Non degenerated tridagon puzzles direct search

Everything about Sudoku that doesn't fit in one of the other sections

Re: Non degenerated tridagon puzzles direct search

Postby coloin » Mon Mar 17, 2025 11:44 am

champagne wrote:These four grids came into the current process.........

yes these puzzles are all in the "gray area" between minimal puzzles and max expanded puzzles.
I guess minimizing and min expanding would be one way to optimize.
In my last group there were
41774 minimals, 5585 min-expands and 1651 max expands.
coloin
 
Posts: 2556
Joined: 05 May 2005
Location: Devon

Re: Non degenerated tridagon puzzles direct search

Postby champagne » Mon Mar 17, 2025 2:06 pm

coloin wrote:
champagne wrote:These four grids came into the current process.........

yes these puzzles are all in the "gray area" between minimal puzzles and max expanded puzzles.
I guess minimizing and min expanding would be one way to optimize.
In my last group there were
41774 minimals, 5585 min-expands and 1651 max expands.


In the tridagon finder, I have no control on the order of appearance of the solutions (to be more precise, no criteria to choose the order of the UAs of size 2).
But clearing new puzzles having a subset or a superset in the previous output is easy.
More difficult is to expand a solution grid at a reasonable price before the brute force check. In my first shot, it is close to your min expand.
If we can do that, more solution grids will be erased on the <=32 cut off saving runtime of the finder and rating time.
champagne
2017 Supporter
 
Posts: 7567
Joined: 02 August 2007
Location: France Brittany

Test on the loki family

Postby champagne » Tue Mar 25, 2025 7:52 am

Test on the loki family

This test had 2 goals:

To give an estimate of the runtime in bad conditions (expected high ratings)
To show what comes out and how many hits of high rating we have in the family with the search parameters.

We have 103782 starts in 54782 solution grids of the loki family

In the full version of the run, after filters and some expansion, we get 291 grids with a skfr rating >= 10.5.
This is for the same number of solution grids.
Some will find this disappointing, but for me, this is more than expected. (BTW, skfr has no parameter to kill the uniqueness clearings)
The entire file of expanded puzzles not T&E(1) of size<=32 contains 82611 puzzles (for 103782 starts)

119 grids have a rating >=11.7.
They are likely in the gray area according to coloin’s view.

If there is another group like “loki”, we have a good chance to catch such grids using the current code.
In the last version, the direct search for this family seemed to be around 2.5 seconds per target, (1.25 per solution grid).
I started a scan of the first million solution grids (min lex rank) to see what comes out and what is the average run time for a “non loki” target, but from my old tests, rating >11.2 is uncommon


