I have done some preliminary work on the Windoku variant, which I will refer to as SudokuW, and the diagonal extension as SudokuWX, in keeping with the other variant names we have used (SudokuP, SudokuPX, SudokuX etc).
SudokuW is a bit like SudokuP, but we add only 4 constraints to the standard 27, not 9. One constraint ("house") for each of the 4 "Window Boxes".
The number of different SudokuW grids is, as far as I can tell, 17,463,553,760 x 9! (relabelling factor). This was done by brute-force, I identified 544 templates for placing the "1"'s (with r1,c1 = 1 fixed), and counted all the solutions for each. This could have been made more efficient by using equivalence classes, but it only took a few hours in any case.
There are 128 SudokuW-preserving transformations (WPT) among the standard Sudoku transformations. For example, swapping R2/R3 and/or C2/C3, ditto for R7/R8, C7/C8. There are 16 ways to do these corner-fiddles, times 8 for rotation/reflection.
To count EDW = number of ED grids, my guess is under 200 million. The exact figure can be arrived at in two ways. Most efficient is the Burnside's Lemma calculation, and I am hoping that perhaps blue will do this, as he did for SudokuPX. I will arrive at (hopefully) the same number by the slow method, ie generating all solutions & reducing them via canonicalisation (a suitable impetus for optimising my canonicaliser function!).
As far as MNC (min number of clues), well it's early days, but we do have several 12-clue cases identified already, one is shown below. No 11-clue puzzles so far ...