The hardest sudokus (new thread)

Everything about Sudoku that doesn't fit in one of the other sections

Re: The hardest sudokus (new thread)

Postby mith » Sat May 18, 2024 10:07 pm

The entire list (which includes puzzles I would consider degenerate, but which you would not) is here: drive_link

And yes, the vast majority are from Paquita (838544) and all of those are 11.0-11.1 except the single 11.3. There are a few older ones from dobrichev (23), and a few from champagne (4), and then the ones I contributed in between ph1910 and ph2010 (273).

I appreciate that it's a surprising finding, but my script wasn't just spitting our random puzzles. :) My current script is working through these and giving the exact details (digits, cells, number of guardian cells/candidates) for the non-degenerate cases, so I'll provide that when it's done (about 5% so far, it'll be a few days).

I'm not sure there necessarily is a deeper explanation other than no one had hit the right neighborhood for the highest SER puzzles at these clue counts (and as you point out in your recent post, puzzles at higher clue counts tend to have lots of similar puzzles, whether close neighbors or minimals of the same expanded puzzle). At the time, there was a very strong peak in the 21c-23c range. At 28c there are no puzzles at 11.2 except for minimals of Mauricio's 37c, and at 29c+ 11.1 is the highest. There are higher SER puzzles in the 25c-27c range, but they are quite infrequent. Basic neighborhood searching is just more expensive at higher clue counts, and all of the 11.8-11.9 SER puzzles were in the 20c-24c range, so there was little incentive to search outside that range for those looking for the hardest (by SER) puzzles.
mith
 
Posts: 996
Joined: 14 July 2020

Re: The hardest sudokus (new thread)

Postby denis_berthier » Sun May 19, 2024 3:22 am

.
In the night, my Mac has found 42,097 more tridagons between 100,001 and 200,000, all from Paquita.

I agree with your explanations about the clue count.

At first, I thought of a bug in your program: I had found no non-degenerate tridagon in eleven's gotchi collection, at any SER, and only one in ph2010 at any SER ≥ 11.2.
I thought it would require a miracle to find many ones at lower SER. But what we finally have is an anti-miracle: a pattern that has been sitting there in massive amounts, unnoticed for 15 years, and secretly contributing to produce a totally biased database. (I've noticed elsewhere that once found, the pattern is hard to get rid of by vicinity search.)

It may now be very hard to find the first unnoticed apparition of the pattern and to track its origin in puzzles that didn't have it.
.
denis_berthier
2010 Supporter
 
Posts: 4233
Joined: 19 June 2007
Location: Paris

Re: The hardest sudokus (new thread)

Postby mith » Sun May 19, 2024 6:53 pm

I already posted one of the first appearances of the pattern in the ph databases. It is from the batch of puzzles from dobrichev added and/or provided to champagne on December 3, 2012, which includes the puzzle I posted previously. There are four from that batch, and I don't know which was actually found first (not sure if there was any sorting by SER before they were added; the first two IDs are 11.0, the other two 10.9).

They are in the file above, but here they are again on their own:

Code: Select all
........1.....2.3....14..5...678...2.18.2467.72.6.1.4..61.7....2.4.18...87.4.6...;11.00;1.20;1.20;dob;12_12_03;534519;32;*
..............1234..2.5.6....3...76..47.3...262..78..3.764....828.....7.3.4..7.26;11.00;1.20;1.20;dob;12_12_03;536614;31;*
..............1..2..3.4..15.341....6.7.38..418.1.6...7.478.....16.4.3.7.3.8.76...;10.90;1.20;1.20;dob;12_12_03;545447;31;*
..............1..2..3.4..15.341.6..7.7.38..418.1.7...6.478.....16.4.3.7.3.8.67...;10.90;1.20;1.20;dob;12_12_03;545448;32;*


Obviously the last two are closely related. All four have single guardian non-degenerate trivalue oddagons.

The 23 puzzles from dobrichev in the above list were all added in Dec. 2012 or Jan. 2013. champagne's 4 were added Dec. 2018 or Jan. 2019. Paquita's were in the second half of 2019, while mine were from 2020.

So there's a roughly 6 year gap between the first puzzles with the pattern and the next appearances. We probably can't establish definitively whether there is a direct line from the dobrichev puzzles to the later ones in ph2010, never mind to the first T&E(3) puzzles (which still seem to be from August or September 2021, though those scripts haven't finished yet). But I will still at some point attempt to trace back using neighborhood searches as a guide.

------

[edit]I should clarify/reiterate that the list of 838844 puzzles linked above is generated without actually checking for trivalue oddagons at all. The first pass filter only checks for the conditions guaranteeing that it is not a degenerate tridagon by Denis' definition; namely, that there are at least three digits which appear at most once as givens with those appearances confined to a single box. The non-degenerate trivalue oddagon, if it exists, is in the four boxes which do not share a band or stack with the box containing those digits as givens.

