Revision of SE ratings and resolution rules

Programs which generate, solve, and analyze Sudoku puzzles

Re: Revision of SE ratings and resolution rules

Postby m_b_metcalf » Sat Sep 07, 2019 9:22 am

Tarek,
In addition to information supplied via PM, in general the file games_sample can be used for such purposes.

Regards,

Mike
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 10271
Joined: 15 May 2006
Location: Berlin

Re: Revision of SE ratings and resolution rules

Postby tarek » Sat Sep 07, 2019 10:21 am

Thanks Mike,

I'm going now through some batch rating puzzles in the BUG zone (5.6-6.1) to test lksudoku's BUG bug fixes
I'm also doing another rating to test his Chain sorting bug fix too (Testing puzzles in the 8.0-10.0 range).

I do think that the Sukaku explainer future release would be useful addition for the Patterns game. It has the added dimension of the "Technique name" as another way to trump a previous entry with same ER/EP/ED for those puzzles in the rating overlap area.

The bug fixes would have an improved and more accurate rating

If it is going to be a new game. Then a change in the rating hierarchy for the lower ratings <5.6 can be introduced without too much fuss along the lines mentioned in previous posts.

tarek
User avatar
tarek
 
Posts: 3151
Joined: 05 January 2006

Re: Revision of SE ratings and resolution rules

Postby creint » Sat Sep 07, 2019 12:06 pm

Is there an small file (~200 puzzles) which only contains rating 7.5-10.5 sorted on rating, so I can compare solve speed my solver vs SE? I doubt if SE is fast at the lower range forcing chains.

We cannot test SE for variants but my solver is a bit faster than WinSAT at solving those 206 puzzles:
http://forum.enjoysudoku.com/sudoku16-minimal-puzzles-t35780-15.html#p275765
creint
 
Posts: 122
Joined: 20 January 2018

Re: Revision of SE ratings and resolution rules

Postby m_b_metcalf » Sat Sep 07, 2019 12:23 pm

creint wrote:Is there an small file (~200 puzzles) which only contains rating 7.5-10.5 sorted on rating, so I can compare solve speed my solver vs SE?

There is a file of 1000 puzzles, unsorted, here, that probably contains most of what you want.

Regards,

Mike
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 10271
Joined: 15 May 2006
Location: Berlin

Re: Revision of SE ratings and resolution rules

Postby tarek » Sat Sep 07, 2019 6:58 pm

Good news about lksudoku's bug fixes for BUG & UR/UL Type 3. The group of BUG Puzzles from Patterns game were all rated the same or downgraded.

Bad news about the chaining sorting .... Although the majority were rated the same or downgraded, there were also some that were rated higher after the fix
Code: Select all
100200003040000050003006700002000008030070040900000100008400600050000020600003009   9.7/9.7/9.4 Patrice

after the fix it became:
Code: Select all
100200003040000050003006700002000008030070040900000100008400600050000020600003009   9.7/9.7/9.5 DDFC+/DDFC+/DCFC

Therefore this part of lksudoku's bug fixes will not be merged with the Sukaku explainer at this stage

tarek
User avatar
tarek
 
Posts: 3151
Joined: 05 January 2006

Re: Sukaku Explainer v1.3.0.2

Postby tarek » Sun Sep 08, 2019 7:42 am

Sukaku Explainer v1.3.0.2 release is available

We've included the backward compatible "SukakuExplainer.jar" and another modified version "SukakuExplainer_NewRatings13021.jar" with proposed new ratings. The modified version will show that clearly in the GUI and would have version 1.3.0.2.1.

Using either binary for the patterns game is similar to what has been done before but you can now add the options %S/%T/%U to get the short names of corresponding techniques for %r/%p/%d

The command line parameters are available on the wiki page
https://github.com/SudokuMonster/SukakuExplainer/wiki/Batch-mode-command-line-parameters

