The hardest sudokus (new thread)

Everything about Sudoku that doesn't fit in one of the other sections

Re: The hardest sudokus (new thread)

Postby JPF » Fri Dec 22, 2023 3:13 pm

These puzzles are in the Champagne's database ph_2010.zip here

JPF
JPF
2017 Supporter
 
Posts: 6132
Joined: 06 December 2005
Location: Paris, France

Re: The hardest sudokus (new thread)

Postby P.O. » Sun Dec 24, 2023 6:49 pm

probably not in the hardest wrt SE but the first puzzle i see that needs 2 runs of the combinations of 6 templates to solve
Code: Select all
1...7..6..2.9..1....8..1..52..5..4....3..2....4......7.3..6.5....91...4.8.......3

Hidden Text: Show
Code: Select all
1  .  .  .  7  .  .  6  .
.  2  .  9  .  .  1  .  .
.  .  8  .  .  1  .  .  5
2  .  .  5  .  .  4  .  .
.  .  3  .  .  2  .  .  .
.  4  .  .  .  .  .  .  7
.  3  .  .  6  .  5  .  .
.  .  9  1  .  .  .  4  .
8  .  .  .  .  .  .  .  3

1...7..6..2.9..1....8..1..52..5..4....3..2....4......7.3..6.5....91...4.8.......3

1       59      45      2348    7       3458    2389    6       2489             
34567   2       4567    9       3458    34568   1       378     48               
34679   679     8       2346    234     1       2379    2379    5               
2       16789   167     5       1389    36789   4       1389    1689             
5679    156789  3       4678    1489    2       689     1589    1689             
569     4       156     368     1389    3689    23689   123589  7               
47      3       1247    2478    6       4789    5       12789   1289             
567     567     9       1       2358    3578    2678    4       268             
8       1567    124567  247     2459    4579    2679    1279    3       


#VT: (15 14 16 18 24 32 38 66 72)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil nil
 2combs
#VT: (15 14 15 18 24 32 38 66 69)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil nil
 3combs
#VT: (15 14 15 18 24 30 34 62 63)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil nil
 4combs
#VT: (15 14 15 18 24 26 31 53 61)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil nil
 5combs
#VT: (13 14 15 13 21 21 25 46 43)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil (14) nil nil nil nil nil
 3combs
#VT: (13 14 15 13 21 21 25 45 43)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil nil
 5combs
#VT: (13 14 15 13 21 21 24 42 41)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil nil
 6combs
#VT: (13 14 13 8 15 16 17 22 17)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil (15) (12) nil (33) nil (33 53) (44 53 78)
 4combs
#VT: (13 14 13 8 15 16 17 21 17)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil nil
 5combs
#VT: (13 14 12 8 15 14 17 18 17)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil (29) nil nil nil
 5combs
#VT: (13 14 12 8 15 13 16 18 17)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil nil
 6combs
#VT: (8 11 9 5 7 8 8 5 8)
Cells: nil nil nil (18) nil nil nil nil nil
SetVC: ( n4r2c9 )

#VT: (8 11 9 7 7 8 8 5 8)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:(29 57 80) nil (53) nil nil (43 46 52 72 74) (69 75) (32 36 40 44 45 60 69 70) (19 26 29 33 38 50 79)
 2combs
#VT: (8 11 8 7 7 8 7 5 8)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil (6) nil nil nil (79) nil nil
 3combs
#VT: (8 11 8 6 5 7 5 5 8)
Cells: nil nil nil nil nil (79) nil nil nil
SetVC: ( n6r9c7 )

#VT: (8 11 8 6 5 10 5 5 8)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil (60) (6 10 12 38 68 74) nil (29 60 65 80) nil nil
EraseCC: ( n8r4c2   n9r7c6   n9r9c8 )

#VT: (8 11 8 6 5 10 5 24 10)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil nil
 2combs
#VT: (8 8 8 6 5 9 5 21 10)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil nil
 3combs
#VT: (8 8 8 6 5 8 5 17 10)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil nil
 4combs
#VT: (7 7 7 6 5 7 4 9 7)
Cells: nil nil nil nil nil nil (33) nil nil
SetVC: ( n7r4c6 )

#VT: (7 7 7 6 5 7 10 9 7)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil (70) (17) nil nil (38) nil (7) nil
EraseCC: ( n7r8c7 )

#VT: (7 7 7 6 5 7 8 9 7)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil nil
 2combs
#VT: (7 7 6 6 5 6 8 7 7)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil nil
 3combs
#VT: (7 7 6 6 4 6 6 5 6)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil (20) (4 51) nil
 3combs
#VT: (6 7 6 6 4 6 6 5 6)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil nil
 4combs
#VT: (5 5 5 4 1 4 5 3 3)
Cells: nil nil (69) nil (2 15 44 48 64 77) nil nil (6 17) nil
SetVC: ( n5r1c2   n4r1c3   n8r1c6   n5r2c6   n8r2c8   n5r5c8   n5r6c3   n5r8c1   n6r8c2   n3r8c6
         n5r9c5   n4r9c6   n3r2c5   n9r3c2   n9r6c1   n6r6c6   n2r1c4   n9r1c9   n4r3c5   n4r5c4
         n7r9c4   n3r1c7   n6r3c4   n2r3c7   n7r3c8   n8r6c7   n8r7c4   n2r8c5   n8r8c9   n1r9c2
         n2r9c3   n3r3c1   n7r5c2   n9r5c7   n3r6c4   n1r6c5   n2r6c8   n7r7c3   n1r7c8   n2r7c9
         n6r2c3   n1r4c3   n9r4c5   n3r4c8   n6r4c9   n6r5c1   n8r5c5   n1r5c9   n4r7c1   n7r2c1 )
1 5 4   2 7 8   3 6 9
7 2 6   9 3 5   1 8 4
3 9 8   6 4 1   2 7 5
2 8 1   5 9 7   4 3 6
6 7 3   4 8 2   9 5 1
9 4 5   3 1 6   8 2 7
4 3 7   8 6 9   5 1 2
5 6 9   1 2 3   7 4 8
8 1 2   7 5 4   6 9 3

(2 3 4 5 3 5 6 4 5 5 6 2 3 2 3 4 2 3 3 4)
puzzle in 6(2)-Template
P.O.
 