This has the advantage of being very fast, but obviously it is possible for a puzzle to meet the first pass conditions and not actually have a non-degenerate tridagon because of the placement of the other digits in the other boxes. For example:

Code: Select all
2...8.....3...9......7...6....456.....6...7.9.......8..89.4567.4..6.79.8..789..45


would make it through the first pass filter, but box 5 cannot have three cells containing 123 in a diagonal pattern.

That said, the vast majority of the list do have non-degenerate trivalue oddagons (even by my stronger restriction on "non-degenerate") - this may be due to the bias toward high SER, or it may just be more common in unique puzzles with this property, I'm not sure. Once the current script is finished, I'll recheck the ones marked as degenerate (again, by my definition, not Denis').
Last edited by mith on Mon May 20, 2024 2:37 am, edited 1 time in total.
mith
 
Posts: 996
Joined: 14 July 2020

Re: The hardest sudokus (new thread)

Postby mith » Mon May 20, 2024 1:18 am

mith wrote:Based on the 27c database, the first depth 3 puzzle was probably found in August 2021.

Code: Select all
1771897
~ August 13, 2021 (post 308061, first puzzle)

2009985
.............12.34..135.6.2....34.65...2....1.5.16..2...5.4....6.7.....38.9....4.  ED=10.5/1.2/1.2 (DCFC+FC), depth 3

2667557
~ September 29, 2021 (post 310474, first puzzle)


If the first depth 3 puzzles are in similar positions for other clue counts, I may not be able to identify definitively which came first. But we'll see.


Increasingly likely that this was the first T&E(3) puzzle found. The first 28c was sometime after November 3, 2021; the first 29c was January 25-26, 2022; the first 30c was March 5-8, 2022.

24c-26c are still in progress, but the 25c and 26c are well past September 2021 at this point (we know we'll hit one eventually in 26c because of Loki, of course), and I doubt there's one in 24c that far before 25c.
mith
 
Posts: 996
Joined: 14 July 2020

Re: The hardest sudokus (new thread)

Postby denis_berthier » Mon May 20, 2024 3:05 am

mith wrote:I already posted one of the first appearances of the pattern in the ph databases. It is from the batch of puzzles from dobrichev added and/or provided to champagne on December 3, 2012, which includes the puzzle I posted previously. There are four from that batch, [...]
Code: Select all
........1.....2.3....14..5...678...2.18.2467.72.6.1.4..61.7....2.4.18...87.4.6...;11.00;1.20;1.20;dob;12_12_03;534519;32;*
..............1234..2.5.6....3...76..47.3...262..78..3.764....828.....7.3.4..7.26;11.00;1.20;1.20;dob;12_12_03;536614;31;*
..............1..2..3.4..15.341....6.7.38..418.1.6...7.478.....16.4.3.7.3.8.76...;10.90;1.20;1.20;dob;12_12_03;545447;31;*
..............1..2..3.4..15.341.6..7.7.38..418.1.7...6.478.....16.4.3.7.3.8.67...;10.90;1.20;1.20;dob;12_12_03;545448;32;*


It's great to have found the (likely) first cases of a non-degenerate tridagon with a single guardian.

Interestingly, the second puzzle has both this tridagon and a degenerate-cyclic one (in different blocks) with only 5 guardians:

Code: Select all
   +----------------------+----------------------+----------------------+
   ! 1479   1369   189    ! 236789 24689  23469  ! 1589   1589   1579   !
   ! 579    569    589    ! 6789   689    1      ! 2      3      4      !
   ! 1479   139    2      ! 3789   5      349    ! 6      189    179    !
   +----------------------+----------------------+----------------------+
   ! 8      159#   3      ! 1259   1249   2459   ! 7      6      159#   !
   ! 159#   4      7      ! 1569   3      569    ! 1589   1589#@ 2      !
   ! 6      2      159#   ! 159    7      8      ! 159#   4      3      !
   +----------------------+----------------------+----------------------+
   ! 159#   7      6      ! 4      129    259    ! 3      159#   8      !
   ! 2      8      159#   ! 13569  169    3569   ! 4      7      159#   !
   ! 3      159#   4      ! 1589   189    7      ! 159#   2      6      !
   +----------------------+----------------------+----------------------+

tridagon for digits 1, 5 and 9 in blocks:
        b6, with cells (marked #): r5c8 (target cell, marked @), r6c7, r4c9
        b4, with cells (marked #): r5c1, r6c3, r4c2
        b9, with cells (marked #): r7c8, r9c7, r8c9
        b7, with cells (marked #): r7c1, r9c2, r8c3
 ==> r5c8≠1,5,9

singles ==> r5c8=8, r1c7=8, r2c3=8, r3c4=8, r9c5=8

Degen-Cycl-Trid-OR5-relation for digits 1, 5 and 9 in blocks:
        b4, with cells (marked #): r4c2, r5c1, r6c3
        b5, with cells (marked #): r4c5, r5c6, r6c4
        b7, with cells (marked #): r9c2, r7c1, r8c3
        b8, with cells (marked #): r9c4, r7c6, r8c5
with 5 guardians (in cells marked @): n2r4c5 n4r4c5 n6r5c6 n2r7c6 n6r8c5