Here is the list of the 119 grids.
Hidden Text: Show
Code: Select all
...........9...47.3.2....8..6.57..1....1.67...1..4856.....14.56...8.5..75..76.84.;11.7/10.2/3.4
.........8.....34.51.........623..97...9.74.6..9.6423.....96.2....7.2....2.34.76.;11.7/10.2/3.4
...8.2....7.......53..........21..89...9.86.4....4612.9...84.6114.6.9..2...12....;11.7/10.2/3.4
.2......9..71.9...689...1....573..94...9.15.3....4571..3...4..7...3.79.1...5.....;11.7/10.3/2.6
1..5.......2........4....63.3675..18.8.3.16.5......73.....35.76...8.7..1...61..8.;11.7/10.3/3.4
1..5.......2.....7..4....63.3675..18.8.3.16.5......73.....35.76...8.7..1...61..8.;11.7/10.3/3.4
7.9.....2.3.1.......5...6.....24..61.2.3.18.4.4..6832...2.14......8.2...8..63.2..;11.7/10.3/8.3
39....2....75.1....4.........618..57...2.76.8....5612.8...75..2...8.25.....61....;11.7/10.4/10.3
..6....8.1..5.4....72...45........45.354.91.8..8.1539......8..9...1.35.4...9..8..;11.7/10.4/2.6
.2......9..71.9...689...1....573..14...9.15.3....4579..3...4..7...3.79.1...5.....;11.7/10.4/2.6
..1.....286.2......4.5.7......93..21...7.25.9..9.5137......9......1.52.7.5.3...1.;11.7/10.4/3.4
..5.........6.9...2.7....69...89..46...1.29.8....6421..4..16.8....9.8.....124.69.;11.7/10.4/3.4
.3.9.......8.....9.7...2...45.21..98...8.94.5....5412...5..8......5.19.2..14..58.;11.7/10.4/3.4
1..5.......2........4.....3.3675..18.8.3.16.5......73.....35.76...8.7..1...61..8.;11.7/10.4/3.4
1..5.......2........4.....3.3675..18.8.3.16.5......73.....35.766..8.7..1...61..8.;11.7/10.4/3.4
1..5.......2.....7..4.....3.3675..18.8.3.16.5......73.....35.76...8.7..1...61..8.;11.7/10.4/3.4
1..5.......2.....7..4.....3.3675..18.8.3.16.5......73.....35.766..8.7..1...61..8.;11.7/10.4/3.4
..9.2....1....4....6....2.3.7.....26.5.4.23.7.3..7645...7.65......7.35.....24....;11.7/10.5/2.6
.9.175...3.........4...........2..96.....62.1..6.1957..1..67.5256.2.1..9...95....;11.7/10.5/2.6
.9176..........7....2..4...5..83..76...4.75.8....5634...6..8..3.8.6.34.7...5.....;11.7/10.5/2.6
..9.45....3.......15..2.....6..8..43.....36.8....6452...8.32.6.......2.46.245.38.;11.7/10.5/3.4
.5...3.....3...6..19...7.....8.4..26.....28.4....6837.2...74......8.67.278.23..6.;11.7/10.5/3.4
.94.....2.3..........2.8...1..75..267..8.61.5....2187...5.62..7...5.7......18..5.;11.7/10.5/6.6
.94.....223..........2.8...1..75..267..8.61.5....2187...5.62..7...5.7......18..5.;11.7/10.5/6.6
.4.7.3...927..5.........7....65...81...8.63.7.....165.....58...3..1.7...85.36.17.;11.7/10.6/2.6
.917.6.........7....2..4...5..83..76...4.75.8....6534...6..8..3.8.6.34.7...5.....;11.7/10.6/2.6
.23...4...5....19..........7..86..14...7.49.66...1987.....76.8....4.8.....819.64.;11.7/10.6/3.4
5......2......4...93....7.....46..8....1.86....8.2741.....81.7..7.6.2...81.74.26.;11.7/10.6/3.4
5.1.....7....78...9...........78..64...2.68.1....1472.2...61.7....4.7...76.82.14.;11.7/10.6/3.4
.94.....2.3.......6..2.8...1..75..267..8.61.5....2187...5.62..7...5.7......18....;11.7/10.7/6.6
..91.2...2.........45.........6.....3..7.82.18....367..13.87......3.18.7.7826.31.;11.7/11.0/2.6
.3.........5.......4..72...4...6....1....86.48...4127..14.87..2...1.48.7...62.14.;11.7/11.0/2.6
1.3.....6...36.....9.....3.74.62..53...7.34.2....4576...2.36..4........5..457..2.;11.7/11.0/2.6
...2.5...8.......734..........72..96...5.62.1....1957.91..67..5.6.1.27.9...95....;11.7/11.0/3.4
...7.....45.....9..8......3..697..12...3.27.6....6193..6..23..92..6.73.1...19....;11.7/11.0/3.4
1...56.....7........8.....5..1.9..34.....4...9.4.1365..1..45.9..4.9.15.3...36.41.;11.7/11.0/3.4
31....8.......5...9......2....75..68...4.65.2....2874.4...62.8....8.7....6.54.27.;11.7/11.0/3.4
5.1.....7....78...9...........78..64...2.68.1....1472.2...61.7....4.7....6.82.14.;11.7/11.0/3.4
53....6..7......24...........142..68...6.9..1..6.81.9.1...98.4668.1.4..2...26....;11.7/11.0/3.4
78....6..2.....91....6........35..96..31.65.4....4913.....63.5....4.5....5.91.46.;11.7/11.0/3.4
........283....7...4.........417..59..59.42.7..9.5241.....19....9.2.75.1...54.9..;11.7/11.1/2.6
......95..48...6.7..26.....1......967..5.62.12...1957.....67......1.27.....95.16.;11.7/11.1/2.6
..9....4.2..457....1.....7.8..76..54...2.....6...8.72..6..42.85...5.6..7...87.46.;11.7/11.1/2.6
..91.2...2.........45..6......6.....3..7.82.18....367..13.87......3.18.7...26.31.;11.7/11.1/2.6
.4......7.68...2.....2.....3..95...1...7.23.9....315..........5..91.57.2..732.91.;11.7/11.1/2.6
.4......7.68...2.....2.....3..95...1...7.23.9....315..........5..91.57.2.5732.91.;11.7/11.1/2.6
.5.......6......749..........246..87..83.72.6..6...34.26..74..8...8.6..2...23..6.;11.7/11.1/2.6
.78........62.9...9...........1...43...5.39.23....415..23.45......3.24.5.5.91.32.;11.7/11.1/2.6
.78...5.....5......2......94..63...1...9.54.6....413..........3..91.36.5..645.91.;11.7/11.1/2.6
.78...5.....5......2......94..63...1...9.54.6....413..........3..91.36.5.3645.91.;11.7/11.1/2.6
.9.....3......1....42...7.....81..5....5.61......3786..63.58.7...87.3.....516.38.;11.7/11.1/2.6
.917.6..............2..4...5..83..76...4.75.8....6534...6..8..3.8.6.34.7...5..68.;11.7/11.1/2.6
4..........96.2....3....6....519..82..82.65.1..1...96......1..551.8.92.6...5..81.;11.7/11.1/2.6
4.......2.89....4....1.4......41..37...2.61.4....3762..6..42.73.7.3.1..6.........;11.7/11.1/2.6
4.......2.89....4....1.4......41..73...2.61.4....3762..6..42.37.7.3.1..6.........;11.7/11.1/2.6
7..15.....94...1.5..2...6.8.7.51..86......3.1.8..6375.....85......6.18.....37.5..;11.7/11.1/2.6
7..5......94...1.5..2...6.8.7.15..86......3.1.8..6375.....85......6.18.....37.5..;11.7/11.1/2.6
.........36....27.8......5...241..95..49.27.1....7542.....91......5.49...9.72.51.;11.7/11.1/3.4
..62.....18......2.7....5.45..34..96.9....2.363..2945.....63..9...4.2..5...95....;11.7/11.1/3.4
.15....7............2...86....97..3.9..4.37..3...6894.....46..3...8.94.7.4.73.68.;11.7/11.1/3.4
.94.....7...7.6...............57..18...2.16.51...6872...1.25.7....8.7....2761.58.;11.7/11.1/3.4
.94.....7.1...6...............57..18...2.16.51...6872...1.25.7....8.7....2761.58.;11.7/11.1/3.4
3.......29.4..........71......72..86...6.52.1....1857...5.67.286.81.2..5......16.;11.7/11.1/3.4
8............71....45.....796.75..12...1.26.9.2....57.....27.96...6.5..1..691..5.;11.7/11.1/3.4
.15...64....4.1.....9.........81..26...7.21.4....4687.7...24.8....6.8.....217.46.;11.7/11.2/3.4
..9.45....3.......15..2........8..43.....36.8....6452...8.32.6.......2.46.245.38.;11.7/11.3/3.4
.3.9.......8...9...7...2...45.21..98...8.94.5....5412...5..8......5.12.9..14..58.;11.7/11.4/3.4
7..5......94...1.5..2...6.8.7315..86......3.1.8..6375.....85......6.18.....37.5..;11.7/11.5/2.6
.94.....223.......6..2.8...1..75..267..8.61.5....2187...5.62..7...5.7......18....;11.7/11.5/3.6
.97.....1...7.3....2..........18..75...3.78.6....5613.6...75.135..6.1..8...83....;11.7/11.6/3.4
........77896.......1..7...1......725..7.61.33...1256......3.2...32.57.6...1..35.;11.7/11.7/2.6
..4...8...3.....1...25.....2..67..85...8.1...7...2516..2..56.7....7.2.....718.62.;11.7/11.7/2.6
..4...8...3.....1...25.....7..62..85...8.1...2...7516..2..56.7....7.2.....718.62.;11.7/11.7/2.6
..9.2....12...4....6....2.3.7.....26.5.4.23.7.3..7645...7.65......7.35.....24....;11.7/11.7/2.6
..91.2...2.........458.6......6.....3..7.82.18....367..13.87......3.18.7...26.31.;11.7/11.7/2.6
.3.........5.......4.872...4...6....1....86.48...4127..14.87..2...1.48.7...62.14.;11.7/11.7/2.6
3..2.1...7.18.6.........1.8..952...6...1.89.5....692..6....5....5.6.28.1.2.9.....;11.7/11.7/2.6
31..................5726.......5..48..8..45.7..4.7826.4...62.8....8.7...68.54.72.;11.7/11.7/2.6
4.....1.79.....5...6.75.....3.57..81.1.8.67.3.8....65.....85......1.73.5...36.8..;11.7/11.7/2.6
45......9............896.....19...72...1.26.8.....791..1..78.9.8..2.9...79.61.82.;11.7/11.7/2.6
78.4.6.........4.7.1.2.7...3..52...6...7.43.5....632...6...5.....56.27.4..23.....;11.7/11.7/2.6
.......8.9.3..........25....4.25..76...4.65.8....7824.4.6.87.2....6.2.....754.86.;11.7/11.7/3.4
.......9.8.2.....3..5..4......93..51...5.64.9.5..4136.5...69.3....1.3.....645.91.;11.7/11.7/3.4
.......9.8.2.....3..5..4......93..51...6.54.9.5..4136.5...69.3....1.3.....645.91.;11.7/11.7/3.4
..1.....85..8.......7....3.4.598..23...3.25.42.....89.....38.4....4.93.2...52.98.;11.7/11.7/3.4
..1.57....2.....3.4.......6..657..91......7.3..9.3156.....63......1.5..95..79..1.;11.7/11.7/3.4
.12...37............5...86.3..96..489..4.37.6....7893.....46......8.94.....73.68.;11.7/11.7/3.4
.15....6....4.1.....9.........81..26...7.21.4....4687.7...24.8....6.8.....217.64.;11.7/11.7/3.4
.15....6....4.1.....9.........81..26...7.21.4.2..4687.7...24.8....6.8.....217.64.;11.7/11.7/3.4
.15...37............2...86....97..3.9..4.37..3...6894.....46......8.94...4.73.68.;11.7/11.7/3.4
.85.....4.......9.....43......49..21...2.73.92...3147..2..79.4....1.4.....732.91.;11.7/11.7/3.4
.9....6.3.2......8.....8...1..63..757..5.18.6....8713.....53.....58.63.7...71.5..;11.7/11.7/3.4
.9....86.53....7.............461..82...2.74.6..2.8417.....26.1....4.1......87..4.;11.7/11.7/3.4
.9....86.53....7.............461..82...2.74.6..2.8417.....26.1....4.1...1..87..4.;11.7/11.7/3.4
2........5.1....3.....49......49..76...8.79.3....3648.8...73......6.4...4.798.36.;11.7/11.7/3.4
2.5.....4.......3......9......43..86...8.79.3.8..9647.8...73.4....6.4...4.798.36.;11.7/11.7/3.4
9.......5..4.......6.7.8......5...62.5.2.18.7.2...615.....25.....18.7..68..61..7.;11.7/11.7/3.4
.....7...427.......9....73...681..5....5.61....5.7386.36.....7.85.7.13.6......58.;11.7/4.5/2.6
..6....8.1..5.4....72....4........54.3.4.91.8..8.1539......8..9...1.34.5...9..8..;11.7/4.5/2.6
..6....8.1..5.4....72...45........45.3.4.91.8..8.1539......8..9...1.35.4...9..8..;11.7/4.5/2.6
..6...98.1..5.4....72...45........45.3.4.91.8..8.1539......8..9...1.35.4...9..8..;11.7/4.5/2.6
..6...98.1..5.4....72...54........54.3.4.91.8..8.1539......8..9...1.34.5...9..8..;11.7/4.5/2.6
.4.7.3...927.1..........7....65...81...8.63.7.....165.....58...3..1.7...85.36.17.;11.7/4.5/2.6
2........3...61...94..58.......7..56......2.7..7.2.18..6..87.2.7..6.25.88..51....;11.7/4.5/2.6
2........3...61...94..58.......7..56......2.7..7.2.18..6..87.2.7..6.28.58..51....;11.7/4.5/2.6
295..............27..264...4..81..26...7..4.11...4.87..61.27......6.12.7...48....;11.7/4.5/2.6
34.....2................156..7....15..61.27.9..9.7526.9...56......7.96.....21.59.;11.7/4.5/2.6
34.....2.6..............1.6..7....15..61.27.9..9.7526.9...56......7.96...6.21.59.;11.7/4.5/2.6
34.....2.6..............156..7....15..61.27.9..9.7526.....56......7.96...6.21.59.;11.7/4.5/2.6
4.6....8.1..5.4....72....4........54.3.4.91.8.48.1539......8..9...1.34.5...9..8..;11.7/4.5/2.6
7.9...45....54......1...3.....62...5...3.42.8.2..856..........46..8.25.33..45.86.;11.7/7.1/3.4
..5713....9.......12..........18..755..3.76.8....5613...8.75..6.5.8.1..3...63....;11.7/8.9/2.6
.4......7.68...2.....2.....3..95...15..7.23.9....315..........5..91.57.2.5732.91.;11.7/8.9/2.6
.78...5.....5......2......94..63...13..9.54.6....413..........3..91.36.5.3645.91.;11.7/8.9/2.6
.23...6.54.........8....7...3157..64.653.41.7......35.....45..1...1.7..6...63....;11.7/9.0/2.6
...9.6...4........86.....5....19..75...3.76.9....6513...7.39.1....5.1...3..67.59.;11.8/11.6/3.4
.5.....21...6.2....3......6.24....67..12.64.8..8.7421.....61.7....7.8..2...42..8.;11.8/11.8/2.6
...9.6...4........86.....5..3.19..75...3.76.9....6513...7.39.1....5.1...3..67.59.;11.8/11.8/3.4
..58......2.1.....3.....7.8...31..76.674.83.1......48.....81.47...6.4..34..73..6.;11.8/11.8/3.4
champagne
2017 Supporter
 