Posts: 1423
Joined: 07 June 2021

Re: The hardest sudokus (new thread)

Postby hendrik_monard » Sun May 05, 2024 4:17 pm

The following list contains 171 new minimal puzzles with SER 11.8, produced with my 'classic' generating scripts since the summer of 2023. This may be my last contribution of this type in this thread. I shall further concentrate on a generation system based on min_expands (puzzles expanded with singles) in solution minlex format.
One of the puzzles in the list has a B10B rating. The other puzzles have lower BxB ratings (103 B6B, 32 B5B) or belong to the T&E(3) group (35).
The min_expand of the B10B puzzle will also be included in a list of B7B+ min_expands to be published soon in the thread "The BpB classification of T&E(2) puzzles".
Code: Select all
........1.....2.34....562....1.25....6578.1..27.6.18...52.68..718...7...6........  11.8/1.2/1.2
........1.....2.34....56.....27......78.65..215...8....65.81...2.1..78..7...2.1..  11.8/1.2/1.2
........1.....2.34....56.....27......78.65..215.2.8....65.81...2.1..78..7.....1..  11.8/1.2/1.2
........1.....2.34....56.....27......78.65..216.2.8....56.81...2.1..78..7.....1..  11.8/1.2/1.2
........1.....2.34....56.....27......78.65..216...8....56.81...2.1..78..7...2.1..  11.8/1.2/1.2
........1.......23...245......4.......6.578...4582.6.7.67..2...42.78....5.8.6....  11.8/1.2/1.2
........1.......23...245........4.....675.8...45.286.7.675.2...42..87...5.8.6....  11.8/1.2/1.2
........1.....2.34....562....7.......61..8...52..67..8.827.51..6.5.817..7...2....  11.8/1.2/1.2
........1.....2.3...4...5.6..7..8.4...8.25.7323........728.4..545.23....8...57...  11.8/1.2/1.2
........1.....2.3...4...5.6..7..8.4...8.25.7323.....5..728.4...45.23....8...57...  11.8/1.2/1.2
........1.....2.34....562....1.2.....278.51..65..718...16..7....8.......5.2.68..7  11.8/1.2/1.2
........1.......2.....34..5..3..6....784.5...46..8...7.37..85..6.45.37..85.76....  11.8/1.2/1.2  B10B
........1.......2......3..4..5.267...6.83.2..8..7.53...2765....35..8....6.8..2...  11.8/1.2/1.2
........1.......2......3..4..5.2.6...6.7.53.887.63.2...87..2...2.685....53..7....  11.8/1.2/1.2
........1.......2.....13.45...3.65....317.6...7..85....175.....38..61...5.673...8  11.8/1.2/1.2
........1.......2.....13.45...3.65....7.8.....3517.6...715.....3.8.61...56.73...8  11.8/1.2/1.2
........1.......2.....13.45...3.65....7.8.....3517.6...785.1...3.1.68...56.73...8  11.8/1.2/1.2
........1.....2.....3....24.....5.....637.8...572.8....256...7..7..23..83.85...6.  11.8/1.2/1.2
........1.......2......3..4..5.2.6...7.6.53.88..73.2...87..2...2.685....53..7....  11.8/1.2/1.2
........1.......2......3..4..5.267...6.8.....8..7.53...2765....35..8...26.83.....  11.8/1.2/1.2
........1.......2.....13.45...3.65....317.6...7..85....875.1...31..68...5.673...8  11.8/1.2/1.2
........1.....2.....3....24.....5.....637.8...572.8....256...7.3.85.7.6.6...23..8  11.8/1.2/1.2
........1.......23....24.....56.2....7248....86..57....47..86..52....7..6.85.....  11.8/1.2/1.2
........1.......2......3..4..5.267...6.83....8..7.53...2765....35..8...26.8......  11.8/1.2/1.2
........1.......2......3..4..5.2.6...6.7.53.887.6..2...873.2...2.685....53..7....  11.8/1.2/1.2
........1.......2......3..4..5.267...7.8.53..68.73.2...68..2...2.765....53..8....  11.8/1.2/1.2
........1.......2......3..4..5.267...7.8.53..68.7..2...683.2...2.765....53..8....  11.8/1.2/1.2
........1.......2......3..4..5.673...86.5.2..73.2.85...736.....52.78....6.8..2...  11.8/1.2/1.2
........1.......23....24.....56......47..58..62...87....68.2....7245....58..67...  11.8/1.2/1.2
........1.......2......3..4..5.267...6.8..2..8..7.53...2765....35..8....6.83.2...  11.8/1.2/1.2
........1.......2......3..4..5.673...86.5....73.2.85...736....252.78....6.8......  11.8/1.2/1.2
........1.......2......3..4..5.267...7.8.53..68.73.....68......2.765....53..8...2  11.8/1.2/1.2
........1.......2......3..4..5.267...7.8.53..68.7......683.....2.765....53..8...2  11.8/1.2/1.2
........1.......2......3..4..5.2.6...7.6.53.88..7..2...873.2...2.685....53..7....  11.8/1.2/1.2
........1.......2......3..4..5.673.8.86.5.2..73.2..5...736.....52.78....6.8..2...  11.8/1.2/1.2
........1.......2......3..4..5.673.8.86.5....73.2..5...736....252.78....6.8......  11.8/1.2/1.2
........1.......2......3..4..5.6.2...6..783..8.32.57...386.....65...2...7.285....  11.8/1.2/1.2