   +----------------------+----------------------+----------------------+
   ! 1479   1369   19     ! 23679  2469   23469  ! 8      159    1579   !
   ! 579    569    8      ! 679    69     1      ! 2      3      4      !
   ! 1479   139    2      ! 8      5      349    ! 6      19     179    !
   +----------------------+----------------------+----------------------+
   ! 8      159#   3      ! 1259   1249#@ 2459   ! 7      6      159    !
   ! 159#   4      7      ! 1569   3      569#@  ! 159    8      2      !
   ! 6      2      159#   ! 159#   7      8      ! 159    4      3      !
   +----------------------+----------------------+----------------------+
   ! 159#   7      6      ! 4      129    259#@  ! 3      159    8      !
   ! 2      8      159#   ! 13569  169#@  3569   ! 4      7      159    !
   ! 3      159#   4      ! 159#   8      7      ! 159    2      6      !
   +----------------------+----------------------+----------------------+

.
denis_berthier
2010 Supporter
 
Posts: 4233
Joined: 19 June 2007
Location: Paris

Re: The hardest sudokus (new thread)

Postby mith » Mon May 20, 2024 3:42 pm

Here's one with three non-degenerate trivalue oddagons:

Code: Select all
98.7..6....75...94..5.6....7..8......6...5.7..5....4.94.......3.9...8......94...2;11.00;1.20;1.20;PAQ;2019_10_1110_090;2899835;25;*;3
8;11;n123;b1p357+b2p267+b4p267+b5p348
8;9;n123;b1p357+b2p267+b4p249+b5p249
8;9;n123;b1p357+b2p267+b4p249+b5p357
mith
 
Posts: 996
Joined: 14 July 2020

Re: The hardest sudokus (new thread)

Postby denis_berthier » Mon May 20, 2024 3:57 pm

.
After applying Singles and two whips[2]
Code: Select all
whip[2]: r6n8{c3 c8} - r7n8{c8 .} ==> r5c3≠8
whip[2]: r5n4{c4 c3} - r1n4{c3 .} ==> r4c6≠4, r3c4≠4

I find only one non-degenerate:

Code: Select all
Trid-OR4-relation for digits 2, 3 and 1 in blocks:
        b1, with cells (marked #): r1c3, r2c2, r3c1
        b2, with cells (marked #): r1c5, r2c6, r3c4
        b4, with cells (marked #): r6c3, r4c2, r5c1
        b5, with cells (marked #): r6c4, r4c6, r5c5
with 4 guardians (in cells marked @): n6r4c6 n8r5c1 n8r6c3 n6r6c4

   +----------------------+----------------------+----------------------+
   ! 9      8      123#   ! 7      123#   4      ! 6      1235   15     !
   ! 6      123#   7      ! 5      8      123#   ! 123    9      4      !
   ! 123#   4      5      ! 123#   6      9      ! 12378  1238   178    !
   +----------------------+----------------------+----------------------+
   ! 7      123#   4      ! 8      9      1236#@ ! 1235   12356  156    !
   ! 1238#@ 6      9      ! 4      123#   5      ! 1238   7      18     !
   ! 1238   5      1238#@ ! 1236#@ 1237   12367  ! 4      12368  9      !
   +----------------------+----------------------+----------------------+
   ! 4      127    1268   ! 126    1257   1267   ! 9      1568   3      !
   ! 1235   9      1236   ! 1236   12357  8      ! 157    4      1567   !
   ! 1358   137    1368   ! 9      4      1367   ! 1578   1568   2      !
   +----------------------+----------------------+----------------------+


but 5 degenerate-cyclic:

Code: Select all
Degen-Cycl-Trid-OR20-relation for digits 1, 3 and 6 in blocks:
        b5, with cells (marked #): r4c6, r5c5, r6c4
        b6, with cells (marked #): r4c9, r5c7, r6c8
        b8, with cells (marked #): r9c6, r8c5, r7c4
        b9, with cells (marked #): r9c7, r8c9, r7c8
with 20 guardians (in cells marked @): n2r4c6 n5r4c9 n2r5c5 n2r5c7 n8r5c7 n2r6c4 n2r6c8 n8r6c8 n2r7c4 n5r7c8 n8r7c8 n2r8c5 n5r8c5 n7r8c5 n5r8c9 n7r8c9 n7r9c6 n5r9c7 n7r9c7 n8r9c7

