .  |  X  .  .   
 .  X  . | .  .  X  |  .  X  .   
 .  .  . | .  .  .  |  .  .  .   
---------------------------------
 X  .  . | .  X  .  |  .  X  . 
 .  .  . | X  .  .  |  .  .  .   
 .  .  . | .  .  X  |  .  .  .   
---------------------------------
 .  .  . | .  .  X  |  .  .  .   
 .  .  . | X  .  .  |  .  X  .   
 .  .  . | .  .  .  |  .  .  .   
eleven
 
Posts: 3173
Joined: 10 February 2008

Re: Chromatic Patterns

Postby coloin » Sat Apr 30, 2022 6:30 pm

This ones easier to prove .....
Code: Select all
+---+---+---+
|1..|2..|...|
|2..|1..|...|
|...|...|...|
+---+---+---+
|...|...|...|
|...|...|...|
|...|...|.12|
+---+---+---+
|...|...|...|
|...|...|...|
|...|...|.21|
+---+---+---+

Forgive me if this simplistic 2clue impossible pattern has been defined elsewhere, but this would be a bivalue oddagon ? :!:
coloin
 
Posts: 2502
Joined: 05 May 2005
Location: Devon

Re: Chromatic Patterns

Postby eleven » Sat Apr 30, 2022 8:56 pm

No, i wouldn't know, how to show a bivalue oddagon in a grid, because it doesn't exist.
Code: Select all
+---+---+---+
|..*|*..|...|
|*..|...|...|
|...|...|...|
+---+---+---+
|*..|*..|...|
|...|...|...|
|...|...|...|
+---+---+---+
This is the pattern of a bivalue oddagon. You can't have only 2 digits in the *-ed cells.
eleven
 
Posts: 3173
Joined: 10 February 2008

Re: Chromatic Patterns

Postby eleven » Sat Apr 30, 2022 9:07 pm

Probably already known (?) 13 cells in 2 bands, no 1-digit pattern.
Code: Select all
  X  X  . | X  .  . | .  .  .
  .  .  X | .  X  . | X  .  .
  .  .  . | .  .  . | .  .  .
------------------------------
  X  X  . | .  .  . | X  .  .
  .  .  X | X  .  . | .  .  .
  .  .  . | .  X  . | X  .  .

12 cells:
Code: Select all
 X  X  . | X  .  . | .  .  . 
 .  .  X | X  .  . | X  .  . 
 .  .  . | .  X  . | .  .  . 
-----------------------------
 X  .  . | .  X  . | X  .  . 
 .  .  X | .  .  . | .  .  . 
 .  .  X | .  .  . | .  .  . 
eleven
 
Posts: 3173
Joined: 10 February 2008

Re: Chromatic Patterns

Postby marek stefanik » Sun May 01, 2022 10:50 am

Interesting new patterns!
Unless I'm mistaken this is the only one that cannot be proven using one digit and bivalue oddagons on the other two, but this changes when we prove another cell:
eleven wrote:This one seems to be harder to prove (but it cannot be a full pattern in a valid sudoku)
Code: Select all
 X  .  . | X  .  .  |  X  .  .   
 .  X  . | .  .  X  |  .  X  .   
 .  .  . | .  .  .  |  .  .  .   
---------------------------------
 X  .  . | .  X  .  |  .  X  . 
 .  .  . | X  .  .  |  .  .  .   
 .  .  . | .  .  X  |  .  .  .   
---------------------------------
 .  .  . | .  .  X  |  .  .  .   
 .  .  . | X  .  .  |  .  X  .   
 .  .  . | .  .  .  |  .  .  .   
Triples in r12c46 => remaining cell in b2 is r3c5, then can be proven as described above.