Posts: 7567
Joined: 02 August 2007
Location: France Brittany

Start of the scan on solution grids.

Postby champagne » Tue Mar 25, 2025 9:10 am

Start of the scan on solution grids.

More than a test, this is a start of the scan of solution grids to try to detect a new “loki” family.

We expect in average 0.5 “loki patterns” per solution grid. The scan start with the first million of min lexical grids, all of them starting with the band 1 (index 0).
Here, the number of “loki patterns” is much higher in average 3.32 per solution grid for the first 100 000.
As the band 1 has a high potential to produce the first band or the first stack of the magic square, this was expected.

The ratio decreases slowly in this first million grids, but remains over 2.5. It goes down to 1.96 for the second million solution grids.

I run the test on a mix of old computers, so the runtime per solution grid is not easy to establish, but on an old i7 4770 3.4Gh, it seems to be around 2.5 seconds per target with 5 cores working in parallel.

The output is a list of grids not solved in T&E(1) and not solved with some easy steps of a quick solver.
The grids are cleared if they can be expanded to more than 32 clues (nearly no chance to get then a high rating).
The output is the expanded form with most of the redundancy cleared.

2 chunks are closed:

The first 100 000 solution grids
The solution grids 100 001 to 400 000

The chunk 400 001 to 1 000 000 in ongoing.


The first chunk produced 266 431 records, 2546 of them rating skfr >=10.5
The second chunk produced 488 954 records, 7906 of them rating skfr >=10.5

I just keep here the ratings >=11.3

Code: Select all
2.4.5..............7....63..8.13..56...7.81.3....6578.5...83.1....6.1...8..57..6.;11.3/2.0/2.0
.3..47...6.1....9.8.........2.45..79.5.7.92.3....2354.....94...2..3.5..7...27..3.;11.6/10.4/3.4

.......8...4.5......23........87....1.35.68.7.8..1356.....81.766..7.53.8.7863.1..;11.4/11.0/2.6
.62...8...4.5.9...............31..544..9.83.11...4598..14.53.98.9.4.1..3...89....;11.4/11.4/3.4
.......4.....39...6.2.......8.31..54.5.9.83.1....4598.5.1.84.3....1.3...3.859....;11.4/2.0/2.0
...2.1...34....1..8.1...5....679..12...1.26.5....6597.....27......5.9...97.61..5.;11.5/10.4/2.6


More can be sent by mail to anybody willing to work on a big file.

The third chunk could be closed end of this week.
champagne
2017 Supporter
 
Posts: 7567
Joined: 02 August 2007
Location: France Brittany

Re: Start of the scan on solution grids.

Postby coloin » Tue Mar 25, 2025 12:05 pm

champagne wrote:The grids are cleared if they can be expanded to more than 32 clues (nearly no chance to get then a high rating).

Unfortunately I have many minimal TE3 puzzles which do expand higher than 32 clues
Code: Select all
....567.....1..2..6.927....2.1...95......7.3.....6.1.8.12......59.......7.6..1..5
expands to
12..567.....1.92..6.927.5..2.1...95.....17.32....621.8.12..5...59.......7.6..1..5 #  9527 FNBP C34
coloin
 
Posts: 2556
Joined: 05 May 2005
Location: Devon

Re: Non degenerated tridagon puzzles direct search

Postby champagne » Tue Mar 25, 2025 2:12 pm

This one have a skfr rating 11.6, so yes, the limit is likely too low, but this is also true for the limit to 26 clues..

Pushing the cutoff to 34 as here will increase significantly the number of puzzles to rate.
The effect on the finder runtime should not be too big.

If the target is to detect one new family, the current limit could be sufficient.
I keep it for the first 2 000 000 solution grids

Pushing the limit to 27 clues would be costly for the finder. I don't have the power to scan with such parameters.
champagne
2017 Supporter
 
Posts: 7567
Joined: 02 August 2007
Location: France Brittany

Re: Non degenerated tridagon puzzles direct search

Postby champagne » Tue Mar 25, 2025 2:21 pm

The chunk 400 001 1 000 000 is not closed, but I already got these ones
Code: Select all
.62..1....3......784......5..612..79...7.95.6..9.5621.6...97..2...6.5..1...21....;11.6/10.1/2.6
..8.......34...5.....72.......21..561..5.67.9....7912..61.92.75.9.6.7..1...15....;11.6/11.1/3.4
.78....42...4.8...3..........921..64...8.92.1....4689..6..92.1....1.4...91.68.42.;11.7/11.0/3.4
champagne
2017 Supporter
 
Posts: 7567
Joined: 02 August 2007
Location: France Brittany

Re: Non degenerated tridagon puzzles direct search

Postby champagne » Thu Mar 27, 2025 4:31 pm

The chunk is now closed, nothing more over 11.3

Code: Select all
9.58...4........86.3..........64..32..63.27.8....7846.....86.24..24.78.3...23.6..;11.3/10.2/2.6
6.2.5...4...........5418......89..13..35.48.9....3154..3...9..1...3.54.8...1..39.;11.3/11.3/2.6
5....1....3.8......4..6.....2.....984.....1.2..9...46...4.86.2181.2.49.6...19....;11.3/11.3/3.6
........4....82...53..1.......89..46..62.18.9..9.6421.61..49..2.9.6.8......12....;11.3/2.0/2.0
......1.4.....2...53..1.......89..46..62.18.9..9.6421.61..49..2.9.6.8..1...12....;11.3/2.0/2.0


Next chunk is for solution grids 1000k 2000k
Hope to get if in 2 weeks
champagne
2017 Supporter
 
Posts: 7567
Joined: 02 August 2007
Location: France Brittany

Re: Non degenerated tridagon puzzles direct search

Postby coloin » Sat Mar 29, 2025 2:48 pm

from your file of 21375 expanded puzzles
these were from 12261 solution grids.
8556 had one puzzle per solution grid
the remaining puzzles had 2 to 38 puzzles per solution grid.

there were 2 TE3 puzzles in the collection [one in mith's the other new]
Code: Select all
..8.......34...5.....72.......21..561..5.67.9....7912..61.92.75.9.6.7..1...15....#TE2       
.78....42...4.8...3..........921..64...8.92.1....4689..6..92.1....1.4...91.68.42.#TE2     
                                                                                       
12....7.9.56...12.7.91...56.....8...5...34.........27..75.619.2......51...1.9..67#TE2 [can] ED=11.7/11.2/3.4
12.....894.6..912..89...4.62.4.78..........48...3......4291.86...1.6.9.2.......14#TE2 [can] ED=11.7/11.1/3.4

there were 4 TE2 BxB 6 puzzles
Code: Select all
.62..1....3......784......5..612..79...7.95.6..9.5621.6...97..2...6.5..1...21....#6  ED=11.7/10.2/2.6     
.62...8...4.5.9...............31..544..9.83.11...4598..14.53.98.9.4.1..3...89....#6  ED=11.5/11.5/3.4     
...2.1...34....1..8.1...5....679..12...1.26.5....6597.....27......5.9...97.61..5.#6  ED=11.7/10.6/2.6     
.3..47...6.1....9.8.........2.45..79.5.7.92.3....2354.....94...2..3.5..7...27..3.#6  ED=11.6/10.6/3.4
                                                                                         