........1.......2......3..4..5.6.....6..783..8.32.57...386....265.......7.285....  11.8/1.2/1.2
........1.......2......3..4..5.2.6...6.7.53.887.6......873.....2.685....53..7...2  11.8/1.2/1.2
........1.......2......3..4..5.2.6...6.7.53.887.63.....87......2.685....53..7...2  11.8/1.2/1.2
........1.......2......3..4..5.2.6...7.6.53.88..73.....87......2.685....53..7...2  11.8/1.2/1.2
........1.....2.....3....24....56.....537.8...672.8....267...5..5..23..83.86...7.  11.8/1.2/1.2
........1.......2......3..4..5.2.6...7.6.53.88..7......873.....2.685....53..7...2  11.8/1.2/1.2
........1.....2.....3....24....56.....537.8...672.8....267...5.3.86.5.7.7...23..8  11.8/1.2/1.2
........1.......23....24.....56......7248....86..57....47..86..52....7..6.85..2..  11.8/1.2/1.2
........1.......23....24.....56......7248....86..57.....85..2...47..86..52...67..  11.8/1.2/1.2
........1.......2......3..4..5.6.....6..783.58.32..7...386....265.......7.285....  11.8/1.2/1.2
........1.......2......3..4..5.6.2...6..783.58.32..7...386.....65...2...7.285....  11.8/1.2/1.2
........1.....2.....3....24....56..7..537.8...6.2.8....267...5.3.86.5...7....3..8  11.8/1.2/1.2
........1.....2.....3....24....56..7..537.8...672.8....267...5..5...3..83.86...7.  11.8/1.2/1.2
........1.......23....456....6.......17..8...54..67..8.65.7.1..48..51...7..6.48..  11.8/1.2/1.2
........1.......2......3..4..2.563.7.6.2..8..7.5.8.....57.3....6.35....282.67....  11.8/1.2/1.2
........1.......2......3..4..2.563.7.6.2..8..7.538.....57......6.35....282.67....  11.8/1.2/1.2
........1.......2......3..4..2.563...75.8....63.2.78...635....2.8.67....5.7..2...  11.8/1.2/1.2
........1.......2......3..4..2.563.7.75.8....63.2..8...635....228.67....5.7......  11.8/1.2/1.2
........1.......2......3..4..2.563...6.2.78..7.5.8.....57.3....6.35....282.67....  11.8/1.2/1.2
........1.......2......3..4..2.563...6.2.78..7.5.8.2...57.32...6.35.....82.67....  11.8/1.2/1.2
........1.......2......3..4..2.563...6.2.78..7.5.8.....57.32...6.35....28..67....  11.8/1.2/1.2
........1.......2......3..4..2.563...75.8....63.2.78...635....228.67....5.7......  11.8/1.2/1.2
........1.......2......3..4..2.563...6.2.78..7.538.....57......6.35....282.67....  11.8/1.2/1.2
........1.......2......3..4..2.563...6.2.78..7.538.....57..2...6.35....28..67....  11.8/1.2/1.2
........1.......2......3..4..2.563.7.6.2..8..7.538.....57..2...6.35....28..67....  11.8/1.2/1.2
........1.......2......3..4..2.563.7.75.8.2..63.2..8...635.....28.67....5.7..2...  11.8/1.2/1.2
........1.......2......3..4..2.563.7.6.2..8..7.5.8.2...57.32...6.35.....82.67....  11.8/1.2/1.2
........1.......2......3..4..2.563.7.6.2..8..7.5.8.....57.32...6.35....28..67....  11.8/1.2/1.2
........1.......2......3..4..2.563.7.75.8....63.2..8...635....2.8.67....5.7..2...  11.8/1.2/1.2
........1.......2......3..4..2.563...6.2.78..7.538.2...57..2...6.35.....82.67....  11.8/1.2/1.2
........1.......2......3..4..2.563...75.8.2..63.2.78...635.....28.67....5.7..2...  11.8/1.2/1.2
........1.......2......3..4..2.563.7.6.2..8..7.538.2...57..2...6.35.....82.67....  11.8/1.2/1.2
........1.......2.....13.45...3.6.....317.6...7..85....175.....38..61.5.5.673...8  11.8/1.2/1.2
........1.......2.....13.45...3..5....316.7..67..85....5763...81.65.....83..71...  11.8/1.2/1.2
........1.......2.....13.45...3..5...3516.7..7.6.8.....615.....3.8.71...57.63...8  11.8/1.2/1.2
........1.......2.....13.45...3.65....7.8.....3517.6...6.73...8.715.....3.8.61.5.  11.8/1.2/1.2
.............12.34..15.36.2...1.42.5...3...4..4..26......6.......4...5.37.8....61  11.8/1.2/1.2
........1.....2.....3....24..5.67.8..26.8..738..2....5..873.5...3...6....67.25...  11.8/1.2/1.2
........1.....2.....3....24.....5.....637.8...572.8....256...73.7..2...83.85...6.  11.8/1.2/1.2
........1.....2.3...4...2.5.....4..6.27.3.8..4.6.873.....7.......834..6..73.26...  11.8/1.2/1.2
........1.....2.....3....24.....5.....637.8...572.8....256...733.85.7.6.6...2...8  11.8/1.2/1.2
........1.....2.34235...6...27.3.8...8.2.57..5.6.......53.67...6.23.8...87.....6.  11.8/1.2/1.2
...............123....45..6.......3...6.27.1818..6.2.7.217.....3.86...7.67....8..  11.8/1.2/1.2
........1.....2.34....562....1..7....2..1.....65..8..7.1726.8..5.28..7..68..751..  11.8/1.2/1.2