   +-------------------------+-------------------------+-------------------------+
   ! 9       8       123     ! 7       123     4       ! 6       1235    15      !
   ! 6       123     7       ! 5       8       123     ! 123     9       4       !
   ! 123     4       5       ! 123     6       9       ! 12378   1238    178     !
   +-------------------------+-------------------------+-------------------------+
   ! 7       123     4       ! 8       9       1236#@  ! 1235    12356   156#@   !
   ! 1238    6       9       ! 4       123#@   5       ! 1238#@  7       18      !
   ! 1238    5       1238    ! 1236#@  1237    12367   ! 4       12368#@ 9       !
   +-------------------------+-------------------------+-------------------------+
   ! 4       127     1268    ! 126#@   1257    1267    ! 9       1568#@  3       !
   ! 1235    9       1236    ! 1236    12357#@ 8       ! 157     4       1567#@  !
   ! 1358    137     1368    ! 9       4       1367#@  ! 1578#@  1568    2       !
   +-------------------------+-------------------------+-------------------------+

Degen-Cycl-Trid-OR20-relation for digits 1, 2 and 6 in blocks:
        b5, with cells (marked #): r4c6, r5c5, r6c4
        b6, with cells (marked #): r4c9, r5c7, r6c8
        b8, with cells (marked #): r9c6, r8c5, r7c4
        b9, with cells (marked #): r9c7, r8c9, r7c8
with 20 guardians (in cells marked @): n3r4c6 n5r4c9 n3r5c5 n3r5c7 n8r5c7 n3r6c4 n3r6c8 n8r6c8 n5r7c8 n8r7c8 n3r8c5 n5r8c5 n7r8c5 n5r8c9 n7r8c9 n3r9c6 n7r9c6 n5r9c7 n7r9c7 n8r9c7

   +-------------------------+-------------------------+-------------------------+
   ! 9       8       123     ! 7       123     4       ! 6       1235    15      !
   ! 6       123     7       ! 5       8       123     ! 123     9       4       !
   ! 123     4       5       ! 123     6       9       ! 12378   1238    178     !
   +-------------------------+-------------------------+-------------------------+
   ! 7       123     4       ! 8       9       1236#@  ! 1235    12356   156#@   !
   ! 1238    6       9       ! 4       123#@   5       ! 1238#@  7       18      !
   ! 1238    5       1238    ! 1236#@  1237    12367   ! 4       12368#@ 9       !
   +-------------------------+-------------------------+-------------------------+
   ! 4       127     1268    ! 126#    1257    1267    ! 9       1568#@  3       !
   ! 1235    9       1236    ! 1236    12357#@ 8       ! 157     4       1567#@  !
   ! 1358    137     1368    ! 9       4       1367#@  ! 1578#@  1568    2       !
   +-------------------------+-------------------------+-------------------------+

Degen-Cycl-Trid-OR9-relation for digits 1, 2 and 3 in blocks:
        b1, with cells (marked #): r1c3, r2c2, r3c1
        b2, with cells (marked #): r1c5, r2c6, r3c4
        b7, with cells (marked #): r8c3, r7c2, r9c1
        b8, with cells (marked #): r8c5, r7c4, r9c6
with 9 guardians (in cells marked @): n7r7c2 n6r7c4 n6r8c3 n5r8c5 n7r8c5 n5r9c1 n8r9c1 n6r9c6 n7r9c6

   +-------------------------+-------------------------+-------------------------+
   ! 9       8       123#    ! 7       123#    4       ! 6       1235    15      !
   ! 6       123#    7       ! 5       8       123#    ! 123     9       4       !
   ! 123#    4       5       ! 123#    6       9       ! 12378   1238    178     !
   +-------------------------+-------------------------+-------------------------+
   ! 7       123     4       ! 8       9       1236    ! 1235    12356   156     !
   ! 1238    6       9       ! 4       123     5       ! 1238    7       18      !
   ! 1238    5       1238    ! 1236    1237    12367   ! 4       12368   9       !
   +-------------------------+-------------------------+-------------------------+
   ! 4       127#@   1268    ! 126#@   1257    1267    ! 9       1568    3       !
   ! 1235    9       1236#@  ! 1236    12357#@ 8       ! 157     4       1567    !
   ! 1358#@  137     1368    ! 9       4       1367#@  ! 1578    1568    2       !
   +-------------------------+-------------------------+-------------------------+