12...67.9.56..912.7.9....5621.......6.5.....1.976....2..1.62.......3...7...84...5#6 [can]ED=11.6/10.2/2.6
1.345....45..891...891.34...143...9.53.89..149.8...........8.62.95....4..........#6 [can]ED=11.5/11.5/3.4
12..56....567.9...7.912...621............134......58.1.72......59.......6.15..97.#6 [can]ED=11.7/10.6/2.6
.2.45.7.9.5.7.9.23....2345.2..3.5..7....94......27.3...3..47...6.1...9..8........#6 [can]ED=11.6/10.6/3.4

There were 179 TE2 BxB 5 puzzles one of which upgraded to a BxB 6 after minimizing and expanding.
Code: Select all
1..45..894...891.3.8.1.345.......39867.9....4............89...1..13.4.......15...#6 ED=11.6/11.6/2.6
 
1..45..8945..891.3.8.1.345.......39867..3...4....4.......89...1..13.4.......15...#5 ED=11.1/11.1/2.6
1..45..8945..891.3.8.1.345.......39867.9....4............89...1..13.4.......15...#5 ED=11.1/11.1/2.6

....567.9...7.912...912..5621..67.95.....261.6...1.2.7....7....84.6........2.5...#5 ED=11.0/11.0/8.9       
....5678....78.1.3...1.3.562.4...6.5....6....9.......83.8.15.6....63.8.1...8.753.#5 ED=11.1/11.1/10.5
....5678....78.1.3.8.1.3.562.4..5.............7....63....61....5...38.1.8..5.736.#5 ED=11.2/10.6/3.4
....5678....78.1.3.8.1.3.562.43..........1.3..3..7.6.........615...173.88..63.5..#5 ED=11.1/11.1/2.6
....5678....78.1.3...1.3.562.43..........1.3..3..7.6.........615...173.88..63.5..#5 ED=11.1/11.1/2.6
....5678....78.1.3.8.1.3.562.4...........1....3..7.6.........615...173.88..63.5..#5 ED=11.1/10.6/2.6
....5678....78.1.3...1.3.562.4...........1....3..7.6.........615...173.88..63.5..#5 all ED ~11.1  .. 

