if anyone happened to go back and double check this:  
post my take on obi wans mathematics eliminates the need to add cover and base sectors 
multiple times to adjust counts and produce eliminations: 
I still contend that you need to add r99c55 to my 7x7 Fish
 7-Fish r1458c1b27\r2c23489 + b8 <> 7    r9c5
adding C5 is all that's needed. 
my solver for the base R1458C9B27 in question produced these: 
Type 2 eliminations:
(1) 7x7+2 Base: R1458C9B27, Cover: R29C234589B8, Bi{cells}: 5,73, Exclusions: 77,
(1) 7x7+1 Base: R1458C9B27, Cover: R2C234589B8 Bi{Cells}: 5,73, Exclusions: 77,
 the
 red sector is superfluous and is not needed to yield the same eliminations
edit: upate same fish in my NxN fish solver
7-Fish r1458c1b27\r2c23489b8 + EF(R1C5,R9C1) + F(R4C5)  =>>   r9c5 <> 7 
- Code: Select all
  +-----------------------------------------------+
 |   /   X   X   |   /   #   /   |   /   X   X   |
 |   X   *   *   |  *X   X   X   |   *   *   *   |
 |   /   *   *   |   X   /   /   |   .   *   *   |
 |---------------+---------------+---------------|
 |   /   X   X   |   X   #   /   |   /   X   X   |
 |   /   X   X   |   X   /   /   |   /   X   X   |
 |   /   *   *   |   *   .   .   |   .   *   *   |
 |---------------+---------------+---------------|
 |   /   X   X   |   *   *   *   |   .   *   *   |
 |   /   /   /   |  *X   X   X   |   /   X   X   |
 |   #   X   X   |   *  **   *   |   .   *   *   |
 +-----------------------------------------------+
 .... which is also seen in hudoku as:
 Finned Mutant Leviathan: 7 r1458c1b27 r2c23489b8 fr4c5 efr1c5 efr9c1 => r9c5<>7