The rest of the proof: Show
Code: Select all
 #  .  . | #  .  .  |  X  .  .   
 .  X  . | .  .  X  |  .  A  .   
 .  .  . | .  -A .  |  .  .  .   
---------------------------------
 #  .  . | .  #  .  |  .  X  . 
 .  .  . | X  .  .  |  .  .  .   
 .  .  . | .  .  X  |  .  .  .   
---------------------------------
 .  .  . | .  .  X  |  .  .  .   
 .  .  . | X  .  .  |  .  X  .   
 .  .  . | .  .  .  |  .  .  .   
Let A be the digit in r2c8.
Ar14\c15b2 => –A r3c5
HS Ab2

Code: Select all
 X  .  . | A  .  .  |  X  .  .   
 .  X  . | .  .  X  |  .  A  .   
 .  .  . | .  X  .  |  .  .  .   
---------------------------------
 X  .  . | .  #  .  |  .  #  . 
 .  .  . | #  .  .  |  .  .  .   
 .  .  . | .  .  X  |  .  .  .   
---------------------------------
 .  .  . | .  .  X  |  .  .  .   
 .  .  . | #  .  .  |  .  #  .   
 .  .  . | .  .  .  |  .  .  .   
bivalue oddagon => Ar4c5

Code: Select all
 #  .  . | A  .  .  |  X  .  .   
 .  #  . | .  .  #  |  .  A  .   
 .  .  . | .  .  .  |  .  .  .   
---------------------------------
 #  .  . | .  A  .  |  .  #  . 
 .  .  . | #  .  .  |  .  .  .   
 .  .  . | .  .  #  |  .  .  .   
---------------------------------
 .  .  . | .  .  X  |  .  .  .   
 .  .  . | #  .  .  |  .  #  .   
 .  .  . | .  .  .  |  .  .  .   
bivalue oddagon with no guardians, ie. contra.

Marek
marek stefanik
 
Posts: 360
Joined: 05 May 2021

Re: Chromatic Patterns

Postby denis_berthier » Tue May 03, 2022 5:21 am

mith wrote:I will note that the original proof I offered for the "trivalue oddagon" pattern's impossibility explicitly uses bivalue oddagons.

Code: Select all
. . * | * . .
. * . | . * .
* . . | . . *
------+------
* . . | * . .
. * . | . * .
. . * | . . *

.
I mith,
After all this time, I'm still unable to see any oddagon and I think you have not yet explicitly written any. Could you write a fully detailed resolution state and a fully detailed description of the oddagon(s) you're referring to?
BTW, where is your definition of a bivalue oddagon? Only oddagons have ever been defined precisely (e.g. by Tarek).

What I've seen in my proof of the contradiction (after fixing two candidates as you) is z-chains[5] - but no oddagon.

mith wrote:Note that in each box, we can pick two cells which are part of the 8-loop (not part of the rectangle r25c25) of row/column links.

How can an ODDagon be an 8-loop?
denis_berthier
2010 Supporter
 
Posts: 4233
Joined: 19 June 2007
Location: Paris

Re: Chromatic Patterns

Postby eleven » Tue May 03, 2022 4:44 pm

Short answer:
A bivalue oddagon is a loop with an odd number of cells having exactly 2 candidates.
In whatever way you place one digit of the "trivalue oddagon" correctly (in the 4 boxes), a bivalue oddagon is formed with the other 2 digits.
E.g.
Code: Select all
    .  .  1  | 23 .  .
    .  23 .  | .  23 .
    *  .  .  | .  .  1
    ---------+--------
    1  .  .  | 23 .  .
    .  23 .  | .  1  .
    .  .  23 | .  .  23


The proof has to handle all ways of placing a single digit, which makes it longer than known ones.
Mith choose another way to prove it by starting with 2 digits.
The 8-loop is the loop in the pattern, with row/column links only, when you remove the rectangle cells.
eleven
 
Posts: 3173
Joined: 10 February 2008

Re: Chromatic Patterns

Postby eleven » Tue May 03, 2022 4:45 pm

Using Mladen's extremely fast tool for minlexing patterns made it much faster for me to generate impossible 3-digit paterns. Below is a list with new ones in up to 6 boxes. It turned out, that my 5-box list was all than complete.
Having these 380 i stopped, because these are already too much for me for manually checking. I would need a tool for evaluating, how hard it is for a solver to crack the pattern (eliminate 123 in one of the cells), in order to pick the interesting ones, but i cannot write one (SukakuExplainer does not help me, and i can't program in java).
Can only post them here in lines.

