Hidato

For fans of Killer Sudoku, Samurai Sudoku and other variants

Re: Hidato

Postby Cit » Wed May 09, 2012 9:18 am

Hi, im looking for a hidato-solver, or atleast the code of hidato solver, to create one of my own.
anyone able to help me?
dyitto posted one, but sadly the link is no longer available : (
Cit
 
Posts: 3
Joined: 08 May 2012

Re: Hidato

Postby dyitto » Wed May 09, 2012 8:38 pm

Hi Cit,

It's still the same link. Maybe the site was down for some moment which happens every now and then.

http://www.scrybqj.com/downloads/hidatordownload/
evert on the crashed forum
User avatar
dyitto
 
Posts: 118
Joined: 22 May 2010
Location: Amsterdam

Re: Hidato

Postby International_DBA » Fri May 22, 2020 9:59 pm

This is my 3rd Hidoku or Hidato puzzle:
https://andrewspuzzles.blogspot.com/202 ... -by-4.html
International_DBA
 
Posts: 41
Joined: 07 December 2014

Re: Hidato

Postby tarek » Fri May 22, 2020 10:38 pm

Hi International_DBA,

As you know Hidato is not a sudoku variant but actually a king’s chess tour. I have posted several of these and more (fairy) chess piece tours here http://forum.enjoysudoku.com/fairy-chess-piece-tour-puzzles-including-numbrix-hidato-t30443.html

Tarek
User avatar
tarek
 
Posts: 3531
Joined: 05 January 2006

Re: Hidato

Postby denis_berthier » Sat May 23, 2020 4:08 am

International_DBA wrote:This is my 3rd Hidoku or Hidato puzzle:
https://andrewspuzzles.blogspot.com/202 ... -by-4.html


Hi International_DBA
This is an easy one, requiring only whips[1] and whips[2]:

Code: Select all
***********************************************************************************************
***  HidatoRules 2.1.s based on CSP-Rules 2.1.s, config = W+S
***  using CLIPS 6.32-r764
***********************************************************************************************
undecided numbers: (2 4 5 7 8 9 10 11 12 14 15)
68 candidates, 440 csp-links and 719 links. Density = 31.56%
whip[1]: r4c4{n10 .} ==> r4c2 ≠ 10, r1c1 ≠ 10, r1c3 ≠ 10, r1c4 ≠ 10, r2c2 ≠ 10, r2c4 ≠ 10, r3c2 ≠ 10, r4c1 ≠ 10
whip[1]: n10{r4c4 .} ==> r1c1 ≠ 9, r1c3 ≠ 9, r1c4 ≠ 9, r2c2 ≠ 9, r4c1 ≠ 9, r1c1 ≠ 11, r1c3 ≠ 11, r1c4 ≠ 11, r2c2 ≠ 11, r4c1 ≠ 11
whip[1]: n9{r4c4 .} ==> r1c1 ≠ 8
whip[1]: n15{r2c2 .} ==> r3c4 ≠ 14
whip[2]: r4c4{n11 n9} - r3c4{n9 .} ==> r4c2 ≠ 11, r3c2 ≠ 11
whip[1]: n11{r4c4 .} ==> r2c2 ≠ 12
whip[2]: r4c2{n9 n5} - r4c1{n5 .} ==> r1c3 ≠ 8, r2c2 ≠ 8
whip[1]: n8{r4c3 .} ==> r2c4 ≠ 9
whip[2]: r2c4{n12 n14} - r1c4{n14 .} ==> r4c3 ≠ 11, r4c4 ≠ 11, r3c2 ≠ 12
whip[1]: r4c4{n10 .} ==> r3c2 ≠ 9, r4c2 ≠ 9
whip[1]: n9{r4c4 .} ==> r4c1 ≠ 8
biv-chain[2]: n11{r3c4 r2c4} - r4c4{n10 n9} ==> r3c4 ≠ 9
biv-chain[2]: r1c4{n14 n12} - n11{r3c4 r2c4} ==> r2c4 ≠ 14
whip[2]: r2c4{n12 n11} - n10{r4c3 .} ==> r3c4 ≠ 12
whip[2]: n9{r4c3 r4c4} - n8{r3c2 .} ==> r4c3 ≠ 10
whip[2]: n8{r4c3 r3c2} - n2{r3c2 .} ==> r2c2 ≠ 7
whip[2]: r4c1{n7 n5} - n4{r1c1 .} ==> r3c2 ≠ 7
whip[2]: r1c3{n15 n12} - r1c4{n12 .} ==> r3c2 ≠ 14, r1c1 ≠ 15
stte
 4 16 15 14
 3  5 13 12
 6  2  1 11
 7  8  9 10
Last edited by denis_berthier on Sat May 23, 2020 6:04 am, edited 1 time in total.
denis_berthier
2010 Supporter
 
Posts: 1523
Joined: 19 June 2007
Location: Paris

Re:

Postby denis_berthier » Sat May 23, 2020 4:37 am

As I'm just discovering this thread, I tried several of the old puzzles.

evert wrote:Here's an even more challenging puzzle.

Code: Select all
..|..|..|..|77|..|28|..|..
..|13|..|..|..|..|..|21|..
..|..|..|15|16|..|31|..|..
..|06|..|..|73|..|19|..|..
..|58|..|..|..|..|36|..|33
60|..|62|..|71|..|..|..|..
..|..|..|..|64|..|..|..|43
..|54|..|..|..|68|..|..|..
..|..|..|..|..|..|..|..|..


This is indeed a hard one, requiring a whip[14]. In this solution, I use no Hidato-specific resolution rule.
I have to use my geometric model (the topological one is not enough. For the difference between the two, see my book PBCS).