Hidden Text: Show
Code: Select all
....5678..5.78.1.3...1.3.562.4..5............9...1.6.....5.1.675.786.31.....375..#5
...4.678....78..23....234.6.1.....3..9.......6..3.8......6.28.4..2.743...4.83..72#5
...4.678...678..23.8..234.6.1......85.........6.24....37.6.28..6..83..72....74...#5
...4.678....78..23....234.6.1.....3.......6...95.3..........8.2..72..34..423.8.67#5
...4.678.4..78..23....234.6.1.....3.......6...95.3..........8.2..72..34..423.8.67#5
...45..89....891.3..91.345.2..........8..1...6...4.......93..14.3...49.5....1583.#5
...45..89....891.3..91.345.2..........8..1...6...4.......93..14.3...49.59...1583.#5
...45..89....891.3...1.345.2..........8..1...6...4.......93..14.3...49.59...1583.#5
...45..894...891.3..91.345..143.59.8...89......8.145..3..........29.1....6.5.....#5
...45..894...891.3..91.345..143.59.8...89......8.145..3..........29......6.5.....#5
...45..894...891.3..91.345..143.59.8...89......8.145..37....8.....5.8.....2......#5
...45..894...891.3..91.345..143.59.8...89..14..8...5..37....8.....5.8.....2......#5
..34.678.4..78..23....234.6.1.8.7...........2.95...8......6824......43.7...37..68#5
..345.7.9...7.9.23..9.2345..1.....7..6.2.....9....7....9..7..42....4259....9.53.7#5
.2....78...6....237.....4.62...678.4.678.4.3....23.67...5........2348....1.......#5
.2..567.9...7.912....12..56.14.7..........61...8......5...9..72...5.796...726.5.1#5
.2..567.9...7.912....12..56.14.7..........61...8......5...9..72...5.796.9..26.5.1#5
.2..567.9..67.912....12..56...59.6.7....12..5...6.721.34......2.......7..9...5...#5
.2..567.9..67.912....12..56.1.59.6.7....12..5...6.721.34......2.......7..9...5...#5
.2.4.6.89....8912..8.12.4.6..........9.614...5.7....4......18.28..9.2.64..28...1.#5
.2.4.6.89....8912....12.4.6..........9.614...5.7....4......18.28..9.2.64..28...1.#5
.2.4.6.894...8912...912.4.6......6..3.7...8.........4.....619.8..894..1....8.2.64#5
.2.4.678.4..78..23....234.6...63.....75....6.9............642.86......3.8.237.64.#5
.23...7.945.....237.9...45.2.4....9..3529....97..4...23....5......81.93.....6.2..#5
.23...7.945.....237.9..345.2.4..7.3.37..4.9.2.95.3....5.7.............9.9...683..#5
.23...7.945...9.237.9...45.2.4......37.9.25.4.953....2...6.1....47...........7..5#5
.23...7.945...9.237.9...45.2.4...39..359....497...45.2.......455..6.1.....7......#5
.23.5.7.945.....237.9...45......8.........34..376.....37.2..5.45.2...93..9.5...72#5
.23.5.7.945.....237.9...45......8.........34...76.....37.2..5.45.2...93..9.5...72#5
.23.5.7.945.....237.9...45.2.4..59..37....5.2.952...47...6.7.9..3.......9....1...#5
.23.5.7.945.....237.9...45.2.4..7...37..4...2.952.....5..8.1.9.......2.5.3.......#5
.23.5.7.945.....237.9...45.2.4..73...75...29.93.....47..2...........89.2.9.2.1...#5
.23.5.7.945.....237.9...45.2.4..73...75...29.93.....47..2...........89.2...2.1...#5
.23.5.7.945.....237.9...45.2.43..9..39...2.47.75...23....8.1..4......392.........#5
.23.5.7.945.7...237.9...45.2.4..73...75...29.93.....47..2...........89.2...2.1...#5
.23.5.7.945.7...237.9..345.2.43...95.35...2..97....34..42.........8.1.......3....#5
.234..7.945...9.237.9..345.2.4.9.3.7..53..29........45....6.5.2.....7......8....4#5
.234..7.945.....237.9..345.2.4.9.3.7..53..29........45....6.5.2.....7......8....4#5
.234..7.945.7...237.9...45.2.4....9..35.....497...4..23........54..61.3......72..#5
.234..7.945.7...237.9...45.2.4.7.9..39.....74.75...23.....6.........1...9425.....#5
.234..7.945.7...237.9.2.45.....6....5....1......2....537..4.59...5....34.94...2.7#5
.234..78.4.6....2378..2.4.6..........7..91....3.6.....34....2.8.67..2.348.2..4.7.#5
.234..78.4.6....2378..2.4.6....9....63..........8.13..3.2.......47.3.6..86..7423.#5
.234..78.4.67...2378....4.6.....5..86...........61..7.34....8.2.62....478.7..4.3.#5
.234.6...4.678....78..23..6...3...9...7....1.........437.8.426.8.267.....6..328..#5
.234.6...4.678....78..23......3...9...7....1.........437.8.42..8.267.....6..328..#5
.234.6...4.678....78..23......3...9...7....1.........437.8.426.8.267.....6..328..#5
.234.6...4.678....78..23..6..4..89.5.68.............3.6..3.2...83..74..2.4286....#5
.234.6...4.678....78..23..62.4......37.8.46.2.68..23...47...........8.......4.9.1#5
.234.6...4.678....78..23..62.4......37.8.46.2.68..23...47...........8....3..4.9.1#5
.234.6...4.678....78..23..62.4......37.8.46.2.68..23...47...........8...8...4.9.1#5
.234.6...4.678..2.78..23..62.436.8..67.8.4....38..26..3..........7..........3.9.1#5
.234.6.8.4.678....78..23...2.4......37....6...68.743.2..........42...971.3......5#5
.234.6.8.4.678....78..23...2.4......37....6...68.743.2...........2...971.3......5#5
.234.6.8.4.678....78..23..6...3.7......26.....3..48...362......84..3.9.5.......3.#5
.234.6.8.4.678..2.78..23..623..78.....726....6.83.4....7....9...6....5......37...#5
.234.6.8.4.678..2.78..23..623..78.....726....6.83.4....7....9........5......37...#5
.234.6.8.4.678..2.78..23..623..786....726....6.83.4....7....9........5......37...#5
.234.6.8.4.678..2.78..23..623..78.....726....6.83.4...3.....9........5......37...#5
.234.6.8.4.678..2.78..23..623..786....726....6.83.4...3.....9........5......37...#5
.234.67..4.678....78..23...2.436....67...2.4..38.47....4....2.1...2...9.8.2......#5
.234.67..4.678....78..23..6.....79.....8.2.1...8.........2.48...42..863.8.736....#5
.234.67..4.678...378..23...2......9.3.8.....1...2...6.63..72...8..3.4....4.86..3.#5
.234.67..4.678...378..23...2......9...8.....1...2...6.63..72...8..3.4....4.86..3.#5
.234.67..4.678...378..23...2.4....9.3.......1...2...6.63..72...8..3.4....4.86..3.#5
.234.67..4.678...378..23...2.4....9.........1...2...6.63..72...8..3.4....4.86..3.#5
.234.67..4.678...378..23...2.436....37...4.6..68.72...............2...91842......#5
.234.678.4.678..2.78..23..623..78.....726....6.83.4....7....9........5......37...#5
.234.678.4.678..2.78..23..623..78.....726....6.83.4...3.....9........5......37...#5
.2345....45.7.9...7.9.23......37...5.....581...5......53..479...4293....9..5.23..#5
.2345....45.7.9...7.9.23......37...5...2.581...5......5..9.23...4253.9......47...#5
.2345....45.7.9...7.9.23......37...5...2.581...5......5..9.234..4253.9......47...#5
.2345....45.7.9..37.9.23...2.4......37.5...9..95...3..5.2.4.61....2.....94......2#5
.2345....45.7.9...7.9.23...2.4......37.5...9..95...3..5.2.4.61....2.....94......2#5
.2345....45.7.9..37.9.23...2.43.7.9.3...45.....52..3..547...............9.25..81.#5
.2345....45.7.9.2.7.9.23.5.2.439....37....9...95.7......72..6.1..2..........472..#5
.2345...945.7.9...7.9.23...2.4......37.5.29...95..43....2...6.1.47.........2.5..7#5
.2345...945.7.9..37.9.23...2.45.7.....539....93..42....42...8........61.....7....#5
.2345.7..45.7.9...7.9.23.....43...7..7529...4.3..74...392...5............4..3..61#5
.2345.7..45.7.9...7.9.23.....43...7..7529...4.3..74...392...5...............3..61#5
.2345.7..45.7.9...7.9.23.....43...7..7529...4.3..74...392...5............4.....61#5
.2345.7..45.7.9...7.9.23.....43...7..7529...4.3..74...392...5..................61#5
.2345.7..45.7.9...7.9.23.5.2.439.....75.4..3.93.5.7...........2.9....81..42......#5
.2345.7..45.7.9...7.9.23.5.2.439.....75.4..3.93.5.7.....2............81....9.5..2#5
.2345.7..45.7.9...7.9.23.5.2.439.....75.4..3.93.5.7.....2............81....9....2#5
.2345.7..45.7.9...7.9.23.5.2.439.....75.4..3.93.5.7.....2.......9....81....9....2#5
.2345.7..45.7.9..37.9.23.....43...7..7529.....3..74...392...5............4.....61#5
.2345.7..45.7.9..37.9.23.....43...7..7529.....3..74...392...5..................61#5
.2345.7..45.7.9..37.9.23.5.2.439.....75.4..3.93.5.7.....2............81....9....2#5
.2345.7..45.7.9.2.7.9.23.....43...7..7529.....3..74...392...5............4.....61#5
.2345.7..45.7.9.2.7.9.23.....43...7..7529.....3..74...392...5..................61#5
.2345.7..45.7.9.2.7.9.234..2.43......35.74...97.5.2...397..........3.8.1.........#5
.2345.7.945.7...237.9...45.2.4...39..35.....497......23....7.......12.......6....#5
.2345.7.945.7...237.9...45.2.4.3.97.37....2...95....34....6...7..7.1....9........#5
1..45..89.5..891.3.8.1.345.2..........7.......9.3.4........18.58.19.5.34..58...1.#5
1..45..89.5..891.3...1.345.2..........7.......9.3.4........18.5..19.5.34..58...1.#5
1..45..89.5..891.3...1.345.2..........7.......9.3.4........18.58.19.5.34..58...1.#5
1..45..89.5..891.3.8.1.345.2..........7.......9.3.4........18.58..9.5.34..58...1.#5
1..45..89.5..891.3...1.345.2..........7.......9.3.4........18.58..9.5.34..58...1.#5
1..45..89.5..891.3.8.1.345.2..........7.......9.314........18.5...9.5.34..58...1.#5
1..45..89.5..891.3...1.345.2..........7.......9.314........18.5...9.5.34..58...1.#5
...45..89.5..891.3.8.1.345.2..........7.......9.314........18.58..9.5.34..58...1.#5
...45..89.5..891.3...1.345.2..........7.......9.314........18.58..9.5.34..58...1.#5
1..45..89.5..891.3.8.1.345.2..........7.......9.314........18.58..9.5.34..58...1.#5
1..45..89.5..891.3...1.345.2..........7.......9.314........18.58..9.5.34..58...1.#5
1..45..894...891.3..91.345..143.59.8...89......8.145..3..........29......6.5.....#5
1..45..894...891.3.8.1.345.........8..7.9.....6....3.....91.8.4...5.893..9..34..5#5
1.3....8945........891.345..14.9.8..83..4159.9.5....14..8..2..55....7.3..........#5
1.3....8945....1.3.89...45.....7...55..9.......8..2...39..4.5.1.45....3.8.1.3594.#5
1.3....8945....1.3.89...45..1..675.8.95.........5....1.41...9.5.....481...8.1..34#5
1.3....8945....1.3.89...45..14...8.53.8.1..94.9..4831.....62..1...9..5.........3.#5
1.3....8945....1.3.89...45..14...8.53.8.1..94.9..4.31.....62..1...9..5.........3.#5
1.3....8945...91.3.89...45..1..675.8.95..............1.41...9.5.....481...8.1..34#5