Degen-Cycl-Trid-OR9-relation for digits 1, 2 and 3 in blocks:
        b1, with cells (marked #): r1c3, r2c2, r3c1
        b2, with cells (marked #): r1c5, r2c6, r3c4
        b7, with cells (marked #): r9c3, r7c2, r8c1
        b8, with cells (marked #): r9c6, r7c5, r8c4
with 9 guardians (in cells marked @): n7r7c2 n5r7c5 n7r7c5 n5r8c1 n6r8c4 n6r9c3 n8r9c3 n6r9c6 n7r9c6

   +----------------------+----------------------+----------------------+
   ! 9      8      123#   ! 7      123#   4      ! 6      1235   15     !
   ! 6      123#   7      ! 5      8      123#   ! 123    9      4      !
   ! 123#   4      5      ! 123#   6      9      ! 12378  1238   178    !
   +----------------------+----------------------+----------------------+
   ! 7      123    4      ! 8      9      1236   ! 1235   12356  156    !
   ! 1238   6      9      ! 4      123    5      ! 1238   7      18     !
   ! 1238   5      1238   ! 1236   1237   12367  ! 4      12368  9      !
   +----------------------+----------------------+----------------------+
   ! 4      127#@  1268   ! 126    1257#@ 1267   ! 9      1568   3      !
   ! 1235#@ 9      1236   ! 1236#@ 12357  8      ! 157    4      1567   !
   ! 1358   137    1368#@ ! 9      4      1367#@ ! 1578   1568   2      !
   +----------------------+----------------------+----------------------+

Degen-Cycl-Trid-OR9-relation for digits 1, 2 and 3 in blocks:
        b1, with cells (marked #): r1c3, r2c2, r3c1
        b2, with cells (marked #): r1c5, r2c6, r3c4
        b7, with cells (marked #): r7c3, r9c2, r8c1
        b8, with cells (marked #): r7c4, r9c6, r8c5
with 9 guardians (in cells marked @): n6r7c3 n8r7c3 n6r7c4 n5r8c1 n5r8c5 n7r8c5 n7r9c2 n6r9c6 n7r9c6

   +-------------------------+-------------------------+-------------------------+
   ! 9       8       123#    ! 7       123#    4       ! 6       1235    15      !
   ! 6       123#    7       ! 5       8       123#    ! 123     9       4       !
   ! 123#    4       5       ! 123#    6       9       ! 12378   1238    178     !
   +-------------------------+-------------------------+-------------------------+
   ! 7       123     4       ! 8       9       1236    ! 1235    12356   156     !
   ! 1238    6       9       ! 4       123     5       ! 1238    7       18      !
   ! 1238    5       1238    ! 1236    1237    12367   ! 4       12368   9       !
   +-------------------------+-------------------------+-------------------------+
   ! 4       127     1268#@  ! 126#@   1257    1267    ! 9       1568    3       !
   ! 1235#@  9       1236    ! 1236    12357#@ 8       ! 157     4       1567    !
   ! 1358    137#@   1368    ! 9       4       1367#@  ! 1578    1568    2       !
   +-------------------------+-------------------------+-------------------------+
denis_berthier
2010 Supporter
 
Posts: 4233
Joined: 19 June 2007
Location: Paris

Re: The hardest sudokus (new thread)

Postby mith » Mon May 20, 2024 5:07 pm

denis_berthier wrote:.
After applying Singles and two whips[2]
Code: Select all
whip[2]: r6n8{c3 c8} - r7n8{c8 .} ==> r5c3≠8
whip[2]: r5n4{c4 c3} - r1n4{c3 .} ==> r4c6≠4, r3c4≠4


Yeah, my code (actually rangsk's code, I'm getting the pencilmark grid from his solver) only applies singles, subsets, whips[1]; the eliminations of 4 place several digits by singles in b45 which removes the other two non-degenerate options.
mith
 
Posts: 996
Joined: 14 July 2020

Re: The hardest sudokus (new thread)

Postby Paquita » Thu Jun 13, 2024 3:35 pm

denis_berthier wrote:
Hi Paquita,
Have you kept a trace of the seed which each of these puzzles originates from?
I'm particularly interested in the following 4:
Code: Select all
98.76....7.....9...54......6...3.8....5....2......4.1..7.38.......9..3.......1..2 ED=11.7/11.7/2.6
98.7.....7..86......5..4...3..6..9....2.............51.7..8.3.......67.......1.42 ED=11.6/1.2/1.2
98.7.....7..86......5..4...3..6..9....2.............51.7..8.3.......67.......1.24 ED=11.6/1.2/1.2
98765.......4..........3...8.62..7..2......9..95...8.276..2.9.85......6..2.....75 ED=11.5/1.2/1.2


More precisely, did they originate from puzzles in the pre-tridagon collections?
.


Hi Denis

A late reply, are you still interested in these origins? I may or may not be able to find it but it wil take some time if I can.