Hidden Text: Show
***********************************************************************************************
*** HidatoRules 2.1.s based on CSP-Rules 2.1.s, config = W+S
*** using CLIPS 6.32-r764
***********************************************************************************************
***** Hidato-Rules geometric-model *****
undecided numbers: (1 2 3 4 5 7 8 9 10 11 12 14 17 18 20 22 23 24 25 26 27 29 30 32 34 35 37 38 39 40 41 42 44 45 46 47 48 49 50 51 52 53 55 56 57 59 61 63 65 66 67 69 70 72 74 75 76 78 79 80 81)
hidden-single: r4c8 = 32
hidden-single: r3c8 = 20
whip[1]: n47{r9c9 .} ==> r2c4 ≠ 48
whip[1]: n45{r9c9 .} ==> r4c6 ≠ 46
whip[1]: n46{r9c9 .} ==> r2c5 ≠ 48, r2c6 ≠ 48, r3c6 ≠ 47
whip[1]: n47{r9c9 .} ==> r2c7 ≠ 48
whip[1]: n2{r8c5 .} ==> r9c7 ≠ 1
whip[1]: n69{r8c7 .} ==> r6c4 ≠ 70
whip[1]: n3{r7c4 .} ==> r8c7 ≠ 1, r7c6 ≠ 2
whip[1]: n65{r8c5 .} ==> r9c7 ≠ 66
whip[1]: n57{r6c2 .} ==> r7c4 ≠ 56
whip[1]: n37{r6c8 .} ==> r3c9 ≠ 38
whip[1]: n67{r9c7 .} ==> r6c4 ≠ 66
whip[1]: n80{r4c6 .} ==> r5c8 ≠ 81, r3c9 ≠ 81, r4c9 ≠ 81, r5c1 ≠ 81
whip[1]: n74{r4c6 .} ==> r2c4 ≠ 75, r2c3 ≠ 75
whip[1]: n41{r9c9 .} ==> r4c6 ≠ 40
whip[1]: n40{r9c9 .} ==> r3c6 ≠ 39
whip[1]: n26{r3c9 .} ==> r4c4 ≠ 25
whip[1]: n48{r9c8 .} ==> r3c9 ≠ 47
whip[1]: n27{r2c7 .} ==> r3c9 ≠ 26
whip[1]: n26{r3c6 .} ==> r4c9 ≠ 25
whip[1]: n25{r4c6 .} ==> r5c8 ≠ 24
whip[1]: n22{r3c9 .} ==> r5c6 ≠ 24, r4c6 ≠ 23, r5c5 ≠ 24
whip[2]: r9c2{n51 n1} - r9c1{n1 .} ==> r9c5 ≠ 51, r3c3 ≠ 49, r3c6 ≠ 48, r3c6 ≠ 49, r4c3 ≠ 49, r4c3 ≠ 50, r4c4 ≠ 49, r4c4 ≠ 50, r4c6 ≠ 49, r4c6 ≠ 50, r4c9 ≠ 47, r5c3 ≠ 50, r5c4 ≠ 50, r5c5 ≠ 50, r5c6 ≠ 50, r5c8 ≠ 48, r6c6 ≠ 50, r6c7 ≠ 49, r6c8 ≠ 48, r6c9 ≠ 47, r7c6 ≠ 50, r7c7 ≠ 49, r7c8 ≠ 48, r8c7 ≠ 49, r8c8 ≠ 48, r8c9 ≠ 47, r6c2 ≠ 52, r6c4 ≠ 52, r9c6 ≠ 50, r9c7 ≠ 49, r9c8 ≠ 48, r9c9 ≠ 47, r5c1 ≠ 51, r5c3 ≠ 51, r5c4 ≠ 51, r5c5 ≠ 51, r6c2 ≠ 51, r6c4 ≠ 51, r8c5 ≠ 51
whip[1]: n50{r9c5 .} ==> r5c6 ≠ 49, r6c6 ≠ 49
whip[2]: n47{r9c8 r5c8} - n45{r8c7 .} ==> r4c9 ≠ 46
whip[2]: r2c9{n24 n81} - r1c9{n81 .} ==> r4c6 ≠ 24, r1c4 ≠ 25, r2c4 ≠ 25, r2c5 ≠ 25, r1c6 ≠ 24, r2c5 ≠ 24, r2c6 ≠ 24, r3c6 ≠ 24
whip[1]: n24{r4c9 .} ==> r4c6 ≠ 25
whip[2]: n24{r4c9 r2c7} - n22{r2c7 .} ==> r1c6 ≠ 23, r2c6 ≠ 23, r3c6 ≠ 23
whip[2]: n23{r4c9 r3c9} - n25{r1c6 .} ==> r4c9 ≠ 24
whip[2]: n24{r3c9 r2c9} - n22{r2c9 .} ==> r3c9 ≠ 23
whip[2]: n24{r3c9 r2c9} - n26{r1c6 .} ==> r3c9 ≠ 25
whip[2]: n24{r3c9 r1c8} - n22{r1c8 .} ==> r2c7 ≠ 23
whip[2]: n63{r7c4 r6c4} - n4{r6c4 .} ==> r7c4 ≠ 3
whip[1]: n3{r7c3 .} ==> r8c5 ≠ 2, r9c6 ≠ 1
whip[2]: n61{r7c2 r6c2} - n57{r6c2 .} ==> r7c2 ≠ 56
whip[2]: n56{r7c3 r6c2} - n59{r6c2 .} ==> r5c1 ≠ 57
whip[2]: n61{r7c2 r6c2} - n4{r6c2 .} ==> r7c2 ≠ 3
whip[2]: n63{r6c4 r7c4} - n66{r7c4 .} ==> r6c4 ≠ 65
whip[2]: n40{r4c9 r5c8} - n38{r5c5 .} ==> r4c9 ≠ 39
whip[2]: n39{r8c9 r4c6} - n37{r4c6 .} ==> r3c6 ≠ 38
whip[2]: n38{r7c8 r4c9} - n40{r5c6 .} ==> r3c9 ≠ 39
whip[1]: r3c9{n24 .} ==> r1c8 ≠ 23, r1c9 ≠ 23
whip[1]: n23{r4c9 .} ==> r2c9 ≠ 22, r2c7 ≠ 22, r1c6 ≠ 25, r2c5 ≠ 26, r2c6 ≠ 25, r2c7 ≠ 24, r2c9 ≠ 24, r3c6 ≠ 25
whip[2]: n23{r2c9 r4c9} - n25{r1c8 .} ==> r2c9 ≠ 26
whip[2]: n24{r3c9 r1c8} - n26{r1c8 .} ==> r1c9 ≠ 25
whip[2]: n39{r8c9 r5c8} - n37{r5c8 .} ==> r4c9 ≠ 38
whip[2]: n39{r8c9 r5c8} - n41{r8c7 .} ==> r4c9 ≠ 40
whip[2]: n24{r1c9 r3c9} - n22{r3c9 .} ==> r4c9 ≠ 23
hidden-single: r2c9 = 23
naked-single: r4c9 = 34
hidden-single: r5c8 = 35
whip[1]: n25{r2c7 .} ==> r3c9 ≠ 24
naked-single: r3c9 = 22
biv-chain[2]: n25{r2c7 r1c8} - n24{r1c8 r1c9} ==> r1c9 ≠ 26
biv-chain[2]: r1c9{n81 n24} - n25{r2c7 r1c8} ==> r1c8 ≠ 81
biv-chain[2]: n24{r1c8 r1c9} - n25{r2c7 r1c8} ==> r1c8 ≠ 26, r1c8 ≠ 27, r1c8 ≠ 29, r1c8 ≠ 80
whip[1]: n80{r4c6 .} ==> r1c9 ≠ 81
naked-single: r1c9 = 24
hidden-single: r2c7 = 26
hidden-single: r1c8 = 25
hidden-pairs: {n27 n29}{r1c6 r2c6} ==> r2c6 ≠ 81, r2c6 ≠ 80, r2c6 ≠ 79, r2c6 ≠ 78, r2c6 ≠ 76, r2c6 ≠ 75, r2c6 ≠ 30, r2c6 ≠ 17, r2c6 ≠ 2, r2c6 ≠ 1, r1c6 ≠ 81, r1c6 ≠ 80, r1c6 ≠ 79, r1c6 ≠ 78, r1c6 ≠ 76, r1c6 ≠ 2, r1c6 ≠ 1
hidden-single: r3c6 = 30
hidden-single: r2c6 = 29
hidden-single: r1c6 = 27
whip[1]: n17{r4c6 .} ==> r4c6 ≠ 18
hidden-single: r5c6 = 18
hidden-single: r4c6 = 17
hidden-single: r4c4 = 74
hidden-single: r3c3 = 75
hidden-single: r2c4 = 76
hidden-single: r2c3 = 14
whip[1]: n4{r6c4 .} ==> r1c3 ≠ 3, r1c4 ≠ 3, r2c5 ≠ 3
whip[1]: n3{r7c3 .} ==> r1c4 ≠ 2, r2c5 ≠ 2
whip[1]: n2{r8c4 .} ==> r2c5 ≠ 1
whip[1]: n8{r6c4 .} ==> r1c3 ≠ 9, r1c4 ≠ 9, r2c5 ≠ 9
whip[1]: n9{r6c4 .} ==> r1c4 ≠ 10, r2c5 ≠ 10
whip[1]: r2c5{n81 .} ==> r1c2 ≠ 80, r3c2 ≠ 80, r1c1 ≠ 81, r2c1 ≠ 81, r3c1 ≠ 81, r4c1 ≠ 81
whip[1]: n80{r4c3 .} ==> r5c5 ≠ 81, r4c3 ≠ 81
whip[1]: n79{r2c5 .} ==> r4c3 ≠ 80, r5c3 ≠ 81, r5c4 ≠ 81
whip[1]: n80{r2c5 .} ==> r3c2 ≠ 81
whip[1]: n12{r3c2 .} ==> r5c5 ≠ 10
whip[2]: n47{r9c8 r5c5} - n72{r5c5 .} ==> r5c4 ≠ 48
whip[2]: n80{r2c5 r1c4} - n78{r1c4 .} ==> r1c3 ≠ 79, r2c5 ≠ 79, r2c5 ≠ 81
hidden-single: r1c4 = 79
hidden-single: r2c5 = 78
hidden-single: r1c3 = 80
hidden-single: r1c2 = 81
whip[2]: n8{r6c4 r2c1} - n10{r5c4 .} ==> r1c1 ≠ 9
whip[2]: n9{r6c4 r2c1} - n11{r2c1 .} ==> r1c1 ≠ 10
whip[2]: n10{r5c4 r2c1} - n12{r2c1 .} ==> r1c1 ≠ 11
whip[2]: n1{r9c5 r2c1} - n3{r5c1 .} ==> r1c1 ≠ 2
whip[2]: n2{r8c4 r2c1} - n4{r5c1 .} ==> r1c1 ≠ 3
whip[2]: r1c1{n12 n1} - n2{r3c1 .} ==> r2c1 ≠ 12
whip[2]: r1c1{n1 n12} - n11{r3c1 .} ==> r2c1 ≠ 1
whip[2]: n10{r5c3 r5c4} - n72{r5c4 .} ==> r5c5 ≠ 9
whip[2]: n37{r6c8 r6c6} - n39{r6c9 .} ==> r5c5 ≠ 38
whip[2]: n38{r7c8 r6c6} - n40{r6c9 .} ==> r5c5 ≠ 39
whip[3]: n50{r9c5 r6c4} - n48{r6c4 r5c5} - n72{r5c5 .} ==> r5c4 ≠ 49
whip[3]: r9c1{n52 n1} - n2{r8c4 r8c1} - n3{r2c1 .} ==> r7c1 ≠ 52
whip[3]: n57{r6c2 r5c3} - n4{r5c3 r5c1} - n59{r5c1 .} ==> r6c2 ≠ 3
whip[1]: n3{r7c3 .} ==> r7c1 ≠ 2
whip[2]: n5{r5c1 r4c1} - n3{r7c3 .} ==> r5c1 ≠ 4
whip[3]: n3{r7c3 r4c1} - n1{r1c1 r6c2} - n59{r6c2 .} ==> r5c1 ≠ 2
whip[3]: n59{r5c1 r6c2} - n2{r6c2 r4c1} - n4{r5c4 .} ==> r5c1 ≠ 3