........1.....2.3.....345.6..172..8..28..3.1.37..18.4..4........87..1...2.3.47..8  11.8/1.2/1.2
........1.....2.3.....345.6..4.......78..1...23..47..8.12..3.8..8.72..1.3.7.18.4.  11.8/1.2/1.2
........1.....2.34....56.....62.57...87.61...52..8.1...65.28..721...7...7.8......  11.8/1.2/1.2
........1.....2.34....56.....7.85....652.17..82..6.1...78......21...7...5.6.28..7  11.8/1.2/1.2
........1.....2.3.....3.4.5..2.13....316.7.8.76.82..1..17.8....2.3.76..868.......  11.8/1.2/1.2
........1.....2.34.23...5....6.78.5...732....83.6.5....72......3.82.6..556...78..  11.8/1.2/1.2
........1.....2.3...4...5.6..7..8.4..48.25.7323........5.23.....728.4..58...57...  11.8/1.2/1.2
........1....23.4...56.......67..4.8.4.8..51.18.....67.64......75...8...8.1.7....  11.8/1.2/1.2
........1.......2.....13.45...3.......316.7..67..85....5763...813..78.5.8.65.1...  11.8/1.2/1.2
........1.......2.....13.45...3..5...3516.7..7.6.8.....615......7.63...83.8.71.5.  11.8/1.2/1.2
........1.......2.....13.45...3.6.....317.6...7..85....875.1...31..68.5.5.673...8  11.8/1.2/1.2
........1.......2.....13.45...3..5....316.7..67..85....5763...813..78...8.65.1...  11.8/1.2/1.2
........1.......2.....13.45...3.......316.7..67..85....5763...81.65.....83..71.5.  11.8/1.2/1.2
........1.......2.....13.45...3.6.....7.85....3517.6...6.73...8.785.1...3.1.68.5.  11.8/1.2/1.2
........1.......2.....13.45...3..5...3516.7..7.6.8.....685.1...3.1.78...57.63...8  11.8/1.2/1.2
........1.......2.....13.45...3.6.....7.85....3517.6...6.73...8.715.....3.8.61.5.  11.8/1.2/1.2
........1.....2.3...4...5.6..7..8.4..48.25.7323.....5..5.23.....728.4...8...57...  11.8/1.2/1.2
........1.......23...245......4.......6.578...4582.6.7.67......42.78....5.8.64...  11.8/1.2/1.2
........1.....2.34.35...6....735.....2.8.6...5.8.27.6..5........73..58.66.2..87..  11.8/1.2/1.2
........1.....2.34.35..........6.....732.58..6.2..87...2.3.7....5..86...7.85...6.  11.8/1.2/1.2
........1.....2.34.35...6....7.28.6...835....32.7.6....5........83..57.66.2..78..  11.8/1.2/1.2
........1.......2.....13.45...3......3516.7..7.6.85....615......7.63...83.8.71.5.  11.8/1.2/1.2
........1.....2.34....562....7.2.....56.817..82.7.51...78......2.5.67..861.......  11.8/1.2/1.2
........1.......2.....13.45...3..5...3516.7..7.6.8.....685.1....7.63...83.1.78.5.  11.8/1.2/1.2
........1.......23....24.....56......7248....86..57....472.86..52....7..6.85.....  11.8/1.2/1.2
........1.......2.....13.45...3......3516.7..7.6.85....685.1....7.63...83.1.78.5.  11.8/1.2/1.2
........1.....2.34....562....1.2.....278.51..65..718...16......5.2.68..778.......  11.8/1.2/1.2
........1.......23....24.....56......472.58..62...87....68......7245....58..67...  11.8/1.2/1.2
........1.......23...245........4.....675.8...45.286.7.675.2...42..8....5.8.6..7.  11.8/1.2/1.2
........1.....2.34.35..........6......3.257.88.2..76...2..36....5.7.8...6.7.5..8.  11.8/1.2/1.2
........1.....2.34....56.....5.2.....26.718..87...51...18......25..68..76.72.....  11.8/1.2/1.2
........1.......23...245......4.......6.578...4582.6.7.67..2...42..8....5.8.6..7.  11.8/1.2/1.2
........1.......23...245........4.....675.8...45.286.7.674.2...4.8.6....52..87...  11.8/1.2/1.2
........1.....2.34....56.....572.....26.817...8...51...17......25..67..86.82.....  11.8/1.2/1.2
........1.......23...245......4.......6.578...4582.6.7.67......42..8....5.8.64.7.  11.8/1.2/1.2
........1.....2.....3....24..536.7...7...8...8.62......378.6.5..5..23..72.857..6.  11.8/1.2/1.2
........1.......2.....13.45...3.65....7.8.....3517.6...6.73...8.785.1...3.1.68.5.  11.8/1.2/1.2
........1.....2.34.35..........6.....73..58..6.2..87...2.3.7....5..86...7.852..6.  11.8/1.2/1.2
........1.....2.34....56.....5.2.....26.718..87....1...185.7...25..68..76........  11.8/1.2/1.2
........1.....2.34....56.....572.....26.817...8....1...175.....25..67..86.8......  11.8/1.2/1.2
........1.....2.3...4...2.5.....4..6.27.8.3..4.6.378.....7.......834..6..73.26...  11.8/1.2/1.2
........1.....2.34....56.....572.....26.817...8....1...175.8...25..67..86........  11.8/1.2/1.2
........1.....2.34....56.....572.....26.817...8...51...17..8...25..67..86..2.....  11.8/1.2/1.2
........1.....2.34....56.....7.......61..8...52..67..8.128.57...8..2.1..6.5.718..  11.8/1.2/1.2
........1.....2.....3....24..536.7...7..58...8.62......378.5.6..6..23..72.867..5.  11.8/1.2/1.2