(And Hendrik, you replied that the first was by mith (that is correct) and that the second and third are the same and by mith; they are not the same, different last 2 digits; I can't find those in miths collection, can you point out what they are, if duplicates?)

At 2019, I was the only one generating larger collections of puzzles between 10.5 and 11.5 so it is not a big surprise that those non-degenerate tridagon puzzles are all mine. I must have come across the tridagon and vicinity search creates this effect. I don't know if I can find the origin there, but I used the then current database as seed so it may have come from dobrichevs puzzles.
I do wonder if the finding of those tridagons did bias the collection of puzzles - is it possible that this is in fact a large part of all the hardest puzzles?
I think it may be interesting to collect the non-tridagon seeds and try to generate new puzzles there. Is there such a collection available now, or else, a collection of all the T&E(2) that are tridagons, so I can distract those?
Paquita
 
Posts: 132
Joined: 11 November 2018

Re: The hardest sudokus (new thread)

Postby denis_berthier » Thu Jun 13, 2024 3:56 pm

.
Hi Paquita
Yes, I'm still interested in the origins, if it doesn't take too much time.

There's undoubtedly a strong bias in all the collections that have tridagons. The problem I've already mentioned is, once you have a tridagon in the puzzles used as seeds, the likelihood of having it in a large proportion of its neighbours is very high. The more steps of vicinity searche you do, the more bias this will introduce.
This high persistence of the tridagon is unique to this pattern.

As for the T&E(2) collections, I know only 2:
eleven's gotchi has no (non-degenerate) tridagon
- ph2010 has a lot of them, but only one for SER 11.3 and the rest for SER ≤ 11.1. If you're interested, I have a list of the puzzles (only among the first 300,000) that have the pattern. I think mith has checked the whole collection for it.
denis_berthier
2010 Supporter
 
Posts: 4233
Joined: 19 June 2007
Location: Paris

Re: The hardest sudokus (new thread)