whip[3]: n57{r6c2 r5c3} - n5{r5c3 r5c1} - n59{r5c1 .} ==> r6c2 ≠ 4
whip[1]: n4{r6c4 .} ==> r7c1 ≠ 3, r8c1 ≠ 2
whip[1]: n2{r8c4 .} ==> r9c1 ≠ 1
whip[1]: r9c1{n53 .} ==> r6c7 ≠ 48, r6c8 ≠ 47, r6c9 ≠ 46, r7c2 ≠ 52, r7c3 ≠ 52, r7c4 ≠ 51, r7c4 ≠ 52, r7c6 ≠ 49, r7c7 ≠ 48, r7c8 ≠ 47, r8c3 ≠ 52, r8c4 ≠ 51, r8c4 ≠ 52, r8c5 ≠ 50, r8c7 ≠ 48, r8c8 ≠ 47, r8c9 ≠ 46, r9c3 ≠ 52, r9c4 ≠ 51, r9c4 ≠ 52, r9c5 ≠ 50, r9c6 ≠ 49, r9c7 ≠ 48, r9c8 ≠ 47, r9c9 ≠ 46
whip[1]: n52{r9c2 .} ==> r5c5 ≠ 49, r6c4 ≠ 50, r7c3 ≠ 51, r7c3 ≠ 53
whip[1]: n49{r9c5 .} ==> r6c6 ≠ 48
whip[2]: n57{r5c3 r6c2} - n50{r6c2 .} ==> r5c3 ≠ 49
whip[2]: r9c9{n41 n45} - r6c9{n44 .} ==> r6c6 ≠ 40, r7c6 ≠ 40, r8c5 ≠ 39, r9c6 ≠ 40, r9c7 ≠ 40
whip[3]: n63{r7c4 r6c4} - n3{r6c4 r7c3} - n4{r5c4 .} ==> r7c4 ≠ 2
whip[3]: r9c1{n52 n53} - r9c2{n53 n1} - r9c3{n1 .} ==> r6c2 ≠ 50
whip[3]: r9c1{n53 n51} - n50{r9c4 r9c2} - n52{r9c2 .} ==> r8c3 ≠ 53
whip[3]: r9c1{n53 n51} - n50{r9c4 r9c2} - n52{r9c2 .} ==> r9c3 ≠ 53
whip[2]: r9c3{n51 n1} - n4{r2c1 .} ==> r6c4 ≠ 49
whip[1]: n49{r9c5 .} ==> r5c5 ≠ 48
whip[2]: r9c3{n51 n1} - n3{r2c1 .} ==> r7c3 ≠ 50
whip[3]: r9c3{n51 n1} - n4{r2c1 r6c4} - n63{r6c4 .} ==> r7c4 ≠ 50
whip[3]: n57{r6c2 r5c3} - n9{r5c3 r5c1} - n7{r5c1 .} ==> r6c2 ≠ 8
whip[2]: n10{r5c1 r4c1} - n8{r6c4 .} ==> r5c1 ≠ 9
whip[3]: n11{r4c3 r4c1} - n9{r6c4 r6c2} - n59{r6c2 .} ==> r5c1 ≠ 10
whip[2]: n57{r6c2 r5c3} - n10{r5c3 .} ==> r6c2 ≠ 9
whip[2]: n7{r5c1 r4c1} - n9{r6c4 .} ==> r5c1 ≠ 8
whip[3]: n61{r7c2 r6c2} - n57{r6c2 r5c3} - n56{r7c1 .} ==> r7c2 ≠ 55
whip[4]: n57{r6c2 r5c3} - n56{r7c3 r6c4} - n3{r6c4 r7c3} - n4{r2c1 .} ==> r6c2 ≠ 2
whip[4]: n12{r3c1 r3c2} - r1c1{n12 n1} - n2{r8c4 r2c1} - n3{r4c1 .} ==> r3c1 ≠ 11
whip[3]: n11{r4c3 r3c2} - n12{r1c1 r3c1} - n9{r3c1 .} ==> r4c1 ≠ 10
whip[3]: n11{r4c3 r3c2} - r1c1{n12 n1} - n2{r3c1 .} ==> r2c1 ≠ 10
whip[4]: n12{r3c2 r3c1} - r1c1{n12 n1} - n2{r8c4 r2c1} - n3{r4c1 .} ==> r3c2 ≠ 11
whip[1]: n11{r4c3 .} ==> r4c3 ≠ 10
whip[3]: n7{r5c1 r5c3} - n9{r5c3 r5c4} - n10{r5c4 .} ==> r6c4 ≠ 8
whip[3]: n10{r5c3 r5c4} - n8{r5c4 r4c3} - n11{r4c3 .} ==> r5c3 ≠ 9
whip[3]: n10{r5c4 r5c3} - n8{r5c3 r4c3} - n11{r4c3 .} ==> r5c4 ≠ 9
whip[3]: n11{r4c1 r4c3} - n9{r4c3 r6c4} - n7{r3c1 .} ==> r5c3 ≠ 10
whip[3]: n7{r5c3 r4c3} - n9{r4c3 r6c4} - n11{r2c1 .} ==> r5c3 ≠ 8
whip[2]: n10{r3c2 r5c4} - n8{r5c4 .} ==> r6c4 ≠ 9
whip[2]: n11{r4c1 r4c3} - n9{r4c3 .} ==> r5c4 ≠ 10
whip[2]: n12{r3c1 r3c2} - n10{r3c2 .} ==> r4c3 ≠ 11
whip[3]: n11{r2c1 r4c1} - r1c1{n12 n1} - n2{r3c1 .} ==> r2c1 ≠ 9
whip[3]: n10{r3c1 r3c2} - n7{r3c2 r4c1} - n9{r4c1 .} ==> r3c1 ≠ 8
whip[3]: n8{r5c4 r3c2} - n10{r3c2 r3c1} - n9{r4c3 .} ==> r4c1 ≠ 7
whip[3]: n10{r3c2 r3c1} - n9{r4c3 r4c1} - n8{r2c1 .} ==> r3c2 ≠ 1
whip[3]: n10{r3c2 r3c1} - n9{r4c3 r4c1} - n8{r2c1 .} ==> r3c2 ≠ 2
whip[2]: n2{r8c4 r3c1} - n1{r1c1 .} ==> r4c1 ≠ 3
whip[3]: n10{r3c1 r3c2} - n3{r3c2 r2c1} - n4{r4c1 .} ==> r3c1 ≠ 2
whip[1]: n2{r8c4 .} ==> r4c1 ≠ 1, r2c1 ≠ 3
whip[2]: n10{r3c1 r3c2} - n3{r3c2 .} ==> r3c1 ≠ 4
whip[3]: n4{r6c4 r3c2} - n10{r3c2 r3c1} - n9{r4c3 .} ==> r4c1 ≠ 5
whip[3]: n10{r3c2 r3c1} - n5{r3c1 r4c3} - n3{r7c3 .} ==> r3c2 ≠ 4
whip[3]: r1c1{n12 n1} - n3{r7c3 r3c1} - n10{r3c1 .} ==> r3c2 ≠ 12
whip[3]: n12{r1c1 r3c1} - n3{r3c1 r3c2} - n10{r3c2 .} ==> r1c1 ≠ 1
naked-single: r1c1 = 12
hidden-single: r2c1 = 11
whip[2]: n2{r8c4 r4c1} - n4{r5c4 .} ==> r3c1 ≠ 3
whip[3]: n4{r6c4 r4c1} - n3{r4c3 r3c2} - n10{r3c2 .} ==> r3c1 ≠ 5
whip[3]: n3{r7c3 r3c2} - n10{r3c2 r3c1} - n9{r4c3 .} ==> r4c1 ≠ 4
whip[1]: n4{r6c4 .} ==> r5c1 ≠ 5
whip[3]: n9{r4c3 r3c2} - n7{r3c2 r5c3} - n5{r5c3 .} ==> r4c3 ≠ 8
whip[3]: n8{r5c4 r4c1} - n9{r4c3 r3c1} - n10{r3c1 .} ==> r3c2 ≠ 7
whip[3]: n10{r3c2 r3c1} - n8{r5c4 r4c1} - n9{r4c3 .} ==> r3c2 ≠ 3
whip[1]: n3{r7c3 .} ==> r4c1 ≠ 2
whip[1]: n2{r8c4 .} ==> r3c1 ≠ 1, r5c1 ≠ 1
whip[1]: r3c1{n10 .} ==> r5c4 ≠ 8
whip[1]: n8{r4c1 .} ==> r5c3 ≠ 7
whip[1]: r4c1{n9 .} ==> r4c3 ≠ 9
whip[3]: n8{r3c2 r4c1} - n9{r4c1 r3c1} - n10{r3c1 .} ==> r3c2 ≠ 5
whip[3]: n5{r4c3 r5c3} - n2{r5c3 r5c4} - n4{r5c4 .} ==> r4c3 ≠ 3
whip[3]: n5{r4c3 r5c3} - n3{r5c3 r5c4} - n1{r6c7 .} ==> r4c3 ≠ 2
whip[3]: n10{r3c1 r3c2} - n9{r3c2 r4c1} - n8{r4c1 .} ==> r3c1 ≠ 7
biv-chain[4]: n57{r6c2 r5c3} - n5{r5c3 r4c3} - n7{r4c3 r5c1} - n59{r5c1 r6c2} ==> r6c2 ≠ 1, r6c2 ≠ 56, r6c2 ≠ 61
hidden-single: r7c2 = 61
whip[1]: n2{r8c4 .} ==> r7c1 ≠ 1, r8c1 ≠ 1
whip[1]: n50{r9c4 .} ==> r7c1 ≠ 51
whip[1]: n56{r7c3 .} ==> r7c1 ≠ 55
whip[2]: r7c1{n53 n56} - n55{r7c3 .} ==> r8c1 ≠ 53
whip[3]: n50{r9c4 r9c2} - n52{r9c2 r9c1} - n53{r7c1 .} ==> r8c1 ≠ 51
whip[2]: n53{r9c1 r9c2} - n51{r9c2 .} ==> r9c1 ≠ 52
whip[2]: r9c1{n53 n51} - n50{r8c3 .} ==> r9c2 ≠ 53
whip[3]: n52{r9c2 r8c1} - n51{r8c3 r9c1} - n50{r8c3 .} ==> r9c2 ≠ 1
biv-chain[4]: n57{r5c3 r6c2} - n59{r6c2 r5c1} - n7{r5c1 r4c3} - n5{r4c3 r5c3} ==> r5c3 ≠ 1, r5c3 ≠ 2, r5c3 ≠ 3, r5c3 ≠ 4
whip[3]: n72{r5c5 r5c4} - n3{r5c4 r6c4} - n4{r6c4 .} ==> r5c5 ≠ 2
whip[1]: n2{r8c4 .} ==> r6c6 ≠ 1
whip[3]: n2{r8c4 r6c4} - n4{r6c4 r4c3} - n3{r5c5 .} ==> r5c4 ≠ 1
whip[3]: n72{r5c4 r5c5} - n3{r5c5 r6c4} - n4{r4c3 .} ==> r5c4 ≠ 2
whip[1]: n2{r8c4 .} ==> r4c3 ≠ 1
whip[2]: n2{r8c4 r7c3} - n3{r5c4 .} ==> r6c4 ≠ 1
biv-chain[4]: n7{r4c3 r5c1} - n59{r5c1 r6c2} - n57{r6c2 r5c3} - n5{r5c3 r4c3} ==> r4c3 ≠ 4
whip[2]: n2{r8c4 r6c4} - n4{r6c4 .} ==> r5c4 ≠ 3
whip[3]: n47{r6c6 r5c5} - n72{r5c5 r5c4} - n4{r5c4 .} ==> r6c4 ≠ 48
whip[1]: n48{r9c6 .} ==> r5c5 ≠ 47
whip[2]: r5c4{n4 n72} - r5c5{n72 .} ==> r8c3 ≠ 2, r8c4 ≠ 2, r9c3 ≠ 1, r9c4 ≠ 1, r9c5 ≠ 1
whip[1]: n2{r7c3 .} ==> r8c5 ≠ 1
whip[2]: n4{r5c4 r6c4} - n2{r6c4 .} ==> r7c3 ≠ 3
whip[2]: n3{r5c5 r6c4} - n2{r6c6 .} ==> r5c5 ≠ 1
biv-chain[3]: n3{r6c4 r5c5} - n72{r5c5 r5c4} - n4{r5c4 r6c4} ==> r6c4 ≠ 2, r6c4 ≠ 56, r6c4 ≠ 63
hidden-single: r7c4 = 63
whip[1]: n56{r7c3 .} ==> r5c3 ≠ 57, r7c3 ≠ 55
hidden-single: r6c2 = 57
hidden-single: r5c1 = 59
hidden-single: r4c3 = 7
hidden-single: r3c2 = 8