........1.....2.....3....24..536.7...7...8...8.62......378.6.5..5..2...72.857..63  11.8/1.2/1.2
........1.....2.34.35..........6......3..57.88.2..76...2..36....5.7.8...6.725..8.  11.8/1.2/1.2
........1.....2.....3....24..536.7...7...8...8.62......378...5.2.857..6.6...23..7  11.8/1.2/1.2
........1.....2.34....56.....5.2.....26.718..87....1...185.....25..68..76.7......  11.8/1.2/1.2
........1.....2.....3....24..5.67.8..26.8..738..2....5..783.5...3.7.6....68.25...  11.8/1.2/1.2
........1.....2.34....56.....5.2.....26.718..87...51...18..7...25..68..76..2.....  11.8/1.2/1.2
........1.....234...1.35.26....14..5.1.25.....4.3.61.2....6......4....537.85..6..  11.8/1.2/1.2
........1.....2.....3....24..5.67.8..2658..738..2....5..783.5...68.2....53.7.6...  11.8/1.2/1.2
........1.....2.....3....24..536.7...7..58...8.62......378...6.2.867..5.5...23..7  11.8/1.2/1.2
.............12.34..13.56.2...1.42.5...53..4..4..26......6.......4...5.37.8....61  11.8/1.2/1.2
........1.....2.....3....24..5.6..7..2657..83.8.2....5..873.5...67.2....53.8.6...  11.8/1.2/1.2
........1.....2.....3....24..5.6..7..2657..83.8.2....5..783.5...68.2....53...6...  11.8/1.2/1.2
........1.....2.....3....24....56.....537.8...672.8....267...53.5..2...83.86...7.  11.8/1.2/1.2
........1.....2.....3....24..536.7...7..58...8.62......378.5.6..6..2...72.867..53  11.8/1.2/1.2
........1.....234...1.35.26....14..5.1.25.4...4.3.61.2....6......4....537.8...6..  11.8/1.2/1.2
........1.....2.....3....24..536.7...7..58...8.62......378...6.2.867..535...2...7  11.8/1.2/1.2
........1.....2.....3....24..536.7...7...8...8.62......378...5.2.857..636...2...7  11.8/1.2/1.2
........1.....2.34.23..........35.6..32.7...86.52.8.7..57.2.....6...78..3.8.56...  11.8/1.2/1.2
........1.....2.34.23..........35.6...2.7...865.2.8.7...6..78...75.2....38..56...  11.8/1.2/1.2
........1.....2.3...4...2.5.....4..6.2736.8..4.68.73....843..6..732.....6...7....  11.8/1.2/1.2
........1.....2.34.23........5.2....26..75.8.7.83.6....8.......35.2.76..6.7..85..  11.8/1.2/1.2
........1.......23....24.....56......47..58..62...87....68......7245....58..67..2  11.8/1.2/1.2
........1.....2.....3....24..5.67.8..2658..738..2....5..873.5...67.2....53...6...  11.8/1.2/1.2
........1.....2.34....562....1..7....2..1.....65..8.17.1726.8..5.28..7..68..75...  11.8/1.2/1.2
........1.....2.34....56.....6.2.7...786.51..25..718...25.67..861...8...8.7......  11.8/1.2/1.2
........1.......23....24.....56......7248....86..57..2.47..86..52....7..6.85.....  11.8/1.2/1.2
........1.....2.34.23........5.67....8623....27.5.8.6..6.......5.8..67..73..258..  11.8/1.2/1.2
........1.....2.34....56.....672.8...8.6.51..25..817...25.68..761...7...7.8......  11.8/1.2/1.2
........1.....2.34.23........526....27.8.5.6.8...37....6.......35..287..7.8..65..  11.8/1.2/1.2
........1.....2.34..2.3156.....6.1...1..243.5.4.1.5.2...4...6...6..53...7.8..6...  11.8/1.2/1.2
........1.......23....456....7.......16..8...54..67..8.618.47...8.65.1..4.5.71...  11.8/1.2/1.2
........1.......23....456....7.......61..8...54..67..8.168.47...8.65.1..4.5.71...  11.8/1.2/1.2
........1.....234...1.35.26....14..5.1.3.6..2.4.25........6......4....537.8...6..  11.8/1.2/1.2
........1.....2.34..2.3156.....6..4..1..243.5.4.1.5.2...4...6...6..53...7.8..6...  11.8/1.2/1.2
.......12.....3..4.56...3....4.3.....7.4......8.65..47.67.85...3.574.8..8..3.67..  11.8/1.2/1.2
........1.....2.....3....24....56..7..537.8...6.2.8....267...5.3.86.....75...3..8  11.8/1.2/1.2
........1.....2.....3....24..536.7...7..58..68..2......378.....2.867..5.56...3..7  11.8/1.2/1.2
........1.......23....456....76.41...1675.8..54..187...61......4.5.76..878.......  11.8/1.2/1.2
........1.....2.....3....24....56.....537.8...672.8....267...533.86.5.7.7...2...8  11.8/1.2/1.2
........1.....2.....3....24..536.7...7..58..68..2......378.5....6...3..72.867..5.  11.8/1.2/1.2
........1.....2.....3....24..536.7...7..58..68.62......378...6.2.867..5.5....3..7  11.8/1.2/1.2
........1.......23....456....76.41...6175.8..54..187...16......4.5.76..878.......  11.8/1.2/1.2
........1.......23....456....6..41...1765.8..54..187...61......4.5.76..878.......  11.8/1.2/1.2
........1.......23....456....6..41...1765.8..54..187...61.7.....8.......4.5.86..7  11.8/1.2/1.2
........1.....2.34.23..........35.6...2.7...86.52.8.7..57.2...6.6...78..3.8.56...  11.8/1.2/1.2
hendrik_monard
 