Postby denis_berthier » Thu Jun 13, 2024 3:58 pm

Here's the start of the list (the numbers are the positions in the ph2010 collection):
Hidden Text: Show
18678
67684 67748 67751 67752 67753 67754 67932 68008 68146 68215 68216 68262 68393 68394 68395 68396 68397 68398 68399 68400 68401 68402 68403 68404 68405 68406 68407 68408 68409 68410 68411 68414 68415 68416 68417 68418 68419 68420 68421 68422 68423 68424 68425 68426 68427 68428 68429 68430 68431 68432 68433 68434 68435 68436 68437 68438 68439 68440 68441 68442 68443 68444 68445 68446 68447 68448 68449 68450 68451 68452 68453 68454 68455 68456 68457 68458 68459 68460 68461 68462 68463 68464 68465 68466 68467 68468 68469 68470 68471 68472 68473 68474 68476 68477 68478 68479 68480 68481 68482 68484 68485 68486 68487 68488 68489 68490 68491 68492 68493 68494 68495 68496 68497 68498 68499 68500 68501 68502 68503 68504 68506 68507 68509 68510 68511 68512 68513 68514 68515 68516 68517 68518 68519 68520 68521 68522 68523 68524 68525 68526 68527 68528 68529 68530 68531 68532 68533 68534 68535 68536 68537 68538 68539 68540 68541 68542 68543 68544 68545 68546 68547 68548 68549 68550 68551 68552 68553 68554 68555 68556 68557 68558 68559 68560 68561 68562 68563 68564 68565 68566 68567 68568 68569 68570 68571 68572 68574 68575 68576 68577 68578 68579 68580 68581 68582 68583 68584 68585 68586 68587 68588 68589 68590 68591 68592 68593 68595 68597 68598 68599 68600 68601 68603 68606 68607 68608 68609 68610 68611 68612 68613 68614 68615 68616 68617 68618 68619 68620 68621 68622 68623 68624 68625 68626 68627 68628 68630 68631 68632 68633 68634 68635 68636 68637 68638 68639 68641 68642 68643 68644 68646 68647 68648 68649 68650 68651 68653 68654 68655 68656 68657 68658 68659 68660 68661 68662 68663 68665 68666 68667 68668 68669 68670 68671 68673 68675 68676 68677 68678 68681 68682 68683 68684 68685 68686 68687 68688 68689 68690 68691 68692 68693 68694 68695 68696 68697 68698 68699 68700 68701 68702 68703 68704 68705 68706 68707 68708 68709 68710 68711 68712 68713 68715 68716 68717 68718 68719 68720 68721 68722 68723 68724 68725 68726 68727 68728 68729 68730 68731 68732 68733 68734 68735 68736 68737 68739 68740 68741 68742 68743 68744 68745 68746 68747 68748 68749 68750 68752 68754 68755 68756 68757 68758 68759 68760 68763 68764 68765 68766 68767 68768 68769 68770 68771 68772 68773 68774 68775 68776 68777 68778 68779 68780 68781 68782 68783 68784 68785 68786 68787 68788 68789 68790 68791 68792 68794 68795 68796 68797 68798 68799 68800 68801 68803 68804 68806 68807 68808 68810 68811 68812 68813 68814 68815 68816 68817 68818 68819 68820 68821 68822 68823 68824 68825 68826 68827 68828 68829 68830 68831 68832 68833 68834 68835 68836 68837 68838 68839 68840 68841 68842 68843 68844 68845 68846 68847 68848 68849 68850 68851 68852 68853 68854 68855 68856 68857 68858 68859 68860 68861 68863 68864 68865 68866 68867 68868 68869 68870 68871 68872 68873 68874 68875 68876 68877 68878 68881 68882 68883 68884 68885 68886 68887 68888 68893 68894 68895 68897 68898 68899 68900 68901 68902 68903 68904 68905 68906 68907 68908 68909 68910 68911 68912 68913 68914 68915 68916 68917 68919 68920 68921 68922 68923 68925 68926 68927 68928 68929 68930 68931 68932 68933 68934 68935 68937 68940 68941 68942 68943 68944 68945 68946 68947 68948 68949 68950 68951 68952 68953 68954 68956 68957 68958 68959 68960 68961 68962 68963 68964 68965 68966 68967 68968 68969 68970 68971 68972 68973 68974 68975 68976 68977 68978 68979 68980 68981 68982 68983 68984 68985 68986 68987 68988 68989 68990 68991 68992 68993 68994 68996 68997 68998 68999 69000 69001 69002 69003 69004 69005 69006 69007 69008 69009 69010 69011 69012 69013 69014 69015 69016 69017 69020 69021 69022 69023 69024 69025 69026 69027 69028 69029 69031 69032 69033 69034 69035 69038 69039 69040 69041 69042 69043 69044 69045 69046 69047 69048 69049 69050 69051 69052 69053 69054 69055 69056 69058 69059 69060 69061 69062 69063 69064 69066 69067 69068 69069 69070 69071 69072 69073 69074 69075 69076 69077 69079 69080 69081 69082 69083 69084 69085 69086 69087 69088 69089 69091 69092 69093 69095 69096 69097 69098 69099 69100 69101 69102 69103 69104 69105 69106 69107 69108 69110 69111 69112 69113 69114 69115 69116 69117 69118 69119 69120 69123 69124 69125 69126 69127 69128 69129 69130 69131 69132 69133 69134 69135 69136 69137 69138 69139 69140 69141 69142 69143 69144 69145 69147 69148 69149 69150 69151 69152 69153 69154 69155 69156 69157 69158 69159 69160 69161 69162 69163 69164 69165 69166 69167 69168 69169 69170 69171 69172 69173 69174 69175 69176 69177 69178 69179 69180 69181 69182 69183 69184 69185 69186 69187 69190 69191 69192 69193 69194 69195 69196 69197 69198 69199 69200 69201 69202 69203 69204 69205 69206 69208 69209 69210 69211 69212 69213 69214 69215 69216 69217 69218 69219 69220 69221 69222 69223 69224 69225 69226 69227 69228 69229 69230 69231 69232 69234 69235 69237 69238 69239 69240 69241 69242 69243 69244 69245 69246 69247 69248 69249 69250 69251 69252 69253 69254 69255 69256 69257 69258 69259 69260 69261 69262 69263 69264 69265 69266 69267 69268 69269 69270 69271 69272 69273 69275 69276 69277 69278 69279 69280 69281 69282 69283 69285 69286 69287 69288 69289 69290 69291 69292 69293 69294 69295 69296 69297 69298 69299 69300 69301 69302 69303 69304 69305 69306 69307 69308 69309 69310 69311 69312 69313 69314 69315 69316 69317 69318 69319 69320 69321 69322 69323 69324 69325 69326 69327 69328 69329 69330 69331 69332 69333 69334 69336 69337 69338 69339 69340 69341 69342 69343 69345 69346 69347 69348 69349 69350 69351 69352 69353 69354 69355 69356 69357 69359 69360 69361 69362 69363 69364 69365 69366 69367 69368 69369 69370 69371 69372 69373 69374 69375 69376 69377 69378 69379 69380 69381 69382 69383 69384 69385 69386 69387 69388 69389 69390 69391 69392 69393 69394 69395 69396 69397 69398 69399 69400 69401 69402 69403 69404 69405 69406 69407 69408 69409 69410 69411 69412 69413 69414 69415 69416 69417 69418 69419 69420 69421 69422 69423 69424 69425 69426 69427 69428 69429 69430 69431 69432 69433 69434 69435 69436 69437 69439 69440 69442 69443 69444 69445 69446 69447 69449 69450 69451 69452 69453 69454 69456 69457 69458 69459 69460 69461 69462 69463 69464 69465 69466 69467 69468 69469 69470 69473 69474 69475 69476 69477 69478 69479 69480 69481 69482 69483 69484 69485 69486 69487 69488 69489 69490 69491 69492 69493 69494 69495 69496 69497 69498 69499 69500 69501 69502 69503 69504 69505 69506 69507 69508 69509 69510 69511 69512 69515 69516 69517 69518 69519 69520 69521 69522 69523 69524 69525 69527 69528 69529 69530 69531 69532 69533 69534 69535 69536 69537 69538 69539 69540 69541 69542 69543 69544 69545 69546 69547 69548 69549 69550 69551 69552 69553 69554 69555 69557 69558 69560 69561 69562 69563 69564 69565 69566 69567 69568 69569 69570 69571 69572 69574 69575 69576 69577 69578 69579 69580 69581 69582 69583 69584 69585 69586 69587 69588 69589 69590 69591 69592 69593 69594 69595 69596 69597 69598 69599 69600 69601 69602 69603 69604 69605 69606 69607 69608 69609 69610 69611 69612 69613 69852 69853 69854 69855 69856 69857 69858 69859 69860 69861 69862 69863 69864 69865 69866 69867 69868 69869 69870 69871 69872 69873 69874 69875 69876 69877 69878 69879 69880 69881 69882 69883 69884 69886 69887 69888 69889 69890 69891 69892 69893 69894 69895 69897 69902 69903 69904 69905 69906 69907 69908 69909 69910 69911 69912 69913 69915 69916 69917 69918 69919 69920 69921 69922 69925 69926 69927 69928 69929 69930 69931 69932 69933 69934 69935 69936 69937 69938 69939 69940 69941 69942 69943 69944 69945 69946 69949 69950 69952 69953 69955 69956 69957 69958 69959 69961 69963 69964 69965 69967 69968 69969 69971 69972 69973 69974 69975 69976 69977 69978 69979 69980 69981 69982 69983 69984 69985 69986 69987 69988 69989 69990 69991 69992 69994 69995 69996 69997 69999
denis_berthier
2010 Supporter
 