10 cells
Hidden Text: Show
Code: Select all
000000000000000000001001001000000001000001011001011000
000000000000000000001001001000000001000001011001110000
000000000000000000001001001000000001000001110001011000
000000000000000000001001001000000001000001110001110000
000000000000000000001001001000000001001001001001010010
000000000000000000001001001000000001001001010001001010
000000000000000000001001001000000001001001010001001100
000000000000000000001001001000001001000001001001010010
000000000000000000001001001000001010000010001001001001
000000000000000001000001011000000000001001001011001000
000000000000000001000001011000000000001001001110001000
000000000000000001000001011000001000000001001000010110
000000000000000001000001110000000000001001001001001001
000000000000000001000001110000000000001001001010001001
000000000000000001000001110000000000001001001011000001
000000000000000001000001110000000000001001001011001000
000000000000000001000001110000000000001001001110000001
000000000000000001000001110000000000001001001110001000
000000000000000001000001110000000001000001001000110010
000000000000000001000001110000001000000001001000010011
000000000000000001000001110000001000000001001000010110
000000000000000001001001010000000000001001001001001001
000000000000001001001000011000001000000001000001010001
000000000000001001001000110000001000000001000001010001
000000000000001001001001001001000000001000000010001001
000000000000001001001001010001000000001000000010001001
000000000000001011001001001001000000001000000010001000
000000000000001011001001100001000000001000000010001000
000000001000000001001001010000001000000001000001010001

12 cells
Hidden Text: Show
Code: Select all
000000000000000001001001010000001001001001100001010001
000000000000000001001001010001001000001010001010001001
000000000000001001001000011000001010000001010001010100
000000000000001001001000011001000000001001010010001010
000000000000001001001000011001000000010001010010001010
000000000000001001001000011001000000010001010100001010
000000000000001001001001001000000001001001010001110000
000000000000001001001001001001000000001001010010000011
000000000000001001001001001001000000001001010010000101
000000000000001001001001001001000001001000110010001000
000000000000001001001001010000001001001000010001110000
000000000000001011001001100000000100000001100001010001
000000000000001011001001100000001100001000000011000100
000000000000001011001001100000001100001000000110000100
000000000000001011001001100001000000001001100010000100
000000000000001011001001100001000000010000100010001100
000000000000001011001001100001000000010000100100001100
000000000001001001001001001000000001000011010001010000
000000001000000001001001010000001000000010110001010001
000000001000000001001001010000001000000010110001100001
000000001000000001001001010000001000000011100001000011
000000001000000001001001010000001000000011100001000101
000000001000000001001001010000001000000110100001000011
000000001000000001001001010000001000000110100001000101
000000001000000001001001010000001001000010010001001100
000000001000000001001001010000001001000010100001001010
000000001000000001001001010000001001000010100001001100
000000001000001001001010010000001000001001001001100000
000000001000001010001001001000001000001000001001110000