1.3...78..567.....78.1.3.56......8.58.7..561...5....37.......6...16.2...6.8..4...#5
1.3...78..567.....78.1.3.56.1....8.58.7..561..65....37.......6...13.2.....8..4...#5
1.3...78..567.....78.1.3.56.1....8.58.7...61..65....37.......6...13.2.....8..4...#5
1.3...78..567..1.378.1...56.....78.58.7...31...5....673.8.7....5.1.42.........5..#5
1.3..678..56...1.378...3.56.1.3..6.536....81.8.5....375......7....9........2..5.1#5
1.3..678..5678.1.378...3.56....9.......2....8..5..7...57....83.6.8....1..31...6.5#5
1.3.5..8945....1.3.89...45...4..5.9....6......3...2..13..5.18.4......91..418...35#5
1.3.5..8945....1.3.89..345..14...93...5...8.48......155....2..1.4..3..9....6....8#5
1.3.5..8945....1.3.891..45..14....95.3....8.1..8...34.34.9.2.........9..89...7...#5
1.3.5..8945....1.3.891..45..14...9.53......1889....34......7..1.4....8.....26...4#5
1.3.5..8945..8.1.3.89...45..1.........82.7.......9...83.1...9.58....5.41.45...83.#5
1.3.5..8945..8.1.3.89...45..14...9.5.3....84.8.5....3134...2.......1..9....6.....#5
1.3.5..8945..8.1.3.89...45...4..89.5.3....84.8.5....31.4...........1..9....6.2...#5
1.3.5..8945..8.1.3.89...45..14..89.5.3.5.184........31.4.............39....6.2.1.#5
1.3.5..8945..8.1.3.89...45..14..89.5.3.5.184........31.4.............39....6.2...#5
1.3.5..8945..8.1.3.89...45..14..89.5.3.5.184........31.4...5..........9....6.2..4#5
1.3.5..8945..8.1.3.89...45..14..89.5.3.5.184........31.4...5..........9....6.25..#5
1.3.5..8945..8.1.3.89...45..14..89.5.3.5.184........3134...5..........9....6.2...#5
1.3.5..8945..8.1.3.89...45..143.89.5.3.5.184........31.4.............39....6.2...#5
1.3.5..8945..8.1.3.89..345..14..89.5.3.5.184........31.4.............39....6.2...#5
1.3.5..8945..8.1.3.891..45..14...89..3.....158.5...3.43...72.........938.........#5
1.3.5..8945..8.1.3.891..45..14..89.5.3.5.184........31.4.............39....6.2...#5
1.3.5.78..56...1.378.....56...3.8.6553....8.16.8.1.37.36.2........9...37.........#5
1.3.5.78..56...1.378.1...56......5.75.8...31...7....683...428.1...8.....871......#5
1.3.56....5678....78.1.3......3...9.3.....8.....6....453..61..76..5.7.1..7183.5..#5
1.3.56....5678...378.1.3..6.....5......67.2...6.....9.5...618..6.85.7....7183....#5
1.3.56....5678.1..78.1.3.5......89...........8..5..26.36.8.75.15.8.1...7....35...#5
1.3.56....5678.1..78.1.3........89...........8..5..26.36.8.75.15.8.1...7....35...#5
1.3.56.8..5678.1.378............8...5.......4.3......236..1..788.16.7....7583.6..#5
1.3.56.8..5678.1.378......6.....8...5.8.....4.3....8.2.6..1..7...16.7....7583.6..#5
1.3.567...5678.1..78.1.3.5..1.3.8..56.5.17...83.56...........9...8.....7...8...4.#5
1.3.5678..567..1.378.1...56.1....5.88.7...31..35....67...6..8..5....2.......4....#5
1.3.5678..5678.1..78.1.3......3....5..5............24.36.8.7...5.163.....78.1..6.#5
1.34...8945....1.3.89...45..14...3.8.3..1459.9.5......39.......5...729.....9....5#5
1.34...8945....1.3.89...45..14.3.9.553....8..9.8....31....67.9......2.1.89.......#5
1.34...8945...91.3.89...45...467.3..3.8................3....81.8.1.3.9.494.....35#5
1.345....45..89..3.891.3....1.93....53..48...9....1.3...5..46.2.........841.....5#5
1.345....45..89..3.891.3.5...4....6.....412..5.........3591.8..84..3....9.18.4...#5
1.345....45..89..3.891.3.5..14..5.9.3.8.915..59...........38....3..1.26...1......#5
1.345....45..89..3.891.3.5..14..5.9.3.8.915..59...........38....3..1.26..........#5
1.345....45..891...891.3....143...9853.89..149.8........59...6..9...8.7..........#5
1.345....45..891...891.34...143.8...8..59..419.5.........8...625.8.....4........7#5
1.345...945..89....891.3......3.5...39..4..155.8.91.4.............93....9..5...72#5
1.345...945..89....891.3......3.5...39..4..155.8.91.4...5.........93....9..5...72#5
1.345...945..89....891.34...143.8...39..1....5.8.94.1..35.........9.....9......62#5
1.345...945..89..3.891.345......5.6.......2....8.....4.319.8...84.53....9.5.1....#5
1.345..8.45..89..3.891.3.....4....6.....412..8........54..3.....3891.5..9.15.4...#5
1.345..8.45..89..3.891.3....1...........1.6.79........34.5.1....95..83..8.139.5..#5
1.345..8.45..89..3.891.3.5..14..8...3.5.918..89........3..1.26.....35.....1......#5
1.345..8.45..89..3.891.3.5..14..8...3.5.918..89........3..1.26.....35............#5
1.345..8945........891.34...14.3....39.8.1...5.894..1..4........3...4.729.5......#5
1.345..8945........891.34...14.3....39.8.1...5.894..1..4............4.729.5......#5
1.345..8945..89....891.34...143.8...3.5.91...89.5....1....1..62....3......1......#5
1.345..8945..89....891.34...143.8...3.5.94...89.5....4.......62....35.....1......#5
1.345..8945..89....891.34...143.8...3.5.94...89.5....4.......62....3......1......#5
12.....894.6...12..89...4.62...78..........48...3......4291.86...1.6.9.296.....14#5
12.....894.6...12..89...4.62.4.78..........48...3......429..86...1.6.9.296.....14#5
12.....894.6..912..89...4.6..4............8.28...35....48.9126...1.6.9.4.......18#5
12.....894.6..912..89...4.6..4............8.28...356...48.9126...1.6.9.4.......18#5
12.....894.6..912..89...4.6..43.8.........842....7......1.4.96..42....1896....2.4#5
12.....894.6..912..89...4.6..43.8.........842....7......1.4.96..4269..18......2.4#5
12.....894.6..912..891..4.6..4............8.28...35....48.9126...1.6.9.4.......18#5
12.....894.6..912..891..4.6..4.78.........248...3......429..86...1.6.9.........1.#5
12.....894.6...12..891..4.6..4.78.........248...3......429..86...1.6.9.........1.#5
12.....894.6..912..891..4.6..4.78.........248...3......4291.86...1.6.9.........1.#5
12.....894.6...12..891..4.6..4.78.........248...3......4291.86...1.6.9.........1.#5
12.....894.6.8.12..89...4.6.1...........75.1....2..6.8.42...96...1..48.289.....41#5
12.....894.6.8.12..89.2.4.621.5.7.9.......24......2....4...89..6.....8.489.....12#5
12.....894.6.8.12..891..4.62..3.5.......9...........12.42.....18.1...64.96....2.8#5
12....7.9.56...12.7.9....5621..7.96..659..2.79....2.15..1.........83..........67.#5
12....7.9.56...12.7.9....5621..7.96..659..2.79....2.155.1.........83...........7.#5
12....7.9.56...12.7.9....5621..7.96.6.59......97.1.5.....2..6..5.2........1.34...#5
12....7.9.56...12.7.9....5621..7.96.6.59......97.1.5.....2..6..5.2..........34...#5
12....7.9.56...12.7.9....5621.5.79...67...5.29.5....71.9............8.1....3.429.#5
12....7.9.56...12.7.9.2..56...3..6..69..1.........4....62....755.1..796.97.5....1#5
12....7.9.56...12.7.91...56.1..6.59.5.7.9.6.169..1..72..584..........26..........#5
12....7.9.56...12.7.91...56.1..6.59.5.7.9.6.1....1..72..584..........26..........#5
12....7.9.567..12.7.9....56....3.5..........29...4.....915..26.56.....71..7.619.5#5
12...6.894.6..912..89...4.62.43.......857............86.2...9.48......12.41...86.#5
12...6.894.6..912..89...4.62..3.......857............86.2...9.48......12.41...86.#5
12...6.894.6..912..891..4.6..4.78.........248...3......429..86...1.6.9.........1.#5
12...6.894.6...12..891..4.6..4.78.........248...3......429..86...1.6.9.........1.#5
12...6.894.6..912..891..4.6..4.78.........248...3......4291.86...1.6.9.........1.#5
12...6.894.6...12..891..4.6..4.78.........248...3......4291.86...1.6.9.........1.#5
12...6.894.6..912..891..4.62...7........9.248...3......4291.86...1.6.9.........1.#5
12...6.894.6.8.12..89.2.4.621.5.7...........169........4.8...9.86.....129.....8.4#5
12..5.7.9.567..12.7.9....56....3.5..........29...4.....915..26.56.....71..7..19.5#5
12..56....567.9...7.912...6.1.........7.....86....1.34.7529......16.7.9.96..15...#5
12..56....567.9...7.912...62...........517....7.9.23.85...91.6....6.59.....27....#5
12..56....567.9.2.7.912.....1......5....1..34.....5....7259......16.2.9.96..71..2#5
12..56....567.9.2.7.912.....1....6..........8.....1..4.71.6.5.256..12..79.25.7...#5
12.4...894.6...12..89...4.6...3.5.9..6......19.........912.8..464...1...8.2...91.#5
12.4...894.6...12..89...4.6...3.5.9..6......19.........912.8..464...12.8......91.#5
12.4...894.6...12..89...4.6.1.3.5.9........149.........912.4..864...82.1......94.#5
12.4...894.6...12..89...4.62..3.5.9..6......19.........912.8..464...1...8.2...91.#5
12.4...894.6.8.12..89...4.6...3.7....9.......6...9.....41.....28.2...61.96...28.4#5
12.4...894.6.8.12..89...4.6...3.7....9.......6...9.....41..8..28.2...61.96...28.4#5
12.4...894.6.8.12..89...4.6.1...........75.1....2..6.8.42...96...1...8.289.....41#5
12.4...894.6.8.12..89...4.62..5.79...9..1..........24..42...89.8.1......96.....1.#5
12.4...894.6.8.12..89...4.62..5.79......1..........24..42...89.8.1......96.....1.#5
12.4...894.6.8.12..89.2.4.6.1.6.........75.1.......6...42...96...1...8.289.....41#5
12.4...894.6.8.12..89.2.4.6.1.6.........75.4.......6...42...96...1...8.289.....14#5
12.4.6...4.6.89....8912.....1...............2..8.4.53..418.269.86.9....49.2.64...#5
12.4.6..94.6.89....8912.....14.........2.8........1.35.4186..9...29.4.61....12...#5
12.4.6..94.6.89....8912...6..4.........2.8.........53..4186..9...29.461.....12...#5
12.4.6..94.6.89....8912...6..4.........2.8........153..4186..9...29.461.....12...#5
12.4.6..94.6.89....8912...6.14.........2..........153..4186..9...29.461.....12...#5
12.4.6..94.6.891...8912...6..4.........2.8.........53..4186..9...29.461.....12...#5
12.4.6.8.4.6.89....8912.....1.....75....4....6.....2...4289....8.1..4...96..12.4.#5
12.4.6.8.4.6.89....8912...6.1..685.7...241.............41.....286..12...9.2..4...#5
12.4.6.8.4.6.89.2..8912............7......3.....94126...8.94....618.2...94.61....#5
12.4.6.8.4.6.891...8912...6.1..685.7...241..........1..42.....186..1....9.1......#5
12.4.6.894.6.891...8912...62.4...........2.7........3..612.....84.91....9.2.64...#5
12.4.6.894.6.891...8912...62.4..........4..7........3..612.....84.91....9.2.64...#5