Posts: 88
Joined: 19 April 2021
Location: Leuven (Louvain) Belgium

Re: The hardest sudokus (new thread)

Postby denis_berthier » Mon May 06, 2024 5:53 am

.
Hi Hendrik
Good to hear of you and congrats for all these new 11.8s.
In your previous publication here (your collection until 2023 Aug 15), you had included puzzles with lower SER (down to 11.6). They are interesting also, because high BxB classifications extend lower than 11.8 and even lower than 11.6. Do you plan to publish them in your forthcoming min-expand collection (which would be enough for my purposes)?

As usual, I checked that all the T&E(3) puzzles are indeed in T&E(W2, 2) and have a non-degenerate tridagon (which is not a surprise).
All the T&E(2) puzzles also have a non-degenerate tridagon (which is of course not true of all the T&E(2) collections).
.
denis_berthier
2010 Supporter
 
Posts: 4004
Joined: 19 June 2007
Location: Paris

Re: The hardest sudokus (new thread)

Postby coloin » Mon May 06, 2024 12:28 pm

Hi hendrik
Well done in finding those puzzles... you have shown them as minlex puzzles
However one of them [puzzle 153] comes in at 11.9 in the minlexsolution grid of the puzzle... and a few come in at 11.7 too !

This is a known issue with SE, denis was of the opinion that the lowest SE of a morph should be the rating - as this is the shortest chain and maybe this is the real case ?
I only am able to convert to minlex puzzle and minlexsolution grid puzzle, maybe the max lex puzzle which presumably SE will handle differently would have the casting vote on it. ?

here is the details
Code: Select all
........1.....2.34.23........5.67....8623....27.5.8.6..6.......5.8..67..73..258..#11Amin   ED=11.8/1.2/1.2   puzzle 153     
...45..........2.6..9.7....2.6.1.9.8.18......97......1.62..1.97..1...8.289...76..#11Amin   ED=11.9/1.2/1.2   puzzle 153 in minlex solution grid
........1.....2.34.23........526....27.8.5.6.8...37....6.......35..287..7.8..65..#22Dmin   ED=11.8/1.2/1.2   puzzle 155

Hidden Text: Show
Code: Select all
...45...9......2.6..9.7....2.6.1.9.8.18......97......1.62..1.977.1...8.289...761.#11expand ED=11.9/11.9/3.4                 
...45..........2.6..9.7....2.6.1.9.8.18......97......1.62..1.97..1...8.289...76..#11Amin   ED=11.9/1.2/1.2                   
...45...9......2.6....7....2.6.1.9.8.18......97......1.62..1.97..1...8.289...76..#11Bmin   ED=11.9/1.2/1.2                   
...45..........2.6..9.7....2.6.1.9.8.18......97......1.62..1.977.....8.289...761.#11Cmin   ED=11.9/1.2/1.2                   
...45...9......2.6....7....2.6.1.9.8.18......97......1.62..1.977.....8.289...761.#11Dmin   ED=11.9/1.2/1.2                   
                                                                                                                             
........1.....2.34.23.......52......6.7..58..83..267.5.7523....28.6.7.5.3.6.58...#11expand ED=11.8/11.8/3.4                 
........1.....2.34.23........5.67....8623....27.5.8.6..6.......5.8..67..73..258..#11Amin   ED=11.8/1.2/1.2   puzzle 153     
........1.....2.34....56.....7.85....652.17..82..6.1...78......21...7...5.6.28..7#11Bmin   ED=11.8/1.2/1.2                   
........1.....2.34.23.......5..67.8..7832....3.68.5....82......53.2.67..6.7..85..#11Cmin   ED=11.8/1.2/1.2                   
........1.....2.34....56.....1.75....2786.1..56.2.18...12..8...6.5.27..878.......#11Dmin   ED=11.8/1.2/1.2                   
                                                                                                                             
                                                                                                                             
twins of #11expand                                                                                                               
                                                                                                                             
.2345....45.7.9.2.7.9.32.4.23........7539.2..9.42......9....4.....9..6.8...57....#22expand ED=11.8/11.8/3.4                 
1.3.56....5718..3.68.7.3....618.53.73.5......87.3....15.6.........5..96.......4..#33expand ED=11.8/11.8/3.4                 
                                                                                                                             
........1.....2.34.23.......3526....27.8.5.6.8.6.37....62......35..287.67.8..65..#22expand ED=11.8/11.8/3.4                 
........1.....2.34.23.......52......3.6.278.587...56...6523....2.87.6.5.73..58...#33expand ED=11.8/11.8/3.4                 
                                                                                                                             
........1.....2.34.23........52......7.8.5.6.8.6.37....62......35..287..7.8..65..#22Amin   ED=11.8/1.2/1.2                   
........1.....2.34.23........526.....7.8.5.6.8...37....62......35..287..7.8..65..#22Bmin   ED=11.8/1.2/1.2                   
........1.....2.34.23........52.....27.8.5.6.8.6.37....6.......35..287..7.8..65..#22Cmin   ED=11.8/1.2/1.2                   
........1.....2.34.23........526....27.8.5.6.8...37....6.......35..287..7.8..65..#22Dmin   ED=11.8/1.2/1.2   puzzle 155     
........1.....2.34.23........526.....7.8.5...8.6.37....62......35..287.67.8..65..#22Emin   ED=11.8/1.2/1.2                   
........1.....2.34.23........526....27.8.5...8.6.37....6.......35..287.67.8..65..#22Fmin   ED=11.8/1.2/1.2                   
                                                                                                                             
........1.....2.34.23.......52......3.6.278..87...56...6523......87.6.5.73..58...#33Amin   ED=11.8/1.2/1.2  not in list     
........1.....2.34.23.......52......3.6.278.587...56...6523......87.6...73..58...#33Bmin   ED=11.8/1.2/1.2  not in list
coloin
 
Posts: 2401
Joined: 05 May 2005
Location: Devon

Re: The hardest sudokus (new thread)

Postby hendrik_monard » Tue May 07, 2024 4:42 pm

Hi Denis and Coloin,
The list of 11.8's contains puzzles resulting from my 'classic' generation scripts. I thought it interesting to publish them as such because they are SER 11.8.
The reason why these puzzles are in minlex format is because last summer I switched my 'classic' scripts from maxlex to minlex. With the current knowledge, I would have changed immediately to solution minlex.
The list of 11.8's is only the top of a very long list of 11.6+'s. I have expanded all those puzzles and transformed them to solution minlex before processing them to select B7B+'s.In this way, their number has decreased a lot as many of the minimals share the same min_expand. It is my intention to publish the results one of the coming days. These results will include all B7B+ min_expands.
hendrik_monard
 
Posts: 88
Joined: 19 April 2021
Location: Leuven (Louvain) Belgium

Re: The hardest sudokus (new thread)

Postby denis_berthier » Thu May 09, 2024 6:09 am

Paquita wrote:This is the complete file of what I generated since september 2023 https://drive.google.com/file/d/1twLA_GsfVh_n-qz7Q39WH7bhmb7eyqE-/view?usp=sharing. So I about doubled the database for high rated T&E(2) - after Mith and Hendrik exploded the small collection it was at the moment of the ph2010 database.
I think there a more puzzles out there still, but I notice 11.8 is getting rarer and rarer.