13 cells
Hidden Text: Show
Code: Select all
000000000000001001001000011000001110001000001011001000
000000000000001001001000011000001110001000001110001000
000000000000001001001000011001000001001001010010001100
000000000000001001001000011001000001001001100010001010
000000000000001001001000011001000001001001100010001100
000000000000001001001000011001000001010001010010001100
000000000000001001001000011001000001010001010100001100
000000000000001001001000011001000001010001100010001100
000000000000001001001000011001000001010001100100001100
000000000000001001001000110000001011001000001011001000
000000000000001001001000110000001011001000001110001000
000000000000001001001000110000001110001000001011001000
000000000000001001001001001000001001001000110001110000
000000000000001001001001001000001001001010010001010010
000000000000001001001001001000001001001010010001010100
000000000000001001001001001000001001001010010001100100
000000000000001001001001010000001001001000101001110000
000000000000001001001001010000001001001010001001010010
000000000000001001001001010000001001001010001001010100
000000000000001001001001010000001001001010001001100010
000000000000001001001001010000001001001010001001100100
000000000000001001001001010000001001001010010001010100
000000000000001001001001010000001001001010010001100100
000000000000001001001001010000001001001010100001010100
000000000000001001001001010000001001001010100001100100
000000000000001011001001001000001000000010011001010010
000000000000001011001001001000001000000010011001010100
000000000000001011001001001000001000000010011001100010
000000000000001011001001001000001000000010011001100100
000000000000001011001001001000001000000010101001010010
000000000000001011001001001000001000000010101001010100
000000000000001011001001001000001000000010101001100010
000000000000001011001001001000001000000010101001100100
000000000000001011001001001000001000000010110001010001
000000000000001011001001001000001000000010110001010010
000000000000001011001001001000001000000010110001010100
000000000000001011001001001000001000000010110001100001
000000000000001011001001001000001000000010110001100010
000000000000001011001001001000001000000010110001100100
000000000000001011001001001000001000000110010001000011
000000000000001011001001001000001000000110010001000101
000000000000001011001001001000001000000110010001000110
000000000000001011001001001000001000000110100001000011
000000000000001011001001001000001000000110100001000101
000000000000001011001001001000001000000110100001000110
000000000000001011001001001000001000001000011001010010
000000000000001011001001001000001000001000011001010100
000000000000001011001001001000001000001000101001010010
000000000000001011001001001000001000001000101001010100
000000000000001011001001001000001000001000110001010010
000000000000001011001001001000001000001000110001010100
000000000000001011001001001000001000001010001001010010
000000000000001011001001001000001000001010001001010100
000000000000001011001001001000001000001010001001100010
000000000000001011001001001000001000001010001001100100
000000000000001011001001001000001000001010010001010100
000000000000001011001001001000001000001010010001100100
000000000000001011001001001000001000001010100001010100
000000000000001011001001001000001000001010100001100100
000000000000001011001001001000001011001000000011000100
000000000000001011001001001000001011001000000110000010
000000000000001011001001001000001011001000000110000100
000000000000001011001001001000001101001000000011000010
000000000000001011001001001000001101001000000011000100
000000000000001011001001001000001101001000000110000010
000000000000001011001001001000001101001000000110000100
000000000000001011001001001000001110001000000011000010
000000000000001011001001001000001110001000000011000100
000000000000001011001001001000001110001000000110000010
000000000000001011001001001000001110001000000110000100
000000000000001011001001001001000000001001001010000110
000000000000001011001001001001000000001001010010000110
000000000000001011001001001001000000001001100010000110
000000000000001011001001001001000000010000011010001010
000000000000001011001001001001000000010000011010001100
000000000000001011001001001001000000010000011100001010
000000000000001011001001001001000000010000011100001100
000000000000001011001001001001000000010000101010001010
000000000000001011001001001001000000010000101010001100
000000000000001011001001001001000000010000101100001010
000000000000001011001001001001000000010000101100001100
000000000000001011001001001001000000010000110010001001
000000000000001011001001001001000000010000110010001010
000000000000001011001001001001000000010000110010001100
000000000000001011001001001001000000010000110100001001
000000000000001011001001001001000000010000110100001010
000000000000001011001001001001000000010000110100001100
000000000000001011001001100000001000000010011001010001
000000000000001011001001100000001000000010011001010100
000000000000001011001001100000001000000010011001100001
000000000000001011001001100000001000000010011001100100
000000000000001011001001100000001000000010101001010001
000000000000001011001001100000001000000010101001010010
000000000000001011001001100000001000000010101001010100
000000000000001011001001100000001000000010101001100001
000000000000001011001001100000001000000010101001100010
000000000000001011001001100000001000000010101001100100
000000000000001011001001100000001000000110001001000011
000000000000001011001001100000001000000110001001000101
000000000000001011001001100000001000000110001001000110
000000000000001011001001100000001000001000011001010001
000000000000001011001001100000001000001000011001010100
000000000000001011001001100000001000001000101001010001
000000000000001011001001100000001000001000101001010010
000000000000001011001001100000001000001000101001010100
000000000000001011001001100000001011001000000110000001
000000000000001011001001100000001101001000000110000001
000000000000001011001001100000001101001000000110000010
000000000000001011001001100001000000001001001010000011
000000000000001011001001100001000000001001001010000101
000000000000001011001001100001000000010000011010001001
000000000000001011001001100001000000010000011010001100
000000000000001011001001100001000000010000011100001001
000000000000001011001001100001000000010000011100001100
000000000000001011001001100001000000010000101010001001
000000000000001011001001100001000000010000101010001010
000000000000001011001001100001000000010000101100001001
000000000000001011001001100001000000010000101100001010
000000000000001011001010100000001100000010001001100100
000000000000001011001010100000001100001000011001010000
000000000000001011001010100000001100001000101001010000
000000000000001011001010100000010000001100100010001100
000000000000001011001010100000010001001000100001001100
000000000000001011001010100000010001001000100010001100
000000000001001001001001001000000001000110010001010010
000000000001001001001001001000000001000110010001010100
000000000001001001001001001000001001000010110001010000
000000000001001001001001001000001001000010110001100000
000000000001001001001001010000001000000010011001010001
000000000001001001001001010000001000000010011001100001
000000000001001001001001010000001000000010101001010001
000000000001001001001001010000001000000010101001010100
000000000001001001001001010000001000000010101001100001
000000000001001001001001010000001000000010101001100100
000000001000000001001001010000001001001010010001010100
000000001000000001001001010000001001001010010001100100
000000001000000001001001010000001001001010100001010100
000000001000000001001001010000001001001010100001100100
000000001000001001000011010000000001001000110011001000
000000001000001001000011010000000001001000110110001000
000000001000001001000011010000000001001001010011000100
000000001000001001000011010000000001001001010110000100
000000001000001001000011010000000001001001100011000010
000000001000001001000011010000000001001001100011000100
000000001000001001000011010000000001001001100110000010
000000001000001001000011010000000001001001100110000100
000000001000001001000011010000001000001010001011100000
000000001000001001000011010000001000001010001110100000
000000001000001001000011010000001000001100001011010000
000000001000001001000011010000001000001100001011100000
000000001000001001000011010000001000001100001110010000
000000001000001001000011010000001000001100001110100000
000000001000001001000011010000001000001110000011000001
000000001000001001000011010000001000001110000110000001
000000001000001001000110010000000001001000110011001000
000000001000001001000110010000000001001000110110001000
000000001000001001000110010000000001001001010001001100
000000001000001001000110010000000001001001010010001100
000000001000001001000110010000000001001001010011000100
000000001000001001000110010000000001001001010110000100
000000001000001001000110010000000001001001100001001100
000000001000001001000110010000000001001001100010001100
000000001000001001000110010000000001001001100011000010
000000001000001001000110010000000001001001100011000100
000000001000001001000110010000000001001001100011001000
000000001000001001000110010000000001001001100110000010
000000001000001001000110010000000001001001100110000100
000000001000001001000110010000000001001001100110001000
000000001000001001000110010000001000001001001011010000
000000001000001001000110010000001000001001001110010000
000000001000001001000110010000001000001010001011100000
000000001000001001000110010000001000001010001110100000
000000001000001001000110010000001000001011000011000001
000000001000001001000110010000001000001011000110000001
000000001000001001000110010000001000001110000011000001
000000001000001001000110010000001000001110000110000001
000000001000001001001010010000000001001001010001001100
000000001000001001001010010000000001001001100001001100
000000001000001001001010010000001000001001001110100000
000000001000001001001010010001000000001001001010001010
000000001000001001001010010001000000001001001010001100
000000001000001001001010010001001000001001000010100001
000000001000001010001000100000001100001001001001010010
000000001000001010001001001000001000001010001001010010
000000001000001010001001001000001000001010001001010100
000000001000001010001001001000001000001010001001100010
000000001000001010001001001000001000001010001001100100
000000001000001010001001001001000000001001001010000110
000000001000001010001001001001010000001010001010001000
000000001000001010001001001001010000001100001010001000
000000001000001010001001010000001000001010001001010001
000000001000001010001001010000001000001010001001100001
000000001000001010001001010001000000001001001010000101
000000001000001010001001010001000001001000001010001100
000000001000001010001001100000001000001010001001010001
000000001000001010001001100000001000001010001001100001
000000001000001010001001100001000000001001001010000011
000000001000001010001001100001000000001001001010000101
000000001000001010001001100001000000001001001010000110
000000001000001010001001100001000001001000001010001100
000000001000001010001010010000001000001001001001010001
000000001000001010001010010000001000001001001001100001
000000001000001010001010010000001000001010001001100001
000000001000001010001010010000001000001100001001100001
000000001000001010001010010001000001001000001010001100
000000001000001010001010100000001000001001001001010001
000000001000001010001010100000001000001001001001100001
000000001000001010001010100000001000001010001001100001
000000001000001010001010100000001000001100001001100001
000000001000001010001010100001000000001001001010001100
000000001000001010001010100001000001001000001010001010
000000001000001010001010100001000001001000001010001100
000000001000001011001001000001000000001001001010000110
000000001000001110001001000000000001001001001001010010
000000001000001110001001000000001000001010001001010001
000000001000001110001001000000001000001010001001100001
000000001000001110001001000001000000001001001010000110
000000001000001110001001000001000001001000001010001010
000000001000001110001010000000010000001001001001010001
000000001000001110001010000000010000001001001001100001
000000001000001110001010000000010000001010001001100001
000000001000001110001010000000010000001100001001100001
000000001000001110001010000000010010001000001001001001
000000001000001110001010000001000001001000001010010010
000000001000011010001001000000001000001010001001100001
000000001000011010001001000000001000001100001001100001
000000001000011010001001000001000001001000001010001100
000000001000011010001001010001000001001000001010000100
000000001000011010001001100001000001001000001010000010
000000001000011010001001100001000001001000001010000100
000000001001001010001010100000001100000010010001000001