New rating Patterns game 0359: Show
Code: Select all
000000001001002300400050060070601008008040900300207040050070004002900700100000000;3;1.2/1.2/1.2;1to9only;1.2/1.2/1.2;HS/HS/HS
000000001001002400200060050080204006004010500700503090040070003005300100100000000;1;1.5/1.2/1.2;champagne;1.5/1.2/1.2;HS/HS/HS
000000001001002300300010040050406007007050800600907050040090003008700100200000000;8;1.5/1.5/1.5;1to9only;1.5/1.5/1.5;HS/HS/HS
000000001002003400100040020050301006007060800600207050060030008004700300800000000;4;1.7/1.7/1.7;m_b_metcalf;1.7/1.7/1.7;DP/DP/DP
000000001002003400500060020010305002007080900800407010080030006009700300700000000;6;2.0/2.0/2.0;m_b_metcalf;2.0/1.6/1.6;DP/NS/NS
000000001002003400300050060070604003008070200100908070060090008009100500700000000;10;2.3/2.3/2.3;1to9only;1.6/1.6/1.6;NS/NS/NS
000000001002003400300050060020708009009040600700901020070080005004300800100000000;9;2.5/2.5/2.5;SCLT;3.1/3.1/3.1;DT/DT/DT
000000001002003400100040020050301002006070800700206050070030008009600300600000000;2;2.6/2.6/2.6;SCLT;2.6/2.6/2.6;Po/Po/Po
000000001002003400300050060050307004003020700800601050090010002006400900700000000;12;2.8/2.8/2.8;1to9only;2.8/2.8/2.8;Cl/Cl/Cl
000000001002003400500060030060105007005080100100204060080020009009700800300000000;14;3.0/3.0/3.0;SCLT;3.0/3.0/3.0;NP/NP/NP
000000001002003400400010050020306007006080200800102090080030004004600300500000000;15;3.2/3.2/3.2;1to9only;3.2/3.2/2.9;XW/XW/HP
000000001002003400500010020060705004005030700200801050020080009006400300900000000;7;3.4/3.4/3.4;SCLT;3.1/2.9/2.9;DT/HP/HP
000000001002003400500060070060708003005020800800501060080010004007200900300000000;17;3.6/3.6/3.6;1to9only;3.6/3.6/3.6;NT/NT/NT
000000001002003400500060020070504008004010500100706040080070003003600900200000000;11;3.8/3.8/3.8;SCLT;4.0/4.0/4.0;SF/SF/SF
000000001001002300400050060010507008007030200800204070070080004005300900600000000;19;4.0/4.0/4.0;1to9only;3.8/3.8/3.8;HT/HT/HT
000000001002003400300050060050708006007020100900104050010080002006300900400000000;21;4.2/4.2/4.2;1to9only;4.2/4.2/4.2;XYW/XYW/XYW
000000001002001300400050060070108005008030700600507040080010007003200900200000000;23;4.4/4.4/4.4;1to9only;4.4/4.4/4.4;XYZW/XYZW/XYZW
000000001002001300400050020050104002006070400800902070030090007008700600900000000;68;4.5/4.5/2.6;m_b_metcalf;4.5/4.5/2.6;UR4/UR4/Po
000000001002003400500040060040705008005010300700304010080070002009800100600000000;73;4.5/4.5/3.4;SCLT;4.5/4.5/2.9;UR2/UR2/HP
000000001009001800100040090060103009002050300400709050080070005006500200700000000;70;4.6/4.5/2.6;m_b_metcalf;4.6/4.5/2.6;UL62/UR4/Po
000000001002001300400050020060403005003010600700206030080070009004100800600000000;71;4.6/4.6/2.6;SCLT;4.6/4.6/2.6;UR3/UR3/Po
000000001001002300400050060010203007002080900700509080070030009005400700100000000;104;4.6/4.6/3.0;Robbie;4.6/4.6/2.9;UR3/UR3/HP
000000001001002300400030050010206007002050800700308040070060008005400700100000000;105;4.6/4.6/3.4;m_b_metcalf;4.6/4.6/2.9;UR3/UR3/HP
000000004003004200100060030050102006001040700800305020090080007007400600500000000;74;4.7/4.7/2.6;m_b_metcalf;4.7/4.7/2.6;UR3/UR3/Po
000000003005008600400030050040703009001080700900201060010020007008500900200000000;109;4.7/4.7/3.4;Pat;4.7/4.7/2.9;UR3/UR3/HP
000000001002001300400050020050604007004080100900105040090060003003800900600000000;89;4.8/3.6/3.0;1to9only;4.8/3.6/2.9;UL63/NT/HP
000000001002003400400050020060708002008040700300905010080090006006100300700000000;119;4.8/4.8/3.0;1to9only;4.8/4.8/2.9;UL63/UL63/HP