Posts: 4233
Joined: 19 June 2007
Location: Paris

Re: The hardest sudokus (new thread)

Postby Paquita » Fri Jun 14, 2024 1:19 pm

Hi Denis

The first puzzle of the four is one from mith, I don't know from when

The second puzzle seems to be a result from seeding the third.

The third puzzle was generated with a puzzle from mith as seed :
........1....23.....45...6...7...85..2......34.8....7..4.7......9..12...8..6..7..;11.7;1.2;1.2;mith;ns;0;22; (98.7.....7..86......5..4...3..6..9....2.............54.7..8.3.......67.......1.42)
I can't find in which collection it was (not in 20201007; 22c-20210324; 20211103)

The fourth puzzle was created at october 8th 2023; its seed must be from what I collected by then, that was ph2010 and puzzles from mith and hendrik. I can't find the exact puzzle it originates from, probably because too many digits were altered because the seed puzzle was expanded.

Sorry that I can't be more precise
Paquita
 
Posts: 132
Joined: 11 November 2018

Re: The hardest sudokus (new thread)

Postby denis_berthier » Sat Jun 15, 2024 4:42 am

Hi Paquita,

I think we'll never know precisely the origins of the first tridagons. It would have been interesting to understand how they could appear in 2012 and go unnoticed for 12 years.
I've studied the degenerate-cyclic tridagon as a possible precursor. It appears in every large collection, but it remains far from the non-degenerate case. A transition from the one to the other would have required many steps and would be very hard to trace.
.
denis_berthier
2010 Supporter
 
Posts: 4233
Joined: 19 June 2007
Location: Paris

Re: The hardest sudokus (new thread)

Postby Paquita » Mon Jun 17, 2024 10:25 am

Hi coloin

Can you tell me, how do you calculate the minlex solution format of a puzzle? What software do you use, and which command?
Paquita
 
Posts: 132
Joined: 11 November 2018

Re: The hardest sudokus (new thread)

Postby coloin » Mon Jun 17, 2024 11:48 am

gridchecker
Code: Select all
gridchecker  --solve  --groupbygrid  < file.txt > file1.txt

or gsf
Code: Select all
sudoku-64 -qFN -f%#0c test.txt > testcan.txt
sudoku-64 -qFN -f%%#0c test.txt > testcan.txt   [ in batch]
coloin
 
Posts: 2502
Joined: 05 May 2005
Location: Devon

PreviousNext

Return to General