Hi Leren, you found an interesting example
Leren wrote:Took the original UR1.1 puzzle from Hodoku : .5........6.5.42....8.71...4....36.8.........89.1..7..3...........2.7.1..72.3..9. and removed the 8 from r6c1 : .5........6.5.42....8.71...4....36.8..........9.1..7..3...........2.7.1..72.3..9.
The resulting puzzle has just 3 solutions :
954328167761594283238671459417953628825746931693182745346819572589267314172435896
954382167761594283238671459417953628625748931893126745346819572589267314172435896
954382167761594283238671459417953628825746931693128745346819572589267314172435896
The UR1.1 cells are always the same, so it would appear to work but maybe that is just a fluke.
What exactly do you mean: "the UR1.1 cells have the right values?" Do you mean that all the possible solutions have a partial resolution paths where the a/b/b/ac pattern is reached (and how did you check this? I don't know how to do.)
Or do you only mean that, in the 3 solutions, the 4 cells have the values implied by the UR1.1 rule? (This is my most likely interpretation.)
Leren wrote:If you remove the 7 from r8c6 : .5........6.5.42....8.71...4....36.8.........89.1..7..3...........2...1..72.3..9. The resulting puzzle has 27 solutions
1 954328176761594283238671549417953628526487931893162754345719862689245317172836495
2 954328176761594283238671549417953628526487931893162754349715862685249317172836495
3 954328176761594283238671549417953628526847931893162754385719462649285317172436895
4 954328176761594283238671549417953628526847931893162754389715462645289317172436895
5 954328176761594283238671549417953628623487951895162734349715862586249317172836495
6 954328176761594283238671549417953628623847951895162734389715462546289317172436895
7 954328176761594283238671549417953628625487931893162754349715862586249317172836495
8 954328176761594283238671549417953628625847931893162754389715462546289317172436895
9 954328176761594283238671459417953628526487931893162745345719862689245317172836594
10 954328176761594283238671459417953628526487931893162745349715862685249317172836594
11 954328176761594283238671459417953628625487931893162745349715862586249317172836594
12 954382167761594283238671459417953628625748931893126745346819572589267314172435896
13 954382176761594283238671549417923658526847931893165724385719462649258317172436895
14 754329861961584273238671945415793628627458139893162754346917582589246317172835496
15 754329861961584273238671954415793628627458139893162745346917582589246317172835496
16 754329188661584273238671549417953628526847931893162754389715462645298317172436895
17 754329186961584273238671549417953628623847951895162734389715462546298317172436895
18 754329186961584273238671549417953628625847931893162754389715462546298317172436895
19 754392186961584273238671549417923658526847931893165724385719462649258317172436895
20 754326189961584273238971456415793628627458931893162745349817562586249317172635894
21 754326189961584273238971564415793628627458931893162745349617852586249317172835496
22 754362189961584273238971456415793628627458931893126745349817562586249317172635894
23 754362189961584273238971564415793628627458931893126745349617852586249317172835496
24 754326981961584273238971456415793628627458139893162745349817562586249317172635894
25 754326981961584273238971564415793628627458139893162745349617852586249317172835496
26 754362981961584273238971456415793628627458139893126745349817562586249317172635894
27 754362981961584273238971564415793628627458139893126745349617852586249317172835496
The UR1.1 cells have the right values for the 12th solution but not for the others.
As one of the solutions has a different behaviour from the others, this example seems much more promising.
For ease of reading, I've marked red the 4 UR cells in your post (I hope I haven't introduced errors). Now, it seems that several solutions have right values in the 4 UR cells: #12 and #20 to 23
In all the solutions, r2c9 is always 3 (as in the previous case), as predicted by UR1.1. Now, as the conditions of some UR1.1 are clearly not satisfied by all of the solutions, the question is, is r2c9=3 due to UR1.1 or to something else?
I fed SudokuExplainer with this example and it says there are multiple solutions. So I tried SE's hints one by one, until I reached a resolution state common to all the possible solutions, where SE finds a UR4 on r15c79 and would apply it if I chose to "apply hint". Quite surprisingly, SE first said it's a multi-sol puzzle but it suggests a rule based on uniqueness.
Finally, I gave it to SudoRules:
***********************************************************************************************
*** SudoRules 20.0.s based on CSP-Rules 2.0.s, config = W+SFin
*** using CLIPS 6.40-r761
***********************************************************************************************
.5........6.5.42....8.71...4....36.8..........9.1..7..3...........2.7.1..72.3..9.