000000001002003400500010030020607008008090300900102050090060002004800600300000000;64;4.9/1.2/1.2;1to9only;4.9/1.2/1.2;UL63/HS/HS
000000001002003400500060070080205004005080100200907080070020008001400600900000000;90;5.0/5.0/2.6;SCLT;5.0/5.0/2.6;NQ/NQ/Po
000000001002001300300040050030604007006080500400705030020070008007800400100000000;116;5.0/5.0/3.4;Robbie;5.0/5.0/2.9;NQ/NQ/HP
000000001002001300400050020020604005004010700800705040080060003003900800600000000;82;5.2/3.0/3.0;1to9only;5.4/2.9/2.9;JF/HP/HP
000000008001005400800010020090603007006040200700201080020070005004100700600000000;111;5.2/3.2/3.2;Pat;5.4/3.2/3.2;JF/XW/XW
000000001001002300400030050060403005004010600200706030020070008006500200900000000;120;5.2/4.0/4.0;1to9only;5.4/3.8/3.8;JF/HT/HT
000000001002003400500020060020107004001030800400809010050090008004300900600000000;130;5.2/4.5/2.6;Robbie;5.4/4.5/2.6;JF/UR4/Po
000000001002003400400050060050708003001030900300105080020070008009400200700000000;87;5.6/4.6/2.6;1to9only;5.6/4.6/2.6;BUG1/UR3/Po
000000007007001600900040030070102008001030200800405090080050002006900800700000000;107;5.6/4.6/3.0;m_b_metcalf;5.6/4.6/2.9;BUG1/UR3/HP
000000001001002300400030050010506007005070600800903020080090006003400700700000000;121;5.6/4.7/3.4;1to9only;5.6/4.7/2.9;BUG1/UR3/HP
000000001002003400400050060050708003009030100300905080060070008001600200700000000;84;5.7/4.6/2.6;1to9only;5.7/4.6/2.6;BUG2/UR3/Po
000000001002003400100050060070408009008090600900206040030020007005800900700000000;122;5.7/4.7/2.6;1to9only;5.7/4.7/2.6;BUG4/UR3/Po
000000001002003400300040050060708002009030500700502010040080006006100800900000000;80;5.8/3.6/2.6;1to9only;5.8/3.6/2.6;BUG3/NT/Po
000000001002003400400050060060507008009060300800901050010080004006300700200000000;106;5.8/3.6/3.6;Robbie;5.8/3.6/3.6;BUG3/NT/NT
000000001002003400500020060070308009008060300400702080080090004001200500600000000;72;5.9/2.6/2.6;1to9only;5.9/2.6/2.6;BUG3/Po/Po
000000001001002300400050060070408005008020700100607080090010004007900800600000000;123;5.9/4.0/2.6;1to9only;5.9/3.8/2.6;BUG3/HT/Po
000000001002001300400030020050607008006020500800503010060090002007400800500000000;69;6.0/2.0/2.0;1to9only;6.0/1.6/1.6;BUG3/NS/NS
000000001002003400500060070080304007004020500100705090040030005007100600200000000;67;6.1/1.2/1.2;1to9only;6.1/1.2/1.2;BUG3/HS/HS
000000001002001300400050060070304008004070900600908050020030009006700100500000000;124;6.1/1.5/1.5;1to9only;6.1/1.5/1.5;BUG3/HS/HS
000000001002003400500060030070108002003090100400605070040070008006300900200000000;45;6.2/6.2/6.2;1to9only;6.2/6.2/6.2;APE/APE/APE
000000008002001900800060010050108007009030800600405030070040003006300700400000000;85;6.5/3.8/2.6;m_b_metcalf;6.5/4.0/2.6;BiXCy/SF/Po
000000007006003500200090080060102005005030100900405060070020008002300400500000000;102;6.5/4.5/2.6;pseudocoup;6.5/4.5/2.6;BiXCy/UR4/Po
000000001002001300400020050040203006003070100200104030020050008005700600800000000;103;6.5/4.7/2.6;SCLT;6.5/4.7/2.6;BiXCy/UR3/Po
000000001002003400300050060070104008004060100900705040050070003007500200600000000;5;6.6/6.6/6.6;SCLT;6.6/6.6/6.6;TF/TF/TF
000000001002003400400010050030602007006070800700801040080020003001700900500000000;20;6.7/6.7/6.7;SCLT;6.7/6.7/6.7;FXC/FXC/FXC
000000001002001300400050060070508009008070600100604080020030005003900200900000000;86;6.8/6.8/2.6;SCLT;6.8/6.8/2.6;BiYCy/BiYCy/Po
000000001002003400800050060070608009008040600100509020050090007004200100300000000;115;6.8/6.8/3.0;Pat;6.8/6.8/3.0;BiYCy/BiYCy/NP