hidden-single: r3c1 = 10
hidden-single: r4c1 = 9
hidden-single: r5c3 = 5
whip[1]: n2{r7c3 .} ==> r7c3 ≠ 1
biv-chain[2]: n2{r7c3 r6c6} - n70{r6c6 r7c6} ==> r7c6 ≠ 1
whip[2]: n65{r6c6 r7c6} - n70{r7c6 .} ==> r6c6 ≠ 66
whip[2]: n48{r9c6 r7c6} - n70{r7c6 .} ==> r6c6 ≠ 47
whip[3]: n48{r9c6 r7c6} - n70{r7c6 r6c6} - n69{r8c5 .} ==> r7c7 ≠ 47
whip[3]: n70{r6c6 r7c6} - n47{r7c6 r6c7} - n48{r8c4 .} ==> r6c6 ≠ 46
biv-chain[4]: r9c1{n51 n53} - r7c1{n53 n56} - n55{r8c3 r8c1} - n52{r8c1 r9c2} ==> r9c2 ≠ 51
whip[4]: n48{r9c6 r7c6} - n47{r9c7 r6c7} - n37{r6c7 r6c6} - n70{r6c6 .} ==> r6c8 ≠ 46
whip[5]: r9c4{n50 n66} - n48{r9c4 r8c4} - n65{r8c4 r8c5} - n67{r8c5 r9c5} - n47{r9c5 .} ==> r7c3 ≠ 49
whip[5]: r9c9{n41 n45} - r6c9{n44 n38} - n42{r6c9 r8c8} - n40{r8c8 r8c7} - n47{r8c7 .} ==> r9c7 ≠ 41
whip[2]: r9c7{n47 n67} - r9c5{n66 .} ==> r6c7 ≠ 47
whip[4]: n47{r9c7 r7c6} - r9c7{n46 n67} - n65{r6c6 r8c5} - n48{r8c5 .} ==> r6c7 ≠ 46
whip[5]: r9c7{n47 n67} - r9c5{n66 n49} - n47{r9c5 r8c7} - n48{r8c4 r9c6} - n66{r9c6 .} ==> r7c8 ≠ 46
whip[1]: n46{r9c8 .} ==> r6c9 ≠ 45
whip[5]: r9c9{n41 n45} - r9c8{n45 n46} - r6c9{n44 n42} - r8c8{n41 n44} - r8c9{n44 .} ==> r6c6 ≠ 39
whip[5]: r9c7{n47 n67} - n65{r6c6 r8c5} - n47{r8c5 r8c7} - n48{r8c4 r9c6} - n66{r9c6 .} ==> r7c6 ≠ 46
whip[5]: r9c9{n41 n45} - r6c9{n44 n42} - r8c9{n42 n44} - r8c8{n44 n46} - r9c8{n46 .} ==> r7c6 ≠ 39
whip[8]: n55{r8c3 r8c1} - n52{r8c1 r9c2} - r7c1{n53 n56} - r7c3{n56 n2} - n1{r7c7 r8c4} - n48{r8c4 r9c4} - n50{r9c4 r9c3} - n51{r9c1 .} ==> r8c3 ≠ 49
whip[14]: n70{r7c6 r6c6} - n69{r8c5 r7c7} - n46{r7c7 r8c7} - n48{r8c4 r8c5} - n65{r8c5 r8c4} - r9c6{n66 n67} - n66{r9c4 r9c5} - n49{r9c5 r9c4} - r9c2{n50 n52} - r8c1{n52 n55} - r7c3{n56 n2} - n1{r7c7 r8c3} - n51{r8c3 r9c3} - n50{r9c3 .} ==> r7c6 ≠ 47
whip[6]: n47{r9c7 r8c7} - n46{r8c7 r7c7} - r9c7{n45 n67} - r9c5{n66 n49} - n48{r7c6 r9c6} - n66{r9c6 .} ==> r6c8 ≠ 45
whip[6]: r9c7{n47 n67} - n46{r9c7 r7c7} - n47{r9c6 r8c7} - n66{r8c7 r9c6} - n48{r9c6 r7c6} - r9c5{n49 .} ==> r6c7 ≠ 45
whip[13]: r6c9{n42 n44} - n45{r9c9 r7c8} - n38{r7c8 r7c7} - r6c8{n38 n37} - n39{r6c8 r8c8} - n46{r8c8 r8c7} - r9c2{n50 n52} - r7c1{n53 n56} - r7c3{n56 n2} - r6c7{n1 n66} - n67{r8c5 r7c6} - n65{r7c6 r6c6} - n70{r6c6 .} ==> r9c9 ≠ 40
whip[3]: r9c9{n45 n41} - r6c9{n39 n38} - r9c8{n40 .} ==> r7c7 ≠ 45
whip[3]: r9c9{n45 n41} - r6c9{n39 n38} - r9c8{n40 .} ==> r9c6 ≠ 46
whip[1]: n46{r9c8 .} ==> r8c4 ≠ 48, r8c5 ≠ 47, r9c1 ≠ 51, r9c2 ≠ 50, r9c3 ≠ 49, r9c4 ≠ 48, r9c5 ≠ 47
naked-single: r9c2 = 52
hidden-single: r9c1 = 53
naked-single: r7c1 = 56
hidden-single: r8c1 = 55
naked-single: r7c3 = 2
hidden-single: r6c4 = 3
hidden-single: r5c4 = 4
hidden-single: r5c5 = 72
whip[3]: r9c9{n45 n41} - r6c9{n39 n38} - n39{r6c7 .} ==> r7c8 ≠ 44
whip[3]: r9c9{n45 n41} - n42{r6c8 r8c9} - n44{r8c9 .} ==> r8c8 ≠ 45
whip[3]: r9c9{n45 n41} - n42{r6c8 r8c8} - n44{r8c8 .} ==> r8c9 ≠ 45
whip[3]: r9c9{n45 n41} - r6c9{n39 n38} - n37{r6c6 .} ==> r6c8 ≠ 44
whip[4]: r9c9{n41 n45} - n46{r7c7 r8c8} - n44{r8c8 r8c9} - n42{r8c9 .} ==> r9c8 ≠ 41
whip[4]: r9c8{n46 n40} - r6c8{n38 n37} - r6c7{n37 n66} - r9c7{n67 .} ==> r7c7 ≠ 46
whip[4]: n65{r8c4 r8c5} - n67{r8c5 r9c5} - n49{r9c5 r9c4} - n48{r7c6 .} ==> r8c4 ≠ 66
whip[5]: r9c9{n45 n41} - r6c9{n39 n38} - n44{r6c9 r8c8} - n40{r8c8 r8c9} - n42{r8c9 .} ==> r8c7 ≠ 45
whip[5]: r9c9{n45 n41} - r6c9{n39 n38} - n44{r6c9 r8c8} - n40{r8c8 r8c9} - n42{r8c9 .} ==> r9c7 ≠ 45
whip[5]: r9c9{n41 n45} - n44{r6c9 r8c8} - n46{r8c8 r9c8} - n40{r9c8 r7c8} - n42{r7c8 .} ==> r8c9 ≠ 41
whip[7]: r9c8{n46 n40} - r6c8{n38 n37} - r6c7{n37 n66} - n38{r6c7 r7c7} - n67{r7c7 r7c6} - n65{r7c6 r6c6} - n70{r6c6 .} ==> r7c8 ≠ 45
whip[1]: n45{r9c9 .} ==> r6c9 ≠ 44
whip[1]: r6c9{n42 .} ==> r9c8 ≠ 40
whip[3]: n44{r8c9 r8c8} - n40{r8c8 r7c8} - n38{r7c8 .} ==> r8c9 ≠ 39
whip[4]: r9c8{n46 n45} - r9c9{n45 n41} - n40{r6c7 r8c9} - n42{r8c9 .} ==> r8c8 ≠ 46
whip[3]: r8c9{n42 n44} - r8c8{n44 n39} - r6c9{n38 .} ==> r6c7 ≠ 41
whip[4]: n44{r8c9 r8c8} - n39{r8c8 r7c8} - n41{r7c8 r9c9} - n42{r6c8 .} ==> r8c9 ≠ 40
whip[3]: n40{r8c7 r8c8} - n42{r8c8 r8c9} - n44{r8c9 .} ==> r9c9 ≠ 41
naked-single: r9c9 = 45
hidden-single: r9c8 = 46
naked-single: r9c3 = 51
naked-single: r8c3 = 1
biv-chain[2]: r9c7{n67 n47} - n48{r7c6 r9c6} ==> r9c6 ≠ 67
biv-chain[2]: r9c4{n66 n50} - r8c4{n50 n65} ==> r6c7 ≠ 66, r7c6 ≠ 66, r7c7 ≠ 66, r7c7 ≠ 67, r8c7 ≠ 66, r8c7 ≠ 67, r9c6 ≠ 66, r9c7 ≠ 67, r6c6 ≠ 65, r7c6 ≠ 65
naked-single: r9c7 = 47
hidden-single: r9c6 = 48
whip[2]: n67{r9c5 r8c5} - n49{r8c5 .} ==> r9c5 ≠ 66
biv-chain[3]: n66{r8c5 r9c4} - n50{r9c4 r8c4} - n65{r8c4 r8c5} ==> r8c5 ≠ 49, r8c5 ≠ 67, r8c5 ≠ 69
hidden-single: r9c5 = 49
hidden-single: r7c6 = 67
hidden-single: r6c6 = 70
hidden-single: r7c7 = 69
hidden-single: r8c5 = 66
hidden-single: r8c4 = 65
hidden-single: r9c4 = 50
whip[1]: r8c7{n41 .} ==> r6c7 ≠ 40, r6c8 ≠ 40, r6c9 ≠ 40
whip[1]: r6c7{n39 .} ==> r6c9 ≠ 38
whip[2]: r6c9{n42 n39} - r8c7{n40 .} ==> r8c8 ≠ 41, r8c9 ≠ 42
naked-single: r8c9 = 44
whip[2]: r8c8{n42 n39} - r8c7{n39 .} ==> r6c8 ≠ 41, r6c9 ≠ 41
biv-chain[2]: n41{r7c8 r8c7} - r6c9{n42 n39} ==> r7c8 ≠ 39
whip[2]: n39{r8c8 r6c8} - n37{r6c8 .} ==> r6c7 ≠ 38
biv-chain[2]: n41{r8c7 r7c8} - n38{r7c8 r6c8} ==> r8c7 ≠ 39, r6c8 ≠ 42
whip[1]: n39{r8c8 .} ==> r8c8 ≠ 40
hidden-pairs: {n40 n41}{r7c8 r8c7} ==> r7c8 ≠ 42, r7c8 ≠ 38
hidden-single: r6c8 = 38
hidden-single: r6c7 = 37
hidden-single: r6c9 = 39
hidden-single: r8c8 = 42
hidden-single: r7c8 = 40
hidden-single: r8c7 = 41
GRID SOLVED. rating-type = W+S, MOST COMPLEX RULE TRIED = W[14]
12 81 80 79 77 27 28 25 24
11 13 14 76 78 29 26 21 23
10 8 75 15 16 30 31 20 22
9 6 7 74 73 17 19 32 34
59 58 5 4 72 18 36 35 33
60 57 62 3 71 70 37 38 39
56 61 2 63 64 67 69 40 43
55 54 1 65 66 68 41 42 44
53 52 51 50 49 48 47 46 45
Last edited by denis_berthier on Sat May 23, 2020 6:06 am, edited 1 time in total.
denis_berthier
2010 Supporter
 