14 cells
Hidden Text: Show
Code: Select all
000000001000001010001010100000001100001010010001100001
000000001000001010001010100001000001001010010010001100
000000001000001010001010100001010000001100001010001100
000000001000011010001001100000000001001001100011000010
000000001000011010001001100000000001001001100110000010
000000001000011010001001100000000010000110001001001100
000000001000011010001001100000000010001010001010010100
000000001000011010001001100000000100001001010001010001
000000001000011010001001100000000100001001010001100001
000000001000011010001001100000000100001010001010001010
000000001000011010001001100000000100001100001010001010
000000001000011010001001100000001010000010100001010001
000000001000011010001001100000001010000010100001100001
000000001000011010001001100000001010000100100001010001
000000001000011010001001100000001010000100100001100001
000000001000011010001001100000010100000100010001010001
000000001000011010001001100001000001001001010010000100
000000001000011010001001100001000001010000100010001010
000000001000011010001001100001000001010000100100001010
000000001000011010001001100001001000001010001010000100
000000001000011010001001100001001000001100001010000100
000000001000011010001001100001010000001010001010000010
000000001000011010001100100000000001001100100110000010
000000001000011010001100100000000010000011001001100100
000000001000011010001100100000000010001001001010001100
000000001000011010001100100000000100001001001010100010
000000001000011010001100100000001010000010100001010001
000000001000011010001100100000001100000100010001001001
000000001000011010001100100000001100000100010001010001
000000001000011010001100100000100001001000010001100100
000000001000011010001100100000100100001000001011100000
000000001000011010001100100000100100001000001110100000
000000001000011010001100100001000001010000100010100010
000000001000011010001100100001000001010000100100100010
000000001000011010001100100001001000001001001010000010
000000001000011010001100100001001001001100000010000100
000000001000011010001100100001100000001100001010000100
000000001001001001001010010000001110000010001001100000
000000001001001001001010010000001110001000000010010001
000000001001001001010010010000001110001010000010000001
000000001001001010001010100000001100000101010001000001
000000001001001010010010100000001010010000100010001001
000001001000010010001001100000001010001000001011000100
000001001000010010001001100000001010001000001110000100
000001001000010010001001100000010010001000100001010001
000001001000010010001100100000001001001000100001001010

