With my solver:
Only one step with one or more locked singles required.
Still easy.
.......4...92..7.3.3......6.1.76..5..75.......9.153.........32............3.47...
...32.9............47.........683.4.......18..6..92.5.6......1.1.2..63...7.......
7 28 1 6 3 9 28 4 5
45 6 9 2 8 45 7 1 3
2458 3 24 45 7 1 28 9 6
3 1 8 7 6 2 4 5 9
6 7 5 48 9 48 1 3 2
24 9 24 1 5 3 6 8 7
9 45 7 58 1 6 3 2 48 9 7 45
1 45 6 3 2 58 9 7 48 45 6 1
28 28 3 9 4 7 5 6 1 8 3 2
7 5 1 6 8 3 2 4 9
2 3 9 7 4 5 1 8 6
48 6 48 1 9 2 7 5 3
6 9 45 2 3 7 45 1 8
1 8 2 4 5 6 3 9 7
45 7 3 8 1 9 6 2 45
.............726.................16...8.2.5.9.5..8...4.4...9.....5.......263....7 ED=2.3/1.2/1.2
...726.................16...8.2.5.9.5..8...4.4...9.....5.......263....7.......... ED=1.5/1.2/1.2
......2....5..784..4..5...1...3.........7...8.9...4...3.....1...5...3..4..946..2. ED=1.5/1.2/1.2
.5..784..4..5...1...3.....7...7...8.9...4.........1...5...3..4..946..2....8...... ED=1.2/1.0/1.0
urhegyi wrote:Can someone explain how they are created?
. . . . . . . . .
. . . . . . 9 4 . .
. 5 . . . 3 . 1 . .
. . . . . . . . . .
. . . . 8 . . . 3 .
. . . 4 . . 2 7 . .
. . . . . . . . . 2
1 . . . . 8 . 6 . .
. . 6 . . . 3 . . .
9 . . . . . . 7 .
urhegyi wrote:I like the overlapping sudokus like the last two one, but they are hard to find on the internet and mostly very easy to solve. I'm searching for examples with naked and or hidden subsets, and also with x-wing.
creint wrote:If you don't care about that it must be minimal then you can rate ever time you remove a digit. It limits maximum difficulty but does not guarantee that difficulty.
In my solver within 10 seconds template input and a puzzle.
Here one with SE ~9, but not symmetric.
- Code: Select all
. . . . . . . . .
. . . . . . 9 4 . .
. 5 . . . 3 . 1 . .
. . . . . . . . . .
. . . . 8 . . . 3 .
. . . 4 . . 2 7 . .
. . . . . . . . . 2
1 . . . . 8 . 6 . .
. . 6 . . . 3 . . .
9 . . . . . . 7 .
Is it really a SE9.0?
Solution:
grid1:Hidden Text: Show
grid2:Hidden Text: Show
There are other ways for generating but this is the fastest way for small puzzles.
urhegyi wrote:In all 4 examples of the 8x8 overlapping grid I found this constraints: ....
#2//B4/D8
....7..9......4....3....4.....................25.....6.....7.1.47.............2..
....4...........7..........5.....6.1...7.1.9..............2.......1....6..3......
#2//B4/D8
.....1..........67............4...............2.7...4..5....61.47.6......1.9...7.
.......3..4..............6..7...4.......61....6........9...7......1...5.........9
.............726.................16...8.2.5.9.5..8...4.4...9.....5.......263....7 ED=3.0
..........97....5..4..3.2.9..8....6..1.7.8..4....94................5...1..59...82 ED=1.2
. . . . . . . . .
. . 7 . 9 . . . . .
. . . . 2 6 5 . . .
. 2 8 . . . . 9 . .
. . . . . . 6 . . .
. . . 5 . 9 . . 7 .
. 3 . . . 7 . 8 . .
. 8 . . . . . . . .
. . . . . . . . 1 .
. . . . . . . . .
...........7.9........265...28....9.......6.....5.9..7.3...7.8..8...............1 ED=1.5/1.2/1.2
.7.9........265...28....9.......6.....5.9..7.3...7.8..8...............1.......... ED=2.0/1.2/1.2
. . . . . . . . .
. . . . 7 . 9 . . .
. 8 . . . . . 3 . .
. 7 . . . . 2 . . .
. . 5 4 6 . . . 8 .
. 6 . . . . 3 . . .
. . . . . . . 5 . .
. . . 1 . . . . 4 .
. . 4 . 5 . . . . .
. . . . . . . . .
.............7.9...8.....3..7....2....546...8.6....3.........5....1....4..4.5.... ED=2.6/1.2/1.2
...7.9...8.....3..7....2....546...8.6....3.........5....1....4..4.5.............. ED=4.1/1.2/1.2
. . . . . . . . .
. 7 . . . . 1 . . .
. . . . 3 . . . 8 .
. 6 . . . . 9 2 . .
. . 9 . 8 5 . . . .
. 5 . . . 1 . . . .
. . . 4 . 7 . . 3 .
. 2 . . . . . . . .
. . . . . . 7 . . .
. . . . . . . . .
..........7....1......3...8.6....92...9.85....5...1......4.7..3.2.............7.. ED=7.2/1.2/1.2
7....1......3...8.6....92...9.85....5...1......4.7..3.2.............7............ ED=6.6/1.2/1.2
1to9only wrote:The first 2 8x8 overlapped sudokus solve as JSBs (Jigsaw Sudoku with Block constraints).
- Code: Select all
.............726.................16...8.2.5.9.5..8...4.4...9.....5.......263....7 ED=3.0
..........97....5..4..3.2.9..8....6..1.7.8..4....94................5...1..59...82 ED=1.2
1to9only wrote:So I generated some JSBs, and some can be solved as 8x8 overlapped sudokus!