sultan vinegar 2 wrote:Do any of the 49158 share the same (isomorphic) completed grid, i.e. does any one complete grid have more than one way to make a 17-clue puzzle?
Yes, there are 2167 ed grids that have more than one puzzle with 17 clues.
The grid that has the most has 29 17s, is well-known, is called the strangely familiar grid and was found by Gordon Royle
here- Code: Select all
SF : 123456789456789123798231564234675918815943276967812435379164852582397641641528397
Minlex form
Here are the 29 puzzles:
- Code: Select all
123456789456789123798231564234675918815943276967812435379164852582397641641528397
..3...7......8.1.....2..............81..4...........35.7....8....23.7......5...9.
..3.5........8.1.....2..............81..4...........35.7....8....23.7......5...9.
..3...7......8.1.....2..............81..4...........35.7....8....239.......5....7
..3...7......8.1.....2..............81..4...6.......35.7....8....23.7......5.....
..3..........8.1.....2.........7.9..81..4...........35.7....8....23........5....7
..3..........8.1.....2.........7....81..4...........35.7....8....23..6.....5....7
..3..........8.1.....2.........7....81..4...6.......35.7....8....23........5....7
..3.....9....8.1.....2.........7....81..4...........35.7....8....23........5....7
..3..........8.1.....2...6.....7....81..4...........35.7....8....23........5....7
..3..........8.1.....2.........7....81..4...........35.7....8....23........5...97
..3..........8.1.....2.........7....81..4.....6.....35.7....8....23........5....7
..3..........8.1...9.2.........7....81..4...........35.7....8....23........5....7
..3..........8.1.....2.........7....81..4...........35.7....8...823........5...9.
..3..........8.1.....2.........7....81..4...6.......35.7....8...823........5.....
..3........6.8.1.....2.........7....81..4...........35.7....8....23........5....7
..3..........8.1.....2.........7....81..4...........35.79...8....23........5....7
..3..........8.1.....2.........7....81..4....9......35.7....8....23........5....7
..3..........8.1.....2.........7....81..4...........35.7....8....23.....6..5....7
..3..........8.1.....2.........7....81.94...........35.7....8....23........5....7
..3..........8.1.....2........67....81..4...........35.7....8....23........5....7
..3..........8.1.....2.........7....81..4...........35.7....8....239.......5....7
..3..........8.1.....2.........7....81..4...........35.7..6.8....23........5....7
..3..........8.1.....2.........7....81..4...6.......35.7....8....23.7......5.....
..3..........8.1.....2.........7....81..4...6.......35.7....8....23........5.8...
..3..........8.1.....2.........7....81..4...........35.7....8....23........5.8.9.
..3..........8.1.....2.........7....81..4...........35.7....8....23.7......5...9.
..3..........8.1.....2..........5...81..4...........35.7....8....23.7......5...9.
..3..........891.....2.........7....81..4...........35.7....8....23........5....7
..3..6.......8.1.....2.........7....81..4...........35.7....8....23........5....7
Next is a grid with 20 puzzles, followed by one with 14 puzzles, one with 12 and so on.
- Code: Select all
N1 N2 N3 Example
29 1 29 123456789456789123798231564234675918815943276967812435379164852582397641641528397
20 1 20 123456789456789123789132564264918357875324691931675248392861475547293816618547932
14 1 14 123456789457189263689237451275613948348975612961842537534798126712364895896521374
12 1 12 123456789456789123798132546215648937864973215937215468342567891581394672679821354
11 1 11 123456789456789123798231564237615948864973215915824637342567891581392476679148352
9 1 9 123456789456789123798132546237915468864273915915648237342567891581394672679821354
8 4 32 123456789457189326689237451261374895378591642594628137742865913836912574915743268
7 6 42 123456789456789132789231546247193658368574291591862374635928417812347965974615823
6 21 126 123456789456789123798213564247598631539167842861324975385641297672935418914872356
5 17 85 123456789456789123789123465238567941514932678697841352375618294861294537942375816
4 83 332 123456789456789132789132546245378961637591824891624357312945678568217493974863215
3 252 756 123456789457189236689372451248693517536741892971528643364817925795234168812965374
2 1778 3556 123456789456789123798213654261935847384172596579648231632597418845361972917824365
1 44134 44134 123456789457189236689372145245963871731528964968714523374295618516847392892631457
46301 49158
N1 is the number of 17s in the grid
N2 is the number of grids having N1 17s
N3 is the number of 17s in total : N3 = N1 x N2
an example in minlex form of a grid having N1 17s is given
JPF