15 cells
Hidden Text: Show
Code: Select all
000000001000001011001011000000010110001000001011010000
000000001000001011001110000000010110001000001011010000
000000001000001110001011000000010011001000001011010000
000000001000001110001011000000010011001000001110010000
000000001000001110001011000000010110001000001011010000
000000001000001110001110000000010011001000001011010000
000000001000001110001110000000010011001000001110010000
000000001000001110001110000000010110001000001011010000
000000001000011010001001100000110001001001000011000010
000000001000011010001001100000110001001001000110000010
000000001000011010001100010000100101001000001011100000
000000001000011010001100010000100101001000001110100000
000000001000011010001100010001000001010100001010100100
000000001000011010001100010001000001010100001100100100
000000001000011010001100010001000001010100100010100100
000000001000011010001100010001000001010100100100100100
000000001000011010001100100000011001001100000011000010
000000001000011010001100100000011001001100000110000010
000000001000011010001100100000100011001000001011100000
000000001000011010001100100000100011001000001110100000
000000001000011010001100100000101001001100000011000010
000000001000011010001100100000101001001100000110000010
000000001000011010001100100001000001010100001010100010
000000001000011010001100100001000001010100001010100100
000000001000011010001100100001000001010100001100100010
000000001000011010001100100001000001010100001100100100
000000001001001010010110000001000001010001001100001100
000001001000010010001001010000010101001000010011010000
000001001000010010001001100000110001001001000011000001
000001001000010110001010000000001001001001010001100001
000001001000010110001010000001000001001001010010001001
000001001000010110001010000001001000001100001010001001
000001001000010110001100000000001001001001010001100001
000001001000010110001100000001000001001001010010001001
000001001000010110001100000001001000001010001010001001
000001001000010110001100000001001000001100001010001001
000001001001000010010010100000010001001001100010100010
000001001001000010010110000000001010001001100001010001
000001001001000010010110000001000001001001100010001010
000001001001000010010110000001000001001001100100001010
000001001001000010010110000001000001010001010100001100
000001001001000010010110000001001000001010001100001010