hidden-single-in-a-row ==> r9c1 = 1
hidden-single-in-a-row ==> r7c5 = 1
218 candidates, 1409 csp-links and 1409 links. Density = 5.95696106202173%
whip[1]: c2n1{r5 .} ==> r5c3 ≠ 1
whip[1]: r4n9{c5 .} ==> r5c6 ≠ 9, r5c5 ≠ 9, r5c4 ≠ 9
whip[1]: r4n1{c3 .} ==> r5c2 ≠ 1
hidden-single-in-a-column ==> r4c2 = 1
whip[1]: r3n2{c2 .} ==> r1c1 ≠ 2
naked-pairs-in-a-column: c2{r7 r8}{n4 n8} ==> r5c2 ≠ 8
whip[1]: c2n8{r8 .} ==> r8c1 ≠ 8
naked-pairs-in-a-column: c2{r7 r8}{n4 n8} ==> r3c2 ≠ 4
singles ==> r1c3 = 4, r2c3 = 1, r3c2 = 3, r5c2 = 2, r3c1 = 2 r1c4 = 3
whip[1]: c3n7{r5 .} ==> r5c1 ≠ 7
whip[1]: c3n9{r8 .} ==> r8c1 ≠ 9
hidden-pairs-in-a-row: r7{n2 n7}{c8 c9} ==> r7c9 ≠ 6, r7c9 ≠ 5, r7c9 ≠ 4, r7c8 ≠ 8
whip[1]: b9n8{r9c7 .} ==> r1c7 ≠ 8
hidden-pairs-in-a-row: r7{n2 n7}{c8 c9} ==> r7c8 ≠ 6
whip[1]: b9n6{r9c9 .} ==> r1c9 ≠ 6, r3c9 ≠ 6
hidden-pairs-in-a-row: r7{n2 n7}{c8 c9} ==> r7c8 ≠ 5, r7c8 ≠ 4
hidden-pairs-in-a-row: r5{n1 n9}{c7 c9} ==> r5c9 ≠ 5, r5c9 ≠ 4, r5c9 ≠ 3, r5c7 ≠ 5, r5c7 ≠ 4, r5c7 ≠ 3
hidden-single-in-a-column ==> r8c7 = 3
naked-pairs-in-a-column: c7{r1 r5}{n1 n9} ==> r3c7 ≠ 9
naked-triplets-in-a-row: r1{c1 c7 c9}{n7 n9 n1} ==> r1c8 ≠ 7, r1c6 ≠ 9
singles ==> r7c6 = 9, r8c3 = 9
naked-triplets-in-a-row: r1{c1 c7 c9}{n7 n9 n1} ==> r1c5 ≠ 9
biv-chain[3]: c9n6{r9 r8} - r8c1{n6 n5} - b8n5{r8c5 r9c6} ==> r9c6 ≠ 6, r9c9 ≠ 5
whip[3]: r2c5{n8 n9} - r3c4{n9 n6} - b8n6{r7c4 .} ==> r8c5 ≠ 8
singles ==> r8c2 = 8, r7c2 = 4
biv-chain[4]: r4c3{n5 n7} - r4c4{n7 n9} - r3c4{n9 n6} - r7n6{c4 c3} ==> r7c3 ≠ 5
singles ==> r7c3 = 6, r7c4 = 8, r7c7 = 5, r3c7 = 4, r9c7 = 8, r9c6 = 5, r8c1 = 5
whip[1]: c8n4{r6 .} ==> r6c9 ≠ 4
naked-pairs-in-a-row: r5{c1 c6}{n6 n8} ==> r5c5 ≠ 8, r5c5 ≠ 6, r5c4 ≠ 6
biv-chain[3]: b6n4{r6c8 r5c8} - r5n3{c8 c3} - r6c3{n3 n5} ==> r6c8 ≠ 5
biv-chain[4]: r4n9{c5 c4} - r3c4{n9 n6} - r3c8{n6 n5} - r4c8{n5 n2} ==> r4c5 ≠ 2
singles ==> r4c8 = 2, r7c8 = 7, r7c9 = 2
naked-pairs-in-a-row: r6{c3 c9}{n3 n5} ==> r6c8 ≠ 3
naked-single ==> r6c8 = 4
naked-pairs-in-a-row: r6{c3 c9}{n3 n5} ==> r6c5 ≠ 5
biv-chain[4]: b2n9{r2c5 r3c4} - r3c9{n9 n5} - b6n5{r6c9 r5c8} - b5n5{r5c5 r4c5} ==> r4c5 ≠ 9
singles ==> r4c5 = 5, r4c3 = 7, r3c4 = 6, r3c8 = 5, r3c9 = 9, r1c7 = 1, r1c9 = 7, r1c1 = 9, r2c1 = 7, r2c9 = 3, r2c8 = 8, r1c8 = 6, r2c5 = 9, r6c9 = 5, r6c3 = 3, r5c3 = 5, r5c7 = 9, r5c9 = 1, r5c8 = 3, r9c4 = 4, r5c4 = 7, r8c5 = 6, r8c9 = 4, r9c9 = 6, r5c5 = 4
The point is not the details of the resolution path.
Remember that in case of multi-solution puzzles, SudoRules can only find values and eliminations common to all the solutions.
What's noticeable here is:
- r2c9=3 is found by SudoRules
- this is done with rules using at most 4 CSP-variables, like UR1.1 - i.e. nothing more complex than UR1.1
To be more explicit about my conclusion: there seems to be a good reason to think that UR1.1 is irrelevant to the value r2c9=3