coloin wrote:champagne wrote:needs some days to implement it, but I could have the key to go down in the process from ten hours to some seconds.
look forward to hearing this !
Im not sure its easy at all to go from a solution grid to a puzzle !!!
As a contribution Ive known that these puzzles all have the clue frequency values xxxxxx110
Hi coloin,
I can tell more.
coloin wrote:Im not sure its easy at all to go from a solution grid to a puzzle !!!
Surely not. Gary Mc Guire team had a code to scan 16 clues puzzles in a solution grid in about 3 seconds per solution grid.
The check that all 17 where known took several years with an average 20 cores active using blue's approach,
So working in the area 25-27 clues seems not realistic.
But if we take as limit that we are looking for puzzles producing a pure tridagon PM at the start, then several things happen.
25 cells can not be given:
the 12+1 cells of the tridagon pattern,
The 12 cells of the 3 digits in boxes 2347
This was my start with the relatively disappointing run time of 10 hours
But I missed a key point. To get a pure tridagon, each of the 12 cells in the4 boxes square must see the 6 other digits
This constraint appears as an unavoidable set of two or three cells.
12*6 = 72 unavoidable sets of size 2 or 3, but cleaning redundancy and subsets, this ends around 45 UAs of size 2 and 3.
As the cells exclusion also reduces the size of classical unavoidable sets, we start with something completely different from the usual case.
In the loki solution grids, I got the smallest following UAs
- Code: Select all
...................................1.....1....................................... 0 n=2
..................................1...............1.............................. 1 n=2
..............................1............................1..................... 2 n=2
...............................1....................................1............ 3 n=2
.............................1.....................1............................. 4 n=2
...................................1.................................1........... 5 n=2
........................1.........1.............................................. 6 n=2
...............................1..........1...................................... 7 n=2
.......................................1....................................1.... 8 n=2
.........................................1................1...................... 9 n=2
............................................1....1............................... 10 n=2
..................................1..1........................................... 11 n=2
....................................1...............1............................ 12 n=2
..........................................1....................................1. 13 n=2
............................................1................1................... 14 n=2
.......................................1...........1............................. 15 n=2
..................................................1........................1..... 16 n=2
..............................1.....................1............................ 17 n=2
.................................................1................1.............. 18 n=2
........1..........................................1............................. 19 n=2
...................................1...........1................................. 20 n=2
..........................1.........................1............................ 21 n=2
............1.............................................1...................... 22 n=2
........................................................1..................1..... 23 n=2
.............................................................1....1.............. 24 n=2
..........................................................1..........1........... 25 n=2
...........................................................1..................1.. 26 n=2
......1......................................................1................... 27 n=2
......................................................................1.....1.... 28 n=2
..............1.............................................................1.... 29 n=2
....................................................................1..........1. 30 n=2
.......................................................................1...1..... 31 n=2
..........................1...................................................1.. 32 n=2
.................1.............................................................1. 33 n=2
........................................................1..............1......... 34 n=2
1..........1..................................................................... 35 n=2
.1.........1..................................................................... 36 n=2
11............................................................................... 37 n=2
The current code delivered 500k puzzles in 27 seconds.
In theory, all minimal puzzles of size 25-27 giving the expected start PM.
I have seen some redundancy and bugs (or missing code) in the minimal check, but for sure, the final code will find an exhaustive list of size 25-26 in some seconds.
Still high for a full scan, but good to look for fresh seeds and to scan the known 65000 solution grids of mith's file.
I tried to cut in the output testing back doors with the zhou brute force basic rules (no guess).
Using this set of rules, loki has a back door 2, not 3. Using skfr, I got a SER rating 2.0, something that Zhou brute force solves without guess.
But excluding all back doors 1, the output could be cut by 90%
Referring to a previous post, I would say that the process can be applied saving much time for any new solution grid.