Posts: 1523
Joined: 19 June 2007
Location: Paris

Re:

Postby denis_berthier » Sat May 23, 2020 5:06 am

evert wrote:This one should be nice, since it requires many tricks:)
Code: Select all
..;..;..;..;09;..;..;..;..
..;..;45;..;..;14;80;..;..
..;..;..;11;12;..;..;..;76
04;02;..;..;..;60;..;18;..
..;03;..;..;..;..;..;..;..
..;..;..;..;..;..;..;20;..
52;..;..;35;27;..;25;72;..
..;..;..;..;..;..;..;23;..
55;..;..;..;..;..;..;..;..


Easier than the previous. It's in W4, using my topological model.
I should probably erase the whips[1], as they are trivial steps, but I keep them here for completeness. Hidato always requires many such trivial elimination steps.

Hidden Text: Show
***********************************************************************************************
*** HidatoRules 2.1.s based on CSP-Rules 2.1.s, config = W+S
*** using CLIPS 6.32-r764
***********************************************************************************************
***** Hidato-Rules topological-model *****
undecided numbers: (1 5 6 7 8 10 13 15 16 17 19 21 22 24 26 28 29 30 31 32 33 34 36 37 38 39 40 41 42 43 44 46 47 48 49 50 51 53 54 56 57 58 59 61 62 63 64 65 66 67 68 69 70 71 73 74 75 77 78 79 81)
hidden-single: r8c7 = 24
hidden-single: r8c2 = 56
hidden-single: r7c3 = 57
hidden-single: r6c4 = 58
hidden-single: r5c5 = 59
hidden-single: r4c9 = 75
whip[1]: n71{r6c7 .} ==> r6c7 ≠ 70, r8c6 ≠ 70, r9c6 ≠ 70, r9c7 ≠ 70
whip[1]: n70{r9c9 .} ==> r9c5 ≠ 69, r9c6 ≠ 69
whip[1]: n36{r6c5 .} ==> r6c5 ≠ 37, r6c3 ≠ 37
whip[1]: n34{r6c5 .} ==> r6c5 ≠ 33, r6c3 ≠ 33
whip[1]: n48{r5c1 .} ==> r5c1 ≠ 49, r2c5 ≠ 47
whip[1]: n47{r4c5 .} ==> r5c1 ≠ 48
whip[1]: n48{r5c4 .} ==> r6c1 ≠ 49
whip[1]: n49{r6c3 .} ==> r3c1 ≠ 48
whip[1]: n42{r5c1 .} ==> r5c1 ≠ 41
whip[1]: n30{r9c8 .} ==> r3c1 ≠ 31
whip[1]: n38{r9c7 .} ==> r3c1 ≠ 39
whip[1]: n28{r8c6 .} ==> r6c3 ≠ 29, r5c3 ≠ 29
whip[1]: n29{r9c7 .} ==> r6c2 ≠ 30
whip[1]: n30{r9c8 .} ==> r5c1 ≠ 31
whip[1]: n40{r7c6 .} ==> r8c4 ≠ 39
whip[1]: n63{r7c9 .} ==> r8c4 ≠ 64, r8c3 ≠ 64
whip[1]: n64{r8c9 .} ==> r9c2 ≠ 65, r9c3 ≠ 65
whip[1]: n62{r6c7 .} ==> r7c9 ≠ 63
whip[1]: n63{r7c6 .} ==> r8c9 ≠ 64
whip[1]: n64{r8c6 .} ==> r9c8 ≠ 65, r9c9 ≠ 65
whip[1]: n22{r8c9 .} ==> r6c7 ≠ 21
whip[1]: n61{r5c7 .} ==> r2c4 ≠ 62
whip[1]: n62{r6c7 .} ==> r1c3 ≠ 63
whip[1]: n63{r7c6 .} ==> r1c2 ≠ 64
whip[1]: n43{r4c5 .} ==> r5c1 ≠ 42
whip[1]: n42{r5c6 .} ==> r6c1 ≠ 41
whip[1]: n6{r4c3 .} ==> r5c1 ≠ 5, r1c4 ≠ 7
whip[1]: n16{r4c7 .} ==> r5c9 ≠ 17, r1c6 ≠ 15
whip[1]: n44{r3c3 .} ==> r4c5 ≠ 43
whip[1]: n43{r4c4 .} ==> r5c6 ≠ 42
whip[1]: n42{r5c4 .} ==> r5c7 ≠ 41, r6c6 ≠ 41, r6c7 ≠ 41
whip[1]: n46{r3c3 .} ==> r4c5 ≠ 47
whip[1]: n68{r9c9 .} ==> r2c4 ≠ 67
whip[1]: n67{r9c9 .} ==> r1c2 ≠ 66, r1c3 ≠ 66
biv-chain[2]: n21{r7c9 r6c9} - n22{r8c9 r7c9} ==> r7c9 ≠ 64, r7c9 ≠ 65, r7c9 ≠ 66, r7c9 ≠ 67, r7c9 ≠ 68, r7c9 ≠ 69, r7c9 ≠ 70, r7c9 ≠ 71
whip[1]: n71{r8c9 .} ==> r6c9 ≠ 70, r8c9 ≠ 70
whip[1]: n65{r9c7 .} ==> r8c9 ≠ 66
whip[1]: n64{r8c6 .} ==> r8c9 ≠ 65
whip[1]: n65{r9c7 .} ==> r9c9 ≠ 66
biv-chain[2]: n53{r8c1 r7c2} - n54{r9c2 r8c1} ==> r8c1 ≠ 31, r8c1 ≠ 32, r8c1 ≠ 38, r8c1 ≠ 39, r8c1 ≠ 51, r8c1 ≠ 65
whip[2]: r9c9{n68 n70} - n69{r4c5 .} ==> r9c6 ≠ 68, r3c6 ≠ 68, r3c7 ≠ 68, r3c8 ≠ 68, r4c4 ≠ 68, r4c5 ≠ 68, r4c7 ≠ 68, r5c4 ≠ 68, r5c6 ≠ 68, r5c7 ≠ 68, r5c8 ≠ 68, r5c9 ≠ 68, r6c5 ≠ 68, r6c6 ≠ 68, r6c7 ≠ 68, r6c9 ≠ 68, r7c6 ≠ 68, r8c4 ≠ 68, r8c5 ≠ 68, r8c6 ≠ 68, r9c4 ≠ 68, r9c5 ≠ 68
whip[1]: n68{r9c9 .} ==> r2c5 ≠ 67, r2c8 ≠ 67, r2c9 ≠ 67, r3c3 ≠ 67, r3c6 ≠ 67, r3c7 ≠ 67, r3c8 ≠ 67, r4c3 ≠ 67, r4c4 ≠ 67, r4c5 ≠ 67, r4c7 ≠ 67, r5c3 ≠ 67, r5c4 ≠ 67, r5c6 ≠ 67, r5c7 ≠ 67, r5c8 ≠ 67, r5c9 ≠ 67, r6c3 ≠ 67, r6c5 ≠ 67, r6c6 ≠ 67, r6c7 ≠ 67, r6c9 ≠ 67, r7c6 ≠ 67, r8c3 ≠ 67, r8c4 ≠ 67, r8c5 ≠ 67, r9c3 ≠ 67, r9c4 ≠ 67, r9c5 ≠ 67, r4c5 ≠ 69, r4c7 ≠ 69, r5c6 ≠ 69, r5c7 ≠ 69, r5c8 ≠ 69, r5c9 ≠ 69, r6c5 ≠ 69, r6c6 ≠ 69, r6c7 ≠ 69, r6c9 ≠ 69, r7c6 ≠ 69, r8c5 ≠ 69
whip[1]: n69{r9c9 .} ==> r5c6 ≠ 70, r5c7 ≠ 70, r5c8 ≠ 70, r5c9 ≠ 70, r6c6 ≠ 70
whip[1]: n70{r9c9 .} ==> r6c9 ≠ 71
whip[1]: n67{r9c9 .} ==> r1c4 ≠ 66, r1c6 ≠ 66, r1c7 ≠ 66, r1c8 ≠ 66, r1c9 ≠ 66, r2c2 ≠ 66, r2c4 ≠ 66, r2c5 ≠ 66, r2c8 ≠ 66, r2c9 ≠ 66, r3c2 ≠ 66, r3c3 ≠ 66, r3c6 ≠ 66, r3c7 ≠ 66, r3c8 ≠ 66, r4c3 ≠ 66, r4c4 ≠ 66, r4c5 ≠ 66, r4c7 ≠ 66, r5c3 ≠ 66, r5c4 ≠ 66, r5c6 ≠ 66, r5c7 ≠ 66, r5c8 ≠ 66, r5c9 ≠ 66, r6c2 ≠ 66, r6c3 ≠ 66, r6c5 ≠ 66, r6c6 ≠ 66, r6c7 ≠ 66, r6c9 ≠ 66, r7c2 ≠ 66, r8c3 ≠ 66, r8c4 ≠ 66, r9c2 ≠ 66, r9c3 ≠ 66, r9c4 ≠ 66
whip[1]: n66{r9c8 .} ==> r1c1 ≠ 65, r1c2 ≠ 65, r1c3 ≠ 65, r1c4 ≠ 65, r1c6 ≠ 65, r1c7 ≠ 65, r1c8 ≠ 65, r1c9 ≠ 65, r2c1 ≠ 65, r2c2 ≠ 65, r2c4 ≠ 65, r2c5 ≠ 65, r2c8 ≠ 65, r2c9 ≠ 65, r3c1 ≠ 65, r3c2 ≠ 65, r3c3 ≠ 65, r3c6 ≠ 65, r3c7 ≠ 65, r3c8 ≠ 65, r4c3 ≠ 65, r4c4 ≠ 65, r4c5 ≠ 65, r4c7 ≠ 65, r5c1 ≠ 65, r5c3 ≠ 65, r5c4 ≠ 65, r5c6 ≠ 65, r5c7 ≠ 65, r5c8 ≠ 65, r5c9 ≠ 65, r6c1 ≠ 65, r6c2 ≠ 65, r6c3 ≠ 65, r6c9 ≠ 65, r7c2 ≠ 65, r8c3 ≠ 65
whip[1]: n65{r9c7 .} ==> r1c3 ≠ 64, r1c4 ≠ 64, r1c6 ≠ 64, r1c7 ≠ 64, r1c8 ≠ 64, r1c9 ≠ 64, r2c2 ≠ 64, r2c4 ≠ 64, r2c5 ≠ 64, r2c8 ≠ 64, r2c9 ≠ 64, r3c2 ≠ 64, r3c3 ≠ 64, r3c6 ≠ 64, r3c7 ≠ 64, r3c8 ≠ 64, r4c3 ≠ 64, r4c4 ≠ 64, r4c5 ≠ 64, r4c7 ≠ 64, r5c3 ≠ 64, r5c9 ≠ 64, r6c2 ≠ 64, r6c3 ≠ 64, r6c9 ≠ 64, r7c2 ≠ 64