ED - is with uniqueness removed

This pretty much confirms the distribution of the puzzles

BxB6 >> TE3 >> BxB7 and above

I have new TE3 puzzles to post in other thread....
coloin
 
Posts: 2556
Joined: 05 May 2005
Location: Devon

Re: Non degenerated tridagon puzzles direct search

Postby champagne » Sat Mar 29, 2025 4:03 pm

Hi coloin,

Good and quick analysis.
To make it clear for others these 21375 puzzles (I see 21481 in the 3 files) are derived from the current direct search for the first 1 000 000 solution grids (1/5473 of the field).
From my mith's file, one solution grid was in the "loki" family.
And I thought to see this one new.
Code: Select all
.78....42...4.8...3..........921..64...8.92.1....4689..6..92.1....1.4...91.68.42.;11.7/11.0/3.4


Regarding the goal is there other groups of "loki islands" it would be interesting to see if the high ratings can be linked to the known "loki family" for example these ones.
If the response is "no", we have the response, may be with already several other families

coloin wrote:
Code: Select all
..8.......34...5.....72.......21..561..5.67.9....7912..61.92.75.9.6.7..1...15....#TE2       
.78....42...4.8...3..........921..64...8.92.1....4689..6..92.1....1.4...91.68.42.#TE2     
 .62..1....3......784......5..612..79...7.95.6..9.5621.6...97..2...6.5..1...21....#6  ED=11.7/10.2/2.6   
...2.1...34....1..8.1...5....679..12...1.26.5....6597.....27......5.9...97.61..5.#6  ED=11.7/10.6/2.6   



I still expect to get the second million results within 2 weeks
champagne
2017 Supporter
 
Posts: 7567
Joined: 02 August 2007
Location: France Brittany

Re: Non degenerated tridagon puzzles direct search

Postby totuan » Sun Mar 30, 2025 7:34 pm

Just a bit POV from manual solver, not check all but below puzzle is quite interested on using RT's for tridagon puzzles
coloin wrote:there were 4 TE2 BxB 6 puzzles
Code: Select all
12..56....567.9...7.912...621............134......58.1.72......59.......6.15..97.#6 [can]ED=11.7/10.6/2.6

Hidden Text: Show
Code: Select all
 *-----------------------------------------------------------------------------*
 | 1       2      *348     |*348     5       6       | 47      389     34789   |
 |*348     5       6       | 7      *348     9       | 124     1238    2348    |
 | 7      *348     9       | 1       2      *348     | 45      358     6       |
 |-------------------------+-------------------------+-------------------------|
 | 2       1       34578   | 34689   346789  3478    | 567     569     579     |
 | 89      68      578     | 2689    6789    1       | 3       4       2579    |
 | 349     346     347     | 23469   34679   5       | 8       269     1       |
 |-------------------------+-------------------------+-------------------------|
 |*348     7       2       | 34689   134689 *348     | 1456    13568   3458    |
 | 5       9      *348     |*348+6   134678  23478   | 1246    12368   2348    |
 | 6      *348     1       | 5      *348     2348    | 9       7       2348    |
 *-----------------------------------------------------------------------------*

01: Tridagon(348) *-marked cells => r8c4=6

From here this one is still very hard.
Code: Select all
 *-----------------------------------------------------------------------------*
 | 1       2      *348A    |*348A    5       6       | 47      389     34789   |
 | 348     5       6       | 7      *348     9       | 124     1238    2348    |
 | 7       348     9       | 1       2      *348     | 45      358     6       |
 |-------------------------+-------------------------+-------------------------|
 | 2       1      *348+57T | 3489   *348+679 348-7   | 567     569     579     |
 | 89      68      578     | 289     6789    1       | 3       4       2579    |
 | 349     346     347     | 2349    34679   5       | 8       269     1       |
 |-------------------------+-------------------------+-------------------------|
 | 348     7       2       | 3489    13489  *348     | 1456    13568   3458    |
 | 5       9      *348A    | 6       13478  *2348+7  | 124     1238    2348    |
 | 6       348     1       | 5      *348    *2348    | 9       7       2348    |
 *-----------------------------------------------------------------------------*

Tridagon with one guardian at rectangle => Remote triples(348) A-marked cells
Impossible pattern(348) *-marked cells – like twin => (7)r4c35,r8c6=(5)r4c3=(69)r4c5

02: (7)r4c35,r8c6=(5|69)r4c35-(348)r4c3|r4c5=(348)r4c456|r4c346 => r4c6<>7, r8c6=7, r9c6=2

Prove for impossible pattern(348)
Code: Select all
T=(3|4|8)
 *-----------------------------------------------------------*
 | .     .     348A  | 348A  .     .     | .     .     .     |
 | .     .     .     | .     348   .     | .     .     .     |
 | .     .     .     | .     .     348   | .     .     .     |
 |-------------------+-------------------+-------------------|
 | .     .     348T  | .     348   .     | .     .     .     |
 | .     .     .     | .     .     .     | .     .     .     |
 | .     .     .     | .     .     .     | .     .     .     |
 |-------------------+-------------------+-------------------|
 | .     .     .     | .     .     348   | .     .     .     |
 | .     .     348A  | .     .     2348  | .     .     .     |
 | .     .     .     | .     348   2348  | .     .     .     |
 *-----------------------------------------------------------*
T=3 => r1c4=3 by RT-A => r9c5=3 => no 3’s on C6 => impossible
The same for T=(4|8)

Code: Select all
 *-----------------------------------------------------------------------------*
 | 1       2      *348A    |*348A    5       6       | 47      389     34789   |
 | 348     5       6       | 7      *348     9       | 124     1238    2348    |
 | 7       348     9       | 1       2      *348     | 45      358     6       |
 |-------------------------+-------------------------+-------------------------|
 | 2       1      *348+57  | 3489    346789 *348     | 567     569     579     |
 | 89      68      578     | 289     6789    1       | 3       4       2579    |
 | 349     346     347     | 2349    34679   5       | 8       269     1       |
 |-------------------------+-------------------------+-------------------------|
 | 348     7       2       | 348-9  *1348+9 *348     | 1456    13568   3458    |
 | 5       9      *348A    | 6      *1348    7       | 124     1238    2348    |
 | 6       348     1       | 5      *348     2       | 9       7       348     |
 *-----------------------------------------------------------------------------*

Tridagon with one guardian at rectangle => Remote triples(348) A-marked cells
Impossible pattern(348) *-marked cells – like twin => (9)r7c5=(57)r4c3

03: (9)r7c5==(57-348)r4c3=(348)r4c456-(348=29)r56c4 => r7c4<>9, some singles

Prove for impossible pattern(348)
Code: Select all
T=(3|4|8)
 *-----------------------------------------------------------*
 | .     .     348A  | 348A  .     .     | .     .     .     |
 | .     .     .     | .     348   .     | .     .     .     |
 | .     .     .     | .     .     348   | .     .     .     |
 |-------------------+-------------------+-------------------|
 | .     .     348T  | .     .     348   | .     .     .     |
 | .     .     .     | .     .     .     | .     .     .     |
 | .     .     .     | .     .     .     | .     .     .     |
 |-------------------+-------------------+-------------------|
 | .     .     .     | .     1348  348   | .     .     .     |
 | .     .     348A  | .     1348  .     | .     .     .     |
 | .     .     .     | .     348   .     | .     .     .     |
 *-----------------------------------------------------------*
T=3 => r1c4=3 by RT-A => r2c5<>3 => r789c5=3 => no 3’s on C6 => impossible
The same for T=(4|8)