Hi Paquita,
Have you kept a trace of the seed which each of these puzzles originates from?
I'm particularly interested in the following 4:
Code: Select all
98.76....7.....9...54......6...3.8....5....2......4.1..7.38.......9..3.......1..2 ED=11.7/11.7/2.6
98.7.....7..86......5..4...3..6..9....2.............51.7..8.3.......67.......1.42 ED=11.6/1.2/1.2
98.7.....7..86......5..4...3..6..9....2.............51.7..8.3.......67.......1.24 ED=11.6/1.2/1.2
98765.......4..........3...8.62..7..2......9..95...8.276..2.9.85......6..2.....75 ED=11.5/1.2/1.2


More precisely, did they originate from puzzles in the pre-tridagon collections?
.
denis_berthier
2010 Supporter
 
Posts: 4004
Joined: 19 June 2007
Location: Paris

Re: The hardest sudokus (new thread)

Postby hendrik_monard » Thu May 09, 2024 1:37 pm

Hi Denis,
I found those puzzles in my database.
#1 was in mith's database of November 2021
#2 and #3 are the same; published by mith on 16 January 2022
#4 was in Paquita's post of 6 or 7 November 2023
hendrik_monard
 
Posts: 88
Joined: 19 April 2021
Location: Leuven (Louvain) Belgium

Re: The hardest sudokus (new thread)

Postby denis_berthier » Thu May 09, 2024 2:03 pm

hendrik_monard wrote:Hi Denis,
I found those puzzles in my database.
#1 was in mith's database of November 2021
#2 and #3 are the same; published by mith on 16 January 2022
#4 was in Paquita's post of 6 or 7 November 2023


This wasn't exactly my question.
These puzzles in Paquita's collection of 81,139 T&E(2) ones are the only 4 (actually 3) in it that have no tridagon and no degenerate cyclic tridagon. (There are only 27 that have no tridagon.)
What I'd like to know is the seeds from which they come, in particular if these seeds had a tridagon. It may be difficult to know because it is not usual to keep track of the seed for each puzzle.

My conjecture is, if a T&E(2) puzzle P has a tridagon, any T&E(2) expansion of P also has one (or, weak form of the conjecture, it has the degenerate cyclic variant). The above-mentioned 27 (or 3) are the only known possible counter-examples.
(If you replace T&E(2) by T&E(3), the strong form is true for all the known puzzles.)
This conjecture is also the reason why I suggested to explore the T&E(2)-expands and their minimals instead of only the min-expands.
.
.
denis_berthier
2010 Supporter
 
Posts: 4004
Joined: 19 June 2007
Location: Paris

Re: The hardest sudokus (new thread)

Postby eleven » Thu May 09, 2024 6:08 pm

Tried the B10B. Not really hard.
Code: Select all
+------------------------+--------------------------+-------------------------+
|  23579   2489    2569  |  2689    259     279     | 34689   346789  1       |
|  13579   1489    1569  |  1689    159     179     | 34689   2       34689   |
|  1279    1289    1269  |  12689   3       4       | 689     6789    5       |
+------------------------+--------------------------+-------------------------+
|  1259   *129     3     | *129     7       6       | 12489   14589   2489    |
| *129     7       8     |  4      *129     5       | 12369   1369    2369    |
|  4       6      *129+5 |  3       8      *129     | 129     159     7       |
+------------------------+--------------------------+-------------------------+
| *129     3       7     | *129     4       8       | 5       169     269     |
|  6      *129     4     |  5      *129     3       | 7       189     289     |
|  8       5      *129   |  7       6      *129     | 12349   1349    2349    |
+------------------------+--------------------------+-------------------------+

tridagon 129 (*) => 5r6c3
Singles & pairs, then skyscraper 1 in c67 (1r6c6 = r9c6 - r9c7 = r56c7) => -1r6c8
Code: Select all
+----------------------+----------------------+----------------------+
|  35     2489   269   |   2689   259    29   | 34689  7      1      |
|  35     1489   169   |   1689   159    7    | 34689  2      34689  |
|  7      1289   1269  |   12689  3      4    | 689    68     5      |
+----------------------+----------------------+----------------------+
| *129  BA29+1   3     | BA29+1   7      6    | 48     5      48     |
| *29+1   7      8     |   4     A29+1   5    | 126    3      26     |
|  4      6      5     |   3      8     *12   | 12     9      7      |
+----------------------+----------------------+----------------------+
| B29+1   3      7     |  B29+1   4      8    | 5      16     269    |
|  6    BA29+1   4     |   5    #A29+1   3    | 7      18     289    |
|  8      5     *129   |   7      6     a129  | 239    4      239    |
+----------------------+----------------------+----------------------+

If 1 is not in r9c6, it goes to r6c6,r9c3 and r45c1.
This kills all extra candidates of oddagon A but r8c5.
But with 1r8c5 all extra candidates of oddagon B are killed.
=> 1r9c6

Code: Select all
 *---------------------------------------------------------------*
 |  35    248   26     |  268    25   9  |  3468    7    1       |
 |  35    489   169    |  168    15   7  |  34689   2    34689   |
 |  7     289   1269   |  1268   3    4  |  689     68   5       |
 |---------------------+-----------------+-----------------------|
 |  29-1  129   3      | b19     7    6  |  48      5    48      |
 |d*19    7     8      |  4    c*19   5  |  26      3    26      |
 |  4     6     5      |  3      8    2  |  1       9    7       |
 |---------------------+-----------------+-----------------------|
 | e12-9  3     7      | a29     4    8  |  5       16   69-2    |
 |  6    *129   4      |  5     *29   3  |  7       18   289     |
 |  8     5     29     |  7      6    1  |  239     4    239     |
 *---------------------------------------------------------------*

skyscraper 9r5c15,r8c52 => -9r7c1
then loop (1=2)r7c1 - (2=9)r7c4 - r4c4 = r5c5 - (9=1)r5c1 => -1r4c1, -2r7c9
then w-wing 29: (9=2)r9c3 - r7c1 = r7c4 - (2=9)r8c5 => -9r8c2
=> 9r9c3