whip[1]: n64{r8c6 .} ==> r1c4 ≠ 63, r1c6 ≠ 63, r1c7 ≠ 63, r1c8 ≠ 63, r1c9 ≠ 63, r2c4 ≠ 63, r2c5 ≠ 63, r2c8 ≠ 63, r2c9 ≠ 63, r3c3 ≠ 63, r3c6 ≠ 63, r3c7 ≠ 63, r3c8 ≠ 63
naked-single: r1c9 = 78
naked-single: r2c9 = 77
whip[1]: n63{r7c6 .} ==> r2c5 ≠ 62, r2c8 ≠ 62
whip[1]: r1c1{n43 .} ==> r1c3 ≠ 42, r1c4 ≠ 42, r1c6 ≠ 42, r2c4 ≠ 42, r2c5 ≠ 42, r3c1 ≠ 42, r3c2 ≠ 42, r3c3 ≠ 42, r3c6 ≠ 42, r4c3 ≠ 42, r4c4 ≠ 42, r4c5 ≠ 42, r5c3 ≠ 42, r5c4 ≠ 42
whip[1]: n42{r2c2 .} ==> r4c3 ≠ 43, r1c4 ≠ 41, r1c6 ≠ 41, r1c7 ≠ 41, r1c4 ≠ 43, r2c4 ≠ 43, r2c5 ≠ 43, r4c4 ≠ 43, r2c4 ≠ 41, r2c5 ≠ 41, r3c6 ≠ 41, r3c7 ≠ 41, r4c3 ≠ 41, r4c4 ≠ 41, r4c5 ≠ 41, r4c7 ≠ 41, r5c3 ≠ 41, r5c4 ≠ 41, r5c6 ≠ 41, r6c2 ≠ 41, r6c3 ≠ 41, r6c5 ≠ 41
naked-single: r1c6 = 81
naked-single: r1c7 = 15
hidden-single: r2c8 = 16
hidden-single: r1c8 = 79
whip[1]: n41{r3c3 .} ==> r5c4 ≠ 40, r2c5 ≠ 40, r3c6 ≠ 40, r3c7 ≠ 40, r3c8 ≠ 40, r4c5 ≠ 40, r4c7 ≠ 40, r5c1 ≠ 40, r5c3 ≠ 40, r5c6 ≠ 40, r5c7 ≠ 40, r5c8 ≠ 40, r6c1 ≠ 40, r6c2 ≠ 40, r6c3 ≠ 40, r6c5 ≠ 40, r6c6 ≠ 40, r6c7 ≠ 40, r7c2 ≠ 40, r7c6 ≠ 40
whip[1]: n40{r4c4 .} ==> r6c5 ≠ 39, r3c6 ≠ 39, r3c7 ≠ 39, r3c8 ≠ 39, r4c7 ≠ 39, r5c1 ≠ 39, r5c6 ≠ 39, r5c7 ≠ 39, r5c8 ≠ 39, r6c1 ≠ 39, r6c2 ≠ 39, r6c3 ≠ 39, r6c6 ≠ 39, r6c7 ≠ 39, r7c2 ≠ 39, r7c6 ≠ 39, r8c3 ≠ 39, r8c5 ≠ 39, r8c6 ≠ 39
whip[1]: n39{r5c4 .} ==> r7c6 ≠ 38, r4c7 ≠ 38, r5c1 ≠ 38, r5c7 ≠ 38, r6c1 ≠ 38, r6c6 ≠ 38, r6c7 ≠ 38, r7c2 ≠ 38, r8c3 ≠ 38, r8c4 ≠ 38, r8c5 ≠ 38, r8c6 ≠ 38, r9c2 ≠ 38, r9c3 ≠ 38, r9c4 ≠ 38, r9c5 ≠ 38, r9c6 ≠ 38, r9c7 ≠ 38
whip[1]: n38{r6c5 .} ==> r8c6 ≠ 37, r8c3 ≠ 37, r8c4 ≠ 37, r8c5 ≠ 37, r9c2 ≠ 37, r9c3 ≠ 37, r9c4 ≠ 37, r9c5 ≠ 37, r9c6 ≠ 37
whip[1]: n37{r7c6 .} ==> r8c4 ≠ 36
whip[2]: n39{r5c4 r3c2} - n5{r3c2 .} ==> r3c1 ≠ 40
whip[2]: n62{r6c7 r5c8} - n64{r5c8 .} ==> r5c9 ≠ 63, r6c9 ≠ 63
whip[2]: n62{r6c7 r5c4} - n64{r5c4 .} ==> r6c3 ≠ 63
whip[2]: n71{r8c9 r6c7} - n70{r9c8 .} ==> r8c9 ≠ 69
whip[2]: n69{r9c9 r9c8} - n70{r7c6 .} ==> r9c9 ≠ 68
whip[2]: n66{r9c7 r9c8} - n68{r9c8 .} ==> r8c9 ≠ 67
whip[2]: r9c9{n70 n67} - n68{r9c7 .} ==> r8c6 ≠ 69
whip[1]: n69{r9c9 .} ==> r7c6 ≠ 70
whip[1]: n70{r9c9 .} ==> r6c7 ≠ 71
hidden-single: r8c9 = 71
hidden-single: r7c9 = 22
hidden-single: r6c9 = 21
hidden-single: r6c7 = 73
hidden-single: r5c8 = 74
naked-single: r5c9 = 19
biv-chain[2]: n70{r9c9 r9c8} - n68{r9c8 r9c7} ==> r9c9 ≠ 69, r9c9 ≠ 67, r9c7 ≠ 69
hidden-single: r9c8 = 69
hidden-single: r9c7 = 68
hidden-single: r9c9 = 70
whip[2]: n30{r9c6 r4c3} - n32{r4c3 .} ==> r3c2 ≠ 31
whip[2]: n30{r9c6 r4c7} - n32{r4c7 .} ==> r3c7 ≠ 31, r3c8 ≠ 31
whip[2]: r3c8{n62 n17} - r3c7{n17 .} ==> r4c5 ≠ 61, r5c6 ≠ 61, r5c7 ≠ 61, r4c4 ≠ 62, r4c5 ≠ 62, r5c4 ≠ 62, r5c6 ≠ 62, r5c7 ≠ 62, r6c5 ≠ 62, r6c6 ≠ 62
whip[1]: n62{r4c7 .} ==> r6c5 ≠ 63, r4c3 ≠ 63, r4c4 ≠ 63, r5c3 ≠ 63, r5c4 ≠ 63, r6c6 ≠ 63, r7c6 ≠ 63
whip[1]: n63{r5c7 .} ==> r8c5 ≠ 64, r7c6 ≠ 64, r8c6 ≠ 64
whip[1]: n64{r6c6 .} ==> r8c5 ≠ 65, r8c4 ≠ 65, r8c6 ≠ 65, r9c4 ≠ 65, r9c5 ≠ 65, r9c6 ≠ 65
whip[1]: n65{r7c6 .} ==> r9c5 ≠ 66, r9c6 ≠ 66
whip[2]: n5{r3c1 r3c2} - n48{r3c2 .} ==> r3c1 ≠ 47
whip[2]: n10{r2c5 r2c4} - n7{r2c4 .} ==> r2c5 ≠ 8
whip[2]: n47{r4c4 r2c4} - n8{r2c4 .} ==> r1c4 ≠ 46
whip[3]: n36{r8c5 r6c5} - n65{r6c5 r7c6} - n64{r5c4 .} ==> r6c6 ≠ 37
whip[1]: n37{r7c6 .} ==> r5c6 ≠ 38
whip[3]: n37{r7c2 r7c6} - n66{r7c6 r8c6} - n65{r6c5 .} ==> r8c5 ≠ 36
whip[2]: n38{r6c3 r6c5} - n36{r6c5 .} ==> r7c6 ≠ 37
whip[3]: n39{r5c3 r5c4} - n37{r5c4 r5c6} - n36{r6c3 .} ==> r6c5 ≠ 38
whip[3]: n39{r5c4 r3c3} - n41{r3c3 r1c3} - n7{r1c3 .} ==> r2c4 ≠ 40
whip[3]: n17{r3c8 r3c7} - n61{r3c7 r4c7} - n63{r4c7 .} ==> r3c8 ≠ 62
naked-single: r3c8 = 17
whip[2]: r3c7{n61 n62} - n63{r4c5 .} ==> r4c7 ≠ 61
whip[3]: n67{r8c6 r9c6} - n66{r7c6 r8c5} - n34{r8c5 .} ==> r8c6 ≠ 33
whip[3]: n66{r8c6 r7c6} - n26{r7c6 r8c6} - n67{r8c6 .} ==> r6c6 ≠ 65
whip[1]: n65{r7c6 .} ==> r5c7 ≠ 64
whip[2]: n65{r7c6 r6c5} - n66{r8c5 .} ==> r7c6 ≠ 26, r7c6 ≠ 28, r7c6 ≠ 29, r7c6 ≠ 30, r7c6 ≠ 31, r7c6 ≠ 32, r7c6 ≠ 33
whip[3]: n67{r8c6 r9c6} - n66{r7c6 r8c5} - n28{r8c5 .} ==> r8c6 ≠ 29
whip[3]: n65{r6c5 r7c6} - n64{r5c4 r6c6} - n28{r6c6 .} ==> r6c5 ≠ 29
whip[1]: n29{r9c6 .} ==> r5c4 ≠ 30
whip[3]: n28{r8c6 r6c5} - n65{r6c5 r7c6} - n64{r5c4 .} ==> r6c6 ≠ 29
whip[3]: n30{r9c6 r7c2} - r9c5{n30 n33} - n32{r4c3 .} ==> r6c1 ≠ 31
whip[2]: n33{r9c6 r6c2} - n31{r6c2 .} ==> r5c1 ≠ 32
whip[3]: r5c1{n1 n50} - n49{r4c3 r6c2} - n48{r3c2 .} ==> r5c3 ≠ 1
whip[3]: n34{r8c5 r6c5} - n65{r6c5 r7c6} - n64{r5c4 .} ==> r6c6 ≠ 33
whip[1]: n33{r9c6 .} ==> r5c6 ≠ 32
whip[3]: n32{r9c6 r5c7} - n33{r5c3 r5c6} - n30{r5c6 .} ==> r4c7 ≠ 31
whip[3]: n48{r5c4 r3c3} - n46{r3c3 r1c3} - n7{r1c3 .} ==> r2c4 ≠ 47
whip[4]: n40{r4c4 r2c2} - n42{r2c2 r1c2} - r1c1{n42 n43} - n44{r1c3 .} ==> r1c3 ≠ 41
whip[4]: n61{r3c6 r3c7} - n62{r3c7 r4c7} - n32{r4c7 r4c5} - n30{r4c5 .} ==> r3c6 ≠ 31
whip[4]: n33{r9c6 r5c6} - n31{r5c6 r5c7} - n30{r4c3 r6c6} - n29{r5c4 .} ==> r4c7 ≠ 32
whip[3]: n32{r9c6 r6c6} - r9c3{n33 n29} - n30{r4c3 .} ==> r5c7 ≠ 31
whip[3]: n33{r9c6 r5c6} - n34{r6c3 r6c5} - n31{r6c5 .} ==> r6c6 ≠ 32
whip[3]: n32{r9c6 r5c4} - r9c3{n33 n29} - n30{r4c3 .} ==> r6c5 ≠ 31
whip[3]: n31{r9c6 r5c6} - r9c3{n32 n33} - n32{r4c3 .} ==> r6c6 ≠ 30
whip[3]: n31{r9c6 r5c6} - r9c3{n32 n33} - n32{r4c3 .} ==> r4c7 ≠ 30
whip[1]: r4c7{n63 .} ==> r4c5 ≠ 63