Code: Select all
 *--------------------------------------------------------------------*
 | 1      2      348A   | 348A   5      6      | 47     389    79-348 |
 | 348    5      6      | 7      348    9      | 124    1238   2348   |
 | 7      348    9      | 1      2      348    | 45     358    6      |
 |----------------------+----------------------+----------------------|
 | 2      1      3478   | 3489   34678  348    | 567    569    79     |
 | 89     68     5      | 289    678    1      | 3      4      279    |
 | 349    346    347    | 2349   3467   5      | 8      269    1      |
 |----------------------+----------------------+----------------------|
 |%348    7      2      |*348    9     *348    | 16     16     5      |
 | 5      9     #348A   | 6      1      7      | 24     238    2348   |
 | 6     %348    1      | 5     *348    2      | 9      7     #348    |
 *--------------------------------------------------------------------*

Tridagon with one guardian at rectangle => Remote triples(348) A-marked cells
04: (3|4|8)r9c9 lead to (3|4|9)r8c3 by triples(348)B78 => RT(348)r1c34,r9c9 => r1c9<>348, some singles
Code: Select all
 *-----------------------------------------------------------*
 | 1     2     348A  | 348A  5     6     | 47    389   79    |
 | 348   5     6     | 7     348   9     | 12    12    348   |
 | 7     348   9     | 1     2     348   | 45    358   6     |
 |-------------------+-------------------+-------------------|
 | 2     1    *348   |#3489 #3468 #348   | 567   569   79    |
 | 89    6     5     | 9-8   7     1     | 3     4     2     |
 | 349   34    7     | 2     346   5     | 8     69    1     |
 |-------------------+-------------------+-------------------|
 | 348   7     2     | 348   9     348   | 16    16    5     |
 | 5     9     348A  | 6     1     7     | 24    238   348   |
 | 6     348   1     | 5     348   2     | 9     7     348   |
 *-----------------------------------------------------------*

By RT-A => (8)r1c4=(8)r18c3
05: (8)r1c4==(8)r18c3-r4c3=r4c456 => r5c4<>8, bte

Add: other view for moves 2&3
Hidden Text: Show
Code: Select all
 *-----------------------------------------------------------------------------*
 | 1       2       348A    |#348A    5       6       | 47      389     34789   |
 | 348     5       6       | 7       348     9       | 124     1238    2348    |
 | 7       348     9       | 1       2      %348     | 45      358     6       |
 |-------------------------+-------------------------+-------------------------|
 | 2       1      #34578   |*3489   *346789 *3478    | 567     569     579     |
 | 89      68      578     | 29-8   #6789    1       | 3       4       2579    |
 | 349     346     347     | 29-34  #34679   5       | 8       269     1       |
 |-------------------------+-------------------------+-------------------------|
 | 348     7       2       | 3489    13489  #348     | 1456    13568   3458    |
 | 5       9       348A    | 6       13478  #23478   | 124     1238    2348    |
 | 6       348     1       | 5       348    #2348    | 9       7       2348    |
 *-----------------------------------------------------------------------------*

By RT-A => (3|4|8)r4c3 lead to (3|4|8)r1c4
Look at (34578)r4c3 => r56c4<>348
(3|4|8)r4c3,r1c4 lead to (3|4|8)r789c6 => lead to (3|4|8)r56c5 => triples(348)r4c456,r56c5 => r56c4<>348 – (3|4|8)r4c3 lead to (3|4|8) #-marked cells
(57-348)r4c3=(348)r4c456-(348=29)r56c4 => r56c4<>348

Thanks for your puzzle!
totuan
totuan
 
Posts: 258
Joined: 25 May 2010
Location: vietnam

Re: Non degenerated tridagon puzzles direct search

Postby champagne » Mon Mar 31, 2025 4:17 pm

coloin wrote:from your file of 21375 expanded puzzles
these were from 12261 solution grids.
8556 had one puzzle per solution grid
there were 2 TE3 puzzles in the collection [one in mith's the other new]


From my tests, the next hit in mith's file with a skfr rating >=10.5 should come with the solution grid 35 121 415 far far away from the current scan.
in the current chunk (ranks 1M1 to 2M ) now covered at 90%, we have still a small number of high skfr ratings

Code: Select all
.48..1............9..6...1.7..21..65.2.5.67.9....7912...7.52.91...9.7..6...16.27.;11.3/11.3/2.6
.5.....83.....5...2.7.3.......98..31..93.15.4....5489.....93.48.3.5.81.9...14.3..;11.5/11.5/2.6
...3.......4...7..2.....5.3.6.13..78...7.86.5.8..6531.8...71.5....5.38.7...68.13.;11.7/11.2/8.3
..6..........39...2.7....4..8.31..54...9.83.1....4598.5.4.83.1....1.4.....859.43.;11.7/11.5/3.2

I'll send to coloin the entire file >=10.5 this week.
It would be interesting to see if one of the puzzles can be linked to the loki family, but I don't have the tool to do that.
The next chunk is now started
champagne
2017 Supporter
 
Posts: 7567
Joined: 02 August 2007
Location: France Brittany

Re: Non degenerated tridagon puzzles direct search

Postby coloin » Mon Mar 31, 2025 8:02 pm

champagne wrote:[It would be interesting to see if one of the puzzles can be linked to the loki family ...

Im not too sure what the "loki family" is ...but i can certainly process the puzzles... :D
coloin
 
Posts: 2556
Joined: 05 May 2005
Location: Devon

Re: Non degenerated tridagon puzzles direct search

Postby champagne » Mon Mar 31, 2025 9:02 pm

Im not too sure what the "loki family" is ...but i can certainly process the puzzles... :D

Remember, the start is here in november 2024


champagne wrote:
coloin wrote:So that is more reassuring as to the completeness perhaps. Another repeat process will be theoretically less productive as it doubles back on itself.

This is a repetitive question.
In the 17 clues search, some did a +- 3 depth search, and, at the end, all 17 were there.
The proof has been a long long scan.

"Mathimagics" started also with a vicinity search to detect solution grids with a 18. When he reached a low yield, I started with him a full scan with a lot of fresh entries.

Having to test the fresh DLLs that I created, I was curious to see what was the status here. A data base with around 65000 different solution grids out of 5472730537 was an interesting start point.

if we are thinking of a "close to the completeness" status, this means that around 1/85000 solution grids have such puzzles.
I started investigations and the first fact is that many more solution grids have a potential to produce such puzzles.
I'll try to see what explains why they did not come.


To-day, we know that about 1/3 of the solution grids have a potential for a tridagon, and, from the first tests, we get several puzzles with high ratings not in the current T&E(3) data base.

From the very beginning, I have doubts that the vicinity search can cover all the field due to the fact that clues are more or less locked in the start "magic square".

I called "loki family" the set of solution grids found in the search using "loki" as primary seed.

With new seeds, we have 2 questions:
are these seeds grids not seen having links to the "loki family"
are these seeds source of new interesting families.

Trying to find puzzles in the vicinity of the new seed should give an idea of the answer(s)
champagne
2017 Supporter
 
Posts: 7567
Joined: 02 August 2007
Location: France Brittany

Re: Non degenerated tridagon puzzles direct search

Postby coloin » Tue Apr 01, 2025 12:10 am

Ive noticed in doing a vicinity search that 6 clues in each of Box1 Box2 and Box4 dont change easily with a {-1+1}

It might be possible to classify the 3-corner patterns which have diagonal clues in the solution grids which most of the puzzles have ...[ but i note not all]
Looking at the options there is ~ 64 to 96 ways to fill in each of box2 and box4 .. so maybe max 5000 ways. .. [generating stopped at only 1032, but not exhaustive] Edit..and 2 ways to have the 123 clues]
Code: Select all
+---+---+---+   +-------------------------------+-------------------------------+     
|451|3..|...|   | 4         5         1         | 3         6789      6789      |   
|627|.1.|...|   | 6         2         7         | 4589      1         4589      |   
|389|..2|...|   | 3         8         9         | 4567      4567      2         |   
+---+---+---+   +-------------------------------+-------------------------------+   
|2..|...|...|   | 2         4679      4568      |                               |   
|.1.|...|...|   | 5789      1         4568      |                               |   
|..3|...|...|   | 5789      4679      3         |                               |   
+---+---+---+   +-------------------------------+-------------------------------+   
|...|...|...|   |                                   
|...|...|...|   |                                   
|...|...|...|   |                                   
+---+---+---+   +                                   
Last edited by coloin on Tue Apr 01, 2025 12:08 pm, edited 1 time in total.
coloin
 
Posts: 2556
Joined: 05 May 2005
Location: Devon

PreviousNext

Return to General