16 cells
Hidden Text: Show
Code: Select all
000001001001000011010011000000001001001110000010000110
000001001001000011010110000000001001001011000010000110
000001001001000011010110000000001001001110000010000110
eleven
 
Posts: 3173
Joined: 10 February 2008

Re: Chromatic Patterns

Postby denis_berthier » Tue May 03, 2022 6:18 pm

eleven wrote:Short answer:
A bivalue oddagon is a loop with an odd number of cells having exactly 2 candidates.
In whatever way you place one digit of the "trivalue oddagon" correctly (in the 4 boxes), a bivalue oddagon is formed with the other 2 digits.
E.g.
Code: Select all
    .  .  1  | 23 .  .
    .  23 .  | .  23 .
    *  .  .  | .  .  1
    ---------+--------
    1  .  .  | 23 .  .
    .  23 .  | .  1  .
    .  .  23 | .  .  23


The proof has to handle all ways of placing a single digit, which makes it longer than known ones.

OK, this way I see what you mean. However, invoking oddagons here is not necessary. The contradiction can also be proven by a mere bivalue chain.
denis_berthier
2010 Supporter
 
Posts: 4233
Joined: 19 June 2007
Location: Paris

Re: Chromatic Patterns

Postby denis_berthier » Tue May 03, 2022 6:44 pm

eleven wrote:Using Mladen's extremely fast tool for minlexing patterns made it much faster for me to generate impossible 3-digit paterns. Below is a list with new ones in up to 6 boxes. It turned out, that my 5-box list was all than complete.
Having these 380 i stopped, because these are already too much for me for manually checking. I would need a tool for evaluating, how hard it is for a solver to crack the pattern (eliminate 123 in one of the cells), in order to pick the interesting ones, but i cannot write one (SukakuExplainer does not help me, and i can't program in java).

I should be able to do something with SudoRules, but let me first make sure what you want.
You already know each pattern is impossible.
You want to find "how hard it is ... to crack the pattern (eliminate 123 in one of the cells)". Can we re-formulate this as "how hard is it to prove the contradiction'? (It seems to be different, but taking isomorphisms into account, it's probably the same thing).
The main problem I met with tridagons in proving the contradiction by dumb T&E is the huge number of candidates at the start (when each "." is replaced by 123456789). As a result, it's very slow. A much better way would be to use guided T&E (e.g. restricting the tried candidates to be in the pattern). I think I could easily write a modification of my T&E procedure. In this approach, you'd get the T&E level of the contradiction, which is IMO the best way to evaluate its potential for having hard puzzles.

I also think that Subsets (Triplets) should be allowed at the start, in order to eliminate lots of irrelevant candidates.
denis_berthier
2010 Supporter
 
Posts: 4233
Joined: 19 June 2007
Location: Paris

Re: Chromatic Patterns

Postby eleven » Tue May 03, 2022 9:57 pm

Yes, that's what i meant. E.g. we can forget all the patterns, which can be resolved (proved impossible by contradiction) by 1-digit chains (the same chain for all 3 digits). All of the 5-box patterns i posted (apart from the TH pattern) are of that kind, and i assume many of the new ones are, too.
I don't think, that there is another pattern, which is as hard for chaining methods as Thor's Hammer, but it would be interesting to see, how hard they could be.
eleven
 
Posts: 3173
Joined: 10 February 2008

PreviousNext

Return to Advanced solving techniques