whip[1]: n63{r5c7 .} ==> r5c4 ≠ 64
whip[3]: n30{r9c6 r5c6} - n63{r5c6 r4c7} - n64{r6c5 .} ==> r5c7 ≠ 29
whip[1]: n29{r9c6 .} ==> r5c6 ≠ 30
whip[3]: n29{r9c6 r5c6} - n64{r5c6 r6c5} - n63{r4c7 .} ==> r6c6 ≠ 28
whip[3]: n30{r9c6 r4c4} - r9c3{n31 n33} - n32{r4c3 .} ==> r4c5 ≠ 31
whip[3]: n29{r9c6 r5c6} - n63{r5c6 r4c7} - n64{r6c5 .} ==> r5c7 ≠ 30
whip[2]: r5c7{n63 n32} - n33{r5c3 .} ==> r5c6 ≠ 63
whip[1]: n63{r5c7 .} ==> r6c5 ≠ 64
biv-chain[3]: r7c6{n66 n65} - n64{r5c6 r6c6} - n26{r6c6 r8c6} ==> r8c6 ≠ 66
whip[3]: n33{r9c6 r5c6} - n31{r5c6 r6c6} - n64{r6c6 .} ==> r5c7 ≠ 32
naked-single: r5c7 = 63
hidden-single: r4c7 = 62
naked-single: r3c7 = 61
naked-single: r3c6 = 13
naked-single: r2c5 = 10
whip[2]: n30{r9c6 r6c5} - n32{r6c5 .} ==> r6c6 ≠ 31
biv-chain[4]: n67{r8c6 r9c6} - r7c6{n66 n65} - n64{r5c6 r6c6} - n26{r6c6 r8c6} ==> r8c6 ≠ 28, r8c6 ≠ 30, r8c6 ≠ 31, r8c6 ≠ 32
whip[4]: n34{r8c5 r8c4} - n28{r8c4 r6c5} - n65{r6c5 r7c6} - n66{r7c6 .} ==> r8c5 ≠ 33
whip[4]: n51{r7c2 r6c2} - r6c1{n51 n32} - n33{r9c6 r7c2} - n31{r7c2 .} ==> r5c3 ≠ 50
whip[1]: n50{r7c2 .} ==> r4c3 ≠ 49, r4c4 ≠ 49
whip[1]: n49{r6c3 .} ==> r3c2 ≠ 48, r3c3 ≠ 48
whip[1]: n48{r5c4 .} ==> r2c1 ≠ 47, r2c2 ≠ 47
whip[1]: n47{r4c4 .} ==> r1c2 ≠ 46, r1c3 ≠ 46
whip[2]: r1c1{n43 n41} - r1c2{n41 .} ==> r3c1 ≠ 43, r3c2 ≠ 43, r3c3 ≠ 43
whip[2]: r1c1{n42 n43} - r2c1{n43 .} ==> r3c3 ≠ 41
whip[1]: n41{r3c2 .} ==> r4c4 ≠ 40
whip[1]: n40{r4c3 .} ==> r4c5 ≠ 39
whip[3]: r1c4{n44 n8} - n7{r3c3 r1c3} - n43{r1c3 .} ==> r2c4 ≠ 44
whip[3]: r1c3{n44 n7} - n6{r3c2 r2c2} - n43{r2c2 .} ==> r3c3 ≠ 44
whip[4]: n6{r4c3 r3c3} - n5{r3c1 r3c2} - n46{r3c2 r2c2} - n47{r4c3 .} ==> r2c4 ≠ 7
whip[1]: n7{r3c3 .} ==> r3c3 ≠ 6
biv-chain[2]: r1c4{n44 n8} - n7{r3c3 r1c3} ==> r1c3 ≠ 44
whip[2]: r1c3{n43 n7} - n6{r3c2 .} ==> r2c2 ≠ 43
whip[3]: r1c3{n43 n7} - n6{r3c2 r2c2} - n44{r2c2 .} ==> r1c2 ≠ 43
whip[3]: r1c4{n44 n8} - n7{r3c3 r1c3} - n6{r3c2 .} ==> r2c2 ≠ 44
whip[4]: r2c4{n46 n8} - r1c4{n8 n44} - n43{r2c1 r1c3} - n7{r1c3 .} ==> r3c3 ≠ 46
whip[1]: n46{r3c2 .} ==> r4c4 ≠ 47
whip[1]: n47{r4c3 .} ==> r4c5 ≠ 48
whip[3]: n5{r3c2 r3c1} - n6{r4c3 r2c2} - n46{r2c2 .} ==> r3c2 ≠ 47
biv-chain[2]: n47{r4c3 r3c3} - n7{r3c3 r1c3} ==> r4c3 ≠ 6
biv-chain[3]: n6{r2c2 r3c2} - n7{r1c3 r3c3} - n47{r3c3 r4c3} ==> r2c2 ≠ 46
biv-chain[3]: n46{r3c2 r2c4} - n8{r2c4 r1c4} - n7{r3c3 r1c3} ==> r3c2 ≠ 6
hidden-single: r2c2 = 6
whip[3]: n42{r1c2 r2c1} - n40{r2c1 r3c2} - n5{r3c2 .} ==> r3c1 ≠ 41
whip[3]: n41{r2c1 r3c2} - n46{r3c2 r2c4} - n47{r4c3 .} ==> r3c3 ≠ 40
whip[3]: n40{r3c2 r4c3} - n47{r4c3 r3c3} - n48{r5c3 .} ==> r4c4 ≠ 39
whip[3]: r4c5{n32 n38} - n39{r5c3 r5c4} - n40{r2c1 .} ==> r4c3 ≠ 31
whip[3]: n47{r3c3 r4c3} - n40{r4c3 r3c2} - n46{r3c2 .} ==> r3c3 ≠ 39
whip[3]: n46{r2c4 r3c2} - n40{r3c2 r2c1} - n39{r4c3 .} ==> r4c3 ≠ 47
hidden-single: r3c3 = 47
hidden-single: r1c3 = 7
whip[1]: n43{r2c1 .} ==> r1c4 ≠ 44
naked-single: r1c4 = 8
naked-single: r2c4 = 46
whip[1]: n48{r4c4 .} ==> r6c2 ≠ 49, r6c3 ≠ 49
whip[1]: n49{r5c4 .} ==> r7c2 ≠ 50, r5c1 ≠ 50, r6c1 ≠ 50
naked-single: r5c1 = 1
naked-single: r3c1 = 5
biv-chain[2]: n50{r6c2 r6c3} - r6c1{n51 n32} ==> r6c2 ≠ 32
whip[2]: n34{r8c5 r6c3} - n50{r6c3 .} ==> r6c2 ≠ 33
whip[2]: n36{r8c3 r6c3} - n50{r6c3 .} ==> r6c2 ≠ 37
whip[2]: n29{r9c6 r5c4} - n49{r5c4 .} ==> r5c3 ≠ 30
whip[2]: n37{r5c4 r5c3} - n49{r5c3 .} ==> r5c4 ≠ 38
whip[2]: n33{r5c4 r5c3} - n49{r5c3 .} ==> r5c4 ≠ 32
whip[2]: n40{r4c3 r2c1} - n43{r2c1 .} ==> r1c1 ≠ 41
biv-chain[2]: n44{r1c2 r3c2} - r1c1{n43 n42} ==> r1c2 ≠ 42
hidden-pairs: {n42 n43}{r1c1 r2c1} ==> r2c1 ≠ 41, r2c1 ≠ 40
whip[1]: n40{r4c3 .} ==> r1c2 ≠ 41
hidden-single: r3c2 = 41
hidden-single: r2c1 = 42
hidden-single: r1c1 = 43
hidden-single: r4c3 = 40
hidden-single: r4c4 = 48
hidden-single: r1c2 = 44
hidden-pairs: {n39 n49}{r5c3 r5c4} ==> r5c4 ≠ 37, r5c4 ≠ 33, r5c4 ≠ 31, r5c4 ≠ 29, r5c3 ≠ 38, r5c3 ≠ 37, r5c3 ≠ 33, r5c3 ≠ 32, r5c3 ≠ 31
whip[1]: n29{r9c6 .} ==> r6c3 ≠ 30
whip[2]: n30{r9c6 r7c2} - n32{r7c2 .} ==> r6c3 ≠ 31
whip[2]: n31{r9c6 r5c6} - n29{r5c6 .} ==> r4c5 ≠ 30, r6c5 ≠ 30
whip[1]: n30{r9c6 .} ==> r5c6 ≠ 29, r5c6 ≠ 31
whip[1]: n31{r9c6 .} ==> r4c5 ≠ 32, r6c5 ≠ 32
naked-single: r4c5 = 38
hidden-single: r5c4 = 39
hidden-single: r5c3 = 49
hidden-single: r5c6 = 37
hidden-single: r6c6 = 64
hidden-single: r8c6 = 26
hidden-single: r9c6 = 67
hidden-single: r8c5 = 66
hidden-single: r7c6 = 65
hidden-single: r6c5 = 36
hidden-single: r8c4 = 28
whip[1]: n34{r8c3 .} ==> r9c5 ≠ 33, r8c3 ≠ 33
whip[1]: n33{r9c4 .} ==> r7c2 ≠ 32
whip[2]: r9c5{n32 n29} - n30{r7c2 .} ==> r6c2 ≠ 31, r7c2 ≠ 31, r9c2 ≠ 31
whip[1]: n31{r9c5 .} ==> r6c1 ≠ 32, r6c3 ≠ 32
naked-single: r6c1 = 51
hidden-single: r6c2 = 50
naked-single: r6c3 = 34
hidden-single: r7c2 = 33
hidden-single: r8c1 = 53
hidden-single: r9c2 = 54
hidden-single: r8c3 = 32
whip[1]: r9c5{n30 .} ==> r9c3 ≠ 29, r9c3 ≠ 30
naked-single: r9c3 = 31
hidden-single: r9c4 = 30
hidden-single: r9c5 = 29
GRID SOLVED. rating-type = W+S, MOST COMPLEX RULE TRIED = W[4]
43 44 7 8 9 81 15 79 78
42 6 45 46 10 14 80 16 77
5 41 47 11 12 13 61 17 76
4 2 40 48 38 60 62 18 75
1 3 49 39 59 37 63 74 19
51 50 34 58 36 64 73 20 21
52 33 57 35 27 65 25 72 22
53 56 32 28 66 26 24 23 71
55 54 31 30 29 67 68 69 70
denis_berthier
2010 Supporter
 
