.
The degenerate cyclic anti-tridagon pattern
The most general non-degenerate anti-tridagon pattern with guardians has been defined here: http://forum.enjoysudoku.com/the-tridagon-rule-t39859-95.html
Non-degenerate means that each of the 3 candidates is present in each of the 12 cells of the pattern.
Proving the pattern contradictory requires (restricted) T&E(3).
This is a very strong condition, but all the known puzzles in T&E(3) happen to have this pattern.
Two degenerate forms of the anti-tridagon pattern were considered:
- here when a value is decided in one of the 12 cells:
http://forum.enjoysudoku.com/the-tridagon-rule-t39859-106.html
- and here for (the more general case of) 1 missing candidate in one of the 12 cells:
http://forum.enjoysudoku.com/the-tridagon-rule-t39859-106.html
It was shown there that these two cases require only T&E(2) to be proven contradictory.
Definition: the degenerate cyclic anti-tridagon pattern
- the pattern of 12 cells satisfies the same conditions as in the first post of this thread or as here: http://forum.enjoysudoku.com/the-tridagon-rule-t39859-95.html
- the pattern of digits in these cells has relaxed conditions, allowing some of the 123-candidates to be missing, but in a controlled way: in each of the 4 blocks, the 3 cells of the pattern must have the cyclic pattern of 123 digits, i.e. at least the respective following contents, in any order: 12 23 31.
Remarks:
- this defines a restricted form of degeneracy;
- none of the 12 cells of the pattern can be decided;
- from the above theorem, this pattern can be proven contradictory in T&E(2);
- cyclic conditions appear quite naturally in other patterns, such as Triplets or Quads and are used in SudoRules to differentiate non-degenerate Subsets from degenerate ones;
- the pattern of cells and the cyclic conditions make it relatively easy to identify the degenerate cyclic pattern, even with very large numbers of guardians.
******************
One question is, can one find this pattern in old puzzle collections? Moreover, how far back in time can one go and find it?
The question comes naturally when considering the search methods used to find the "hardest" puzzles: vicinity search starts from puzzles with high SER and looks for hopefully harder puzzles in their neighbourhood.
At this point, it is essential to recall that this is how Loki (and similar puzzles) was originally found by mith: as a puzzle with high SER (11.9).
Later, I found that Loki was not in T&E(2) but in T&E(3). Replacing SER by T&E-depth in the search scripts then led to find many more puzzles in T&E(3), but the original way Loki was found was by vicinity search for high SER, starting from puzzles with already high SER (which I proved long ago to be in T&E(2)).
Note also that there has never been any explicit search for the tridagon pattern. It is a fact that it appears in all the T&E(3) puzzles, but it just happens to be so.
As a result, it is natural to think there must have been some precursors of the tridagon pattern in the T&E(2) puzzles that were used as seeds in the vicinity search procedures. And the degenerate cyclic anti-tridagon pattern appears to be a good choice for a possible precursor.
Note that the case of a decided cell may also be a precursor, but I haven't yet investigated it .
.