Code: Select all
 *--------------------------------------------------------*
 |  35    48    26   |  68   25   9  |  348    7    1     |
 | b35    489   16   |  68  c15   7  |  3489   2   a348   |
 |  7     89    12   |  12   3    4  |  689    68   5     |
 |-------------------+---------------+--------------------|
 |  129   12    3    |  19   7    6  |  48     5   a48    |
 |  19    7     8    |  4   c19   5  |  26     3    26    |
 |  4     6     5    |  3    8    2  |  1      9    7     |
 |-------------------+---------------+--------------------|
 |  12    3     7    |  29   4    8  |  5      16   69    |
 |  6     12    4    |  5    2-9  3  |  7      18  a89    |
 |  8     5     9    |  7    6    1  |  23     4    23    |
 *--------------------------------------------------------*

(9=843)r842c9 - (3=5)r2c1 - (5=19)r25c5 => -9r8c5, stte
eleven
 
Posts: 3106
Joined: 10 February 2008

Re: The hardest sudokus (new thread)

Postby denis_berthier » Fri May 10, 2024 4:14 am

.
Hi eleven,
I've shown that puzzles in mith's T&E(3) collection can have very different levels of difficulty, when the latter are measured using the Sudoku-specific tridagon pattern in conjunction with generic ORk-chain rules.
It is true also of the puzzles in T&E(2) with a tridagon.
In the present case, the tridagon allows a single assertion, which makes the puzzle trivial. This is very far from being the majority of cases, though it is not infrequent.
.
denis_berthier
2010 Supporter
 
Posts: 4004
Joined: 19 June 2007
Location: Paris

Re: The hardest sudokus (new thread)

Postby eleven » Fri May 10, 2024 10:03 pm

Yes we know, but many others do not, and still the hardest thread is flooded with puzzles, which are not hard to be solved manually. I have given it up to beg programmers to provide better rating programs concerning manual solving (see e.g. here), but at least it was fun to solve this one. (btw how does your tridagon/ORk-chain solution look like ?)
eleven
 
Posts: 3106
Joined: 10 February 2008

Re: The hardest sudokus (new thread)

Postby denis_berthier » Sat May 11, 2024 2:02 am

eleven wrote:Yes we know, but many others do not, and still the hardest thread is flooded with puzzles, which are not hard to be solved manually. I have given it up to beg programmers to provide better rating programs concerning manual solving (see e.g. here), but at least it was fun to solve this one. (btw how does your tridagon/ORk-chain solution look like ?)

As you know, my view of rating is opposed to yours. In the 2nd post after your reference, I wrote:
"This is the basic idea of my ratings: specific patterns shouldn't take part in a general rating system. On the contrary, a general rating system is a background wrt which a pattern utility can be measured."

After the discovery of Loki, the 1st puzzle in T&E(3), threads have been opened specifically for posting new puzzles:
- in T&E(3):http://forum.enjoysudoku.com/t-e-3-puzzles-split-from-hardest-sudokus-thread-t40514.html
- in T&E(2):http://forum.enjoysudoku.com/t-e-2-patterns-and-puzzles-t40596.html

In the B10B puzzle, the tridagon has only one guardian. There are no ORk-chains when there's only one guardian. One can immediately assert r6c5=3. The puzzle can then be solved by reversible chains, in Z6.
.
denis_berthier
2010 Supporter
 
Posts: 4004
Joined: 19 June 2007
Location: Paris

Re: The hardest sudokus (new thread)

Postby mith » Wed May 15, 2024 7:15 pm

Hi all, been a while. Life is getting in the way; some of it good (spending a lot more of my free time on setting puzzles for my patreon and the youtube channel), some of it less good (I keep hurting myself).

I've made a few steps toward getting organized for both a T&E(3) update and a T&E(2) high SE update. At the moment I'm running a script to check my old databases for the first occurrences of T&E(3) puzzles, to see if I can figure out which was the earliest and how closely it is related to Loki (going forward in time) and to puzzles in the ph database (going backward). It's going to take some time; in the past hour or so I've maybe checked 1% of the puzzles (currently working on 32c; no T&E(3) puzzles at higher counts in the old databases, despite the prevalence of the TH pattern).

I also put together a script to scrape puzzles from this thread - I'm going to check these against the databases to make sure none are missing that should be included and also to make sure that there is proper attribution. I need to add in lists from external files as well, and get some rough timestamps on my databases using puzzles I have posted here.

I'm not sure when I'll finish any of this, but at least it's in progress again!
mith
 
Posts: 971
Joined: 14 July 2020

Re: The hardest sudokus (new thread)

Postby denis_berthier » Thu May 16, 2024 1:42 am

Hi mih
Nice to hear of you.

mith wrote: At the moment I'm running a script to check my old databases for the first occurrences of T&E(3) puzzles, to see if I can figure out which was the earliest and how closely it is related to Loki (going forward in time)

Sure, it would be interesting to see how the tridagon pattern first appeared via vicinity search and SER maximisation.
I've been trying something the other way round: see my forthcoming post in the tridagon thread about how the tridagon pattern can be destroyed (or not).

mith wrote: and to puzzles in the ph database (going backward). It's going to take some time; in the past hour or so I've maybe checked 1% of the puzzles (currently working on 32c; no T&E(3) puzzles at higher counts in the old databases, despite the prevalence of the TH pattern).

You can avoid this part of the work.
I've checked long ago that:
- there's no T&E(3) puzzle (and no puzzle with BxB > 7) in the old ph2010 database and in older databases like MLagictour, 17-clues..., my [cbg] collection of 6M puzzles....
- there's no (non-degenerate) tridagon in them either

More recently, I've checked that there are lots of degenerate-cyclic tridagons, almost everywhere, with a high frequency in the top of ph2010. They are the most likely precursors of the non-degenerate tridagon.
denis_berthier
2010 Supporter
 
Posts: 4004
Joined: 19 June 2007
Location: Paris

PreviousNext

Return to General