Posts: 1523
Joined: 19 June 2007
Location: Paris

Re: Hidato

Postby International_DBA » Sat May 23, 2020 12:08 pm

Yes, my puzzle is easy.
I started with a fixed size 8x8:
https://andrewspuzzles.blogspot.com/202 ... -no-1.html
Then I changed my program to accept a parameter defining the size of the puzzle and produced a 3x3 puzzle:
https://andrewspuzzles.blogspot.com/202 ... -by-3.html
Then I produced the 4x4 puzzle I posted yesterday.
I will produce 5x5, 6x6 and 7x7 puzzles next.
Then I will stop.
So far my program can only produce the solution.
I have to use a solver to create the puzzles by trial and error from there.
Once I have produced the 7x7 puzzle I will try to change my program so that it creates a puzzle too, before creating some new puzzles.
International_DBA
 
Posts: 41
Joined: 07 December 2014

Re: Hidato

Postby denis_berthier » Sat May 23, 2020 1:49 pm

International_DBA wrote:Yes, my puzzle is easy.
I started with a fixed size 8x8:
https://andrewspuzzles.blogspot.com/202 ... -no-1.html


I tried this 8x8 puzzle. I think it's a good intermediate level.

Hidden Text: Show
***********************************************************************************************
*** HidatoRules 2.1.s based on CSP-Rules 2.1.s, config = W+S
*** using CLIPS 6.32-r764
***********************************************************************************************
***** Hidato-Rules topological-model *****
undecided numbers: (3 5 7 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25 26 27 28 30 31 34 35 36 37 38 41 42 43 45 46 47 48 49 50 52 53 54 56 57 59 61 62 63)
hidden-single: r7c3 = 5
hidden-single: r7c2 = 3
hidden-single: r1c7 = 63
407 candidates, 4379 csp-links and 7374 links. Density = 8.93%
whip[1]: r1c1{n35 .} ==> r4c4 ≠ 35, r2c3 ≠ 35, r2c4 ≠ 35, r3c1 ≠ 35, r3c2 ≠ 35, r3c3 ≠ 35, r3c4 ≠ 35, r4c1 ≠ 35, r4c3 ≠ 35
whip[1]: n35{r2c1 .} ==> r3c3 ≠ 36, r1c5 ≠ 36, r2c4 ≠ 36, r2c5 ≠ 36, r3c4 ≠ 36, r3c5 ≠ 36, r4c1 ≠ 36, r4c3 ≠ 36, r4c4 ≠ 36, r4c5 ≠ 36, r5c1 ≠ 36, r5c4 ≠ 36, r3c3 ≠ 34
whip[1]: n36{r3c2 .} ==> r4c4 ≠ 37, r5c1 ≠ 37, r5c4 ≠ 37, r6c1 ≠ 37, r6c2 ≠ 37, r6c3 ≠ 37
whip[1]: r6c1{n42 .} ==> r4c1 ≠ 41, r4c3 ≠ 41, r6c3 ≠ 41, r3c1 ≠ 42, r3c2 ≠ 42, r3c3 ≠ 42, r3c4 ≠ 42, r4c1 ≠ 42, r4c3 ≠ 42, r4c4 ≠ 42, r5c4 ≠ 42, r6c3 ≠ 42
whip[1]: n42{r6c2 .} ==> r5c4 ≠ 43, r4c3 ≠ 43, r4c4 ≠ 43
whip[1]: n48{r7c7 .} ==> r8c3 ≠ 47
naked-single: r8c3 = 9
hidden-single: r8c4 = 10
whip[1]: n11{r8c5 .} ==> r5c6 ≠ 12, r5c7 ≠ 12, r5c8 ≠ 12, r6c7 ≠ 12, r6c8 ≠ 12, r7c7 ≠ 12, r8c7 ≠ 12, r8c8 ≠ 12
whip[1]: n12{r8c6 .} ==> r8c8 ≠ 13, r6c8 ≠ 13
whip[1]: n45{r6c3 .} ==> r7c5 ≠ 46
whip[1]: n46{r6c5 .} ==> r8c5 ≠ 47, r8c6 ≠ 47
whip[1]: n26{r4c6 .} ==> r5c8 ≠ 25
whip[1]: n62{r2c6 .} ==> r3c8 ≠ 61
hidden-single: r3c7 = 61
hidden-single: r2c6 = 62
hidden-single: r3c6 = 57
hidden-single: r3c8 = 59
whip[1]: n50{r5c8 .} ==> r2c5 ≠ 49
whip[1]: n49{r6c8 .} ==> r1c5 ≠ 48, r1c6 ≠ 48
naked-single: r1c6 = 27
hidden-single: r2c5 = 26
hidden-single: r1c5 = 28
whip[1]: n25{r3c5 .} ==> r5c4 ≠ 24, r4c8 ≠ 24, r5c6 ≠ 24, r5c7 ≠ 24, r5c8 ≠ 24, r6c3 ≠ 24, r6c5 ≠ 24, r6c6 ≠ 24, r6c7 ≠ 24, r6c8 ≠ 24
whip[1]: n24{r4c6 .} ==> r5c8 ≠ 23, r6c5 ≠ 23, r6c6 ≠ 23, r6c7 ≠ 23, r6c8 ≠ 23, r7c5 ≠ 23, r7c7 ≠ 23
whip[1]: n23{r5c7 .} ==> r8c6 ≠ 22, r7c5 ≠ 22, r7c7 ≠ 22, r8c5 ≠ 22, r8c7 ≠ 22
whip[1]: r4c1{n38 .} ==> r2c1 ≠ 37, r2c3 ≠ 37, r2c4 ≠ 37, r3c3 ≠ 37, r3c4 ≠ 37, r4c3 ≠ 37, r3c3 ≠ 38, r4c3 ≠ 38
whip[1]: r3c3{n47 .} ==> r3c5 ≠ 46, r4c5 ≠ 46, r5c4 ≠ 46, r6c2 ≠ 46, r6c3 ≠ 46, r6c5 ≠ 46, r3c5 ≠ 47, r4c5 ≠ 47, r4c6 ≠ 47, r5c4 ≠ 47, r5c6 ≠ 47, r6c3 ≠ 47, r6c5 ≠ 47, r6c6 ≠ 47, r7c5 ≠ 47
whip[1]: n47{r4c4 .} ==> r6c5 ≠ 48, r4c6 ≠ 48, r5c6 ≠ 48, r5c7 ≠ 48, r6c6 ≠ 48, r6c7 ≠ 48, r7c5 ≠ 48, r7c7 ≠ 48
whip[1]: n48{r5c4 .} ==> r6c6 ≠ 49, r4c8 ≠ 49, r5c7 ≠ 49, r5c8 ≠ 49, r6c7 ≠ 49, r6c8 ≠ 49
whip[1]: n49{r6c5 .} ==> r5c8 ≠ 50, r4c8 ≠ 50
whip[1]: n46{r4c4 .} ==> r6c2 ≠ 45, r6c3 ≠ 45
whip[1]: n37{r4c1 .} ==> r1c1 ≠ 36, r1c2 ≠ 36
whip[1]: r1c1{n35 .} ==> r2c3 ≠ 34, r3c1 ≠ 34, r3c2 ≠ 34
biv-chain[2]: r6c1{n41 n42} - n43{r6c3 r6c2} ==> r6c2 ≠ 41
whip[2]: r3c1{n36 n38} - r4c1{n38 .} ==> r2c3 ≠ 36
whip[2]: r1c1{n34 n35} - n36{r3c1 .} ==> r2c1 ≠ 34
whip[2]: n30{r2c3 r2c4} - n31{r1c2 .} ==> r2c3 ≠ 47
whip[3]: r4c8{n18 n52} - r5c8{n52 n16} - n17{r4c5 .} ==> r8c8 ≠ 18
whip[2]: r8c8{n17 n19} - r6c8{n18 .} ==> r5c6 ≠ 16, r6c6 ≠ 16, r8c6 ≠ 16
whip[1]: n16{r8c8 .} ==> r4c5 ≠ 17, r6c5 ≠ 17, r7c5 ≠ 17, r8c5 ≠ 17
whip[1]: n17{r8c8 .} ==> r4c4 ≠ 18, r5c4 ≠ 18
whip[3]: n16{r8c8 r5c7} - r8c8{n17 n19} - n18{r4c5 .} ==> r4c6 ≠ 17
whip[3]: n17{r8c8 r5c6} - r4c8{n18 n52} - r5c8{n52 .} ==> r4c5 ≠ 18
whip[2]: n20{r8c7 r6c5} - n18{r6c5 .} ==> r5c4 ≠ 19
whip[3]: n11{r8c5 r7c5} - n18{r7c5 r8c6} - n20{r8c6 .} ==> r8c5 ≠ 19
whip[3]: n17{r8c8 r8c6} - n19{r8c6 r7c5} - n11{r7c5 .} ==> r8c5 ≠ 18
biv-chain[2]: r8c5{n20 n11} - n12{r6c6 r8c6} ==> r8c6 ≠ 20
whip[3]: n20{r8c7 r7c7} - n18{r7c7 r8c6} - n17{r4c8 .} ==> r8c7 ≠ 19
whip[3]: r4c8{n18 n52} - r5c8{n52 n16} - n17{r5c6 .} ==> r8c7 ≠ 18
whip[3]: n18{r8c6 r7c7} - r4c8{n17 n52} - r5c8{n52 .} ==> r8c8 ≠ 17
whip[3]: r4c8{n18 n52} - r5c8{n52 n16} - n17{r5c6 .} ==> r8c6 ≠ 18
whip[3]: n18{r7c5 r7c7} - r4c8{n17 n52} - r5c8{n52 .} ==> r8c7 ≠ 17
whip[3]: r4c8{n18 n52} - r5c8{n52 n16} - n17{r5c6 .} ==> r7c5 ≠ 18
whip[3]: n18{r6c8 r7c7} - r4c8{n17 n52} - r5c8{n52 .} ==> r8c6 ≠ 17
whip[3]: r4c8{n18 n52} - r5c8{n52 n16} - r8c8{n15 .} ==> r6c6 ≠ 18
whip[3]: r4c8{n18 n52} - r5c8{n52 n16} - n17{r5c6 .} ==> r6c5 ≠ 18
whip[1]: n18{r7c7 .} ==> r7c5 ≠ 19
whip[3]: r4c8{n18 n52} - r5c8{n52 n16} - r8c8{n15 .} ==> r5c6 ≠ 18
whip[1]: n18{r7c7 .} ==> r6c5 ≠ 19
whip[3]: r4c8{n18 n52} - r5c8{n52 n16} - r8c8{n15 .} ==> r4c6 ≠ 18
whip[4]: r8c8{n16 n19} - r4c8{n18 n52} - r5c8{n52 n17} - n18{r7c7 .} ==> r6c7 ≠ 16
whip[3]: r4c8{n17 n52} - n53{r6c7 r5c7} - n16{r5c7 .} ==> r5c6 ≠ 17
whip[4]: r8c8{n16 n19} - r4c8{n18 n52} - r5c8{n52 n17} - n18{r7c7 .} ==> r6c8 ≠ 16
whip[2]: r6c8{n19 n15} - r8c8{n16 .} ==> r4c8 ≠ 18
whip[2]: r4c8{n17 n52} - n53{r3c5 .} ==> r5c7 ≠ 17
whip[3]: r4c8{n17 n52} - n53{r3c5 r5c7} - n16{r5c7 .} ==> r5c8 ≠ 17
whip[3]: r4c8{n52 n17} - n18{r6c7 r5c7} - n16{r5c7 .} ==> r5c8 ≠ 52
whip[2]: r8c8{n16 n19} - r5c8{n19 .} ==> r5c7 ≠ 16
whip[2]: r5c8{n19 n16} - r8c8{n15 .} ==> r5c6 ≠ 19, r6c6 ≠ 19, r7c7 ≠ 19, r8c6 ≠ 19
naked-single: r8c6 = 12
whip[1]: n19{r8c8 .} ==> r6c5 ≠ 20, r7c5 ≠ 20, r8c5 ≠ 20
naked-single: r8c5 = 11
naked-single: r7c5 = 7
naked-single: r6c3 = 43
hidden-single: r6c2 = 42
naked-single: r6c1 = 41
naked-single: r5c1 = 38
hidden-single: r4c1 = 37
naked-single: r2c1 = 35
naked-single: r1c1 = 34
naked-single: r1c2 = 31
hidden-single: r2c3 = 30
naked-single: r3c1 = 36
naked-single: r3c2 = 46
hidden-single: r4c3 = 45
hidden-single: r3c3 = 47
naked-single: r2c4 = 48
hidden-single: r3c5 = 49
hidden-single: r3c4 = 25
hidden-single: r4c6 = 50
hidden-single: r4c5 = 56
hidden-single: r4c4 = 24
hidden-single: r5c4 = 23
hidden-single: r6c5 = 22
whip[2]: n17{r6c8 r7c7} - n13{r7c7 .} ==> r8c7 ≠ 16
whip[2]: n16{r7c7 r8c8} - n17{r4c8 .} ==> r7c7 ≠ 15
whip[3]: n18{r6c8 r7c7} - n20{r7c7 r8c7} - n13{r8c7 .} ==> r8c8 ≠ 19
whip[1]: r8c8{n16 .} ==> r6c7 ≠ 15, r6c8 ≠ 15, r5c8 ≠ 16
whip[1]: n16{r8c8 .} ==> r4c8 ≠ 17
naked-single: r4c8 = 52
hidden-single: r5c7 = 53
naked-single: r5c6 = 54
whip[1]: n19{r6c8 .} ==> r8c7 ≠ 20
whip[1]: r5c8{n19 .} ==> r7c7 ≠ 18
biv-chain[2]: r5c8{n19 n18} - r6c6{n17 n20} ==> r6c8 ≠ 19, r7c7 ≠ 20
whip[1]: r6c8{n18 .} ==> r6c6 ≠ 17
naked-single: r6c6 = 20
hidden-single: r6c7 = 19
naked-single: r5c8 = 18
hidden-single: r6c8 = 17
hidden-single: r7c7 = 16
hidden-single: r8c7 = 13
hidden-single: r8c8 = 15
GRID SOLVED. rating-type = W+S, MOST COMPLEX RULE TRIED = W[4]
34 31 32 29 28 27 63 64
35 33 30 48 26 62 58 60
36 46 47 25 49 57 61 59
37 39 45 24 56 50 51 52
38 40 44 23 55 54 53 18
41 42 43 6 22 20 19 17
2 3 5 8 7 21 16 14
1 4 9 10 11 12 13 15


International_DBA wrote:So far my program can only produce the solution.
I have to use a solver to create the puzzles by trial and error from there.
Once I have produced the 7x7 puzzle I will try to change my program so that it creates a puzzle too, before creating some new puzzles.

It's great; there are not so many Hidato generators.
By creating puzzles by T&E, you mean you randomly delete clues from the full grid? If so, no worry about that; that's how the usual top-down generators work.
denis_berthier
2010 Supporter
 
Posts: 1523
Joined: 19 June 2007
Location: Paris

Re: Hidato

Postby International_DBA » Sun May 24, 2020 10:02 pm

Yes, I randomly remove numbers from the grid then I test for a unique solution using a python solver written by somebody else (I found it on the Internet).
I have a sudoku generator which does the same thing but that is fully automated.
International_DBA
 
Posts: 41
Joined: 07 December 2014

Re: Hidato

Postby International_DBA » Wed May 27, 2020 8:14 am

Bonjour Denis,

Est-ce qu'on est permis de parler francais ici?
Je viens de creer un autre hidoku.

Andrew

https://andrewspuzzles.blogspot.com/202 ... -by-5.html
International_DBA
 
Posts: 41
Joined: 07 December 2014

Re: Hidato

Postby denis_berthier » Wed May 27, 2020 3:36 pm

International_DBA wrote:Bonjour Denis,
Est-ce qu'on est permis de parler francais ici?
Je viens de creer un autre hidoku.
https://andrewspuzzles.blogspot.com/202 ... -by-5.html


Hi Andrew,
You can say a few words in French, but most participants will not understand; so it's better to stick to English.

I've tried your new 5x5 puzzle. Its pretty hard (in W8 or g2W7) for such a small beast.
denis_berthier
2010 Supporter
 
Posts: 1523
Joined: 19 June 2007
Location: Paris

Re: Hidato

Postby International_DBA » Wed May 27, 2020 10:06 pm

If you rely on the fact that it has a unique solution, then work out the only feasible way from 19 to 25, it becomes easy.
International_DBA
 
Posts: 41
Joined: 07 December 2014

Re: 4 clue 5x5

Postby tarek » Wed May 27, 2020 11:30 pm

Code: Select all
..  ..  ..  ..  ..
04  ..  ..  ..  16
..  ..  ..  ..  ..
..  ..  ..  01  ..
..  ..  07  ..  ..
User avatar
tarek
 
Posts: 3531
Joined: 05 January 2006

Re: Hidato

Postby denis_berthier » Thu May 28, 2020 2:31 am

International_DBA wrote:If you rely on the fact that it has a unique solution, then work out the only feasible way from 19 to 25, it becomes easy.

I never rely on uniqueness, but it's interesting to know.
Which uniqueness rule do you apply and what elimination(s) do you get?
denis_berthier
2010 Supporter
 
Posts: 1523
Joined: 19 June 2007
Location: Paris

Previous

Return to Sudoku variants