000000001002003400500010020060301005003070800400908060080090004007500200900000000;125;6.8/6.8/3.8;1to9only;6.8/6.8/4.0;BiYCy/BiYCy/SF
000000001002003400500020030060107008003090100400205060040050007008300900600000000;60;6.9/6.2/3.4;m_b_metcalf;6.9/6.2/2.9;BiYCy/APE/HP
000000001002003400500060030060305007008090500400206090070020009004900800100000000;63;6.9/6.9/2.6;SCLT;6.9/6.9/2.6;BiYCy/BiYCy/Po
000000001002003400400050060070608009008040600600509020020090007005800100300000000;114;6.9/6.9/3.0;Robbie;6.9/6.9/3.0;BiYCy/BiYCy/NP
000000001002003400100020050040607008006050900300902010020070009005200300700000000;25;7.0/7.0/7.0;1to9only;7.0/7.0/7.0;BiCy/BiCy/BiCy
000000001002003400500040060070406003008030700100708050040060009001900200700000000;18;7.1/7.1/7.1;SCLT;7.1/7.1/7.1;FC/FC/FC
000000001002001300400020050040607008006080100500102090060070004004300900700000000;27;7.2/7.2/7.2;1to9only;7.2/7.2/7.2;FC/FC/FC
000000001002003400300050060050701008007020100400809050030080002008400900600000000;29;7.3/7.3/7.3;1to9only;7.3/7.3/7.3;FC/FC/FC
000000001002003400100040050050304006007050300600708020070060009009200100800000000;76;7.4/7.4/7.4;1to9only;7.4/7.4/7.4;FC/FC/FC
000000001002003400100050060060708005007020800300509010040090003006800200700000000;32;7.5/7.5/7.5;1to9only;7.5/7.5/7.5;ATE/ATE/ATE
000000001002001300300040020050406007008090100400208030070060005005100700800000000;16;7.6/7.6/7.6;SCLT;7.6/7.6/7.6;NFC/NFC/NFC
000000001002003400100050030050301002006070100400805070090080007004700600800000000;65;7.7/4.5/2.6;m_b_metcalf;7.7/4.5/2.6;NFC/UR4/Po
000000001002001300100040050030607008007050600600904070060090002009300800500000000;92;7.7/7.7/7.1;SCLT;7.7/7.7/7.1;NFC/NFC/FC
000000001002003400500040060070408003005060800900507020060070008004200900100000000;110;7.7/7.7/7.2;Robbie;7.7/7.7/7.2;NFC/NFC/FC
000000001002003400400020050040605007005080900800902030070060003001400700500000000;126;7.7/7.7/7.3;1to9only;7.7/7.7/7.3;NFC/NFC/FC
000000001001002300400050060010207008002040600700605090080070004003500800900000000;131;7.7/7.7/7.6;Robbie;7.7/7.7/7.6;NFC/NFC/NFC
000000001001002300400010050020506007006030500700801090090070004004600800200000000;31;7.8/7.8/7.8;SCLT;7.8/7.8/7.8;NFC/NFC/NFC
000000001002003400300050060050708006007020100800104050010080002008600900400000000;62;7.9/7.0/6.7;m_b_metcalf;7.9/7.0/6.7;NFC/BiCy/FXC
000000001002003400500060070080504009004020500300608040090080003007100600100000000;66;7.9/7.9/6.6;SCLT;7.9/7.9/6.6;NFC/NFC/TF
000000001002001300400050060060708009007010800900503070050090004003100700200000000;95;7.9/7.9/6.7;Robbie;7.9/7.9/6.7;NFC/NFC/FXC
000000003006008400800030050040703002001090700500102060010020007003400900700000000;117;7.9/7.9/7.1;Pat;7.9/7.9/7.1;NFC/NFC/FC
000000001002003400500010060050106007008090500300805040070060009003200700800000000;118;7.9/7.9/7.6;Robbie;7.9/7.9/7.6;NFC/NFC/NFC
000000001002001300400050020060403005003070800700608030080060004007800900200000000;83;8.0/8.0/2.6;SCLT;8.0/8.0/2.6;NFC/NFC/Po
000000001002003400500040060010708003007050800900402070090020004003100700600000000;101;8.0/8.0/6.7;Robbie;8.0/8.0/6.7;NFC/NFC/FXC
000000001002003400400050020030506007008090600700108040090070006001800300500000000;127;8.0/8.0/7.6;1to9only;8.0/8.0/7.6;NFC/NFC/NFC
000000001001002300400010050030106007006080900200904030070040002002600800500000000;132;8.0/8.0/7.8;Robbie;8.0/8.0/7.8;NFC/NFC/NFC
000000001002001300400030050060702008008060200300104070080070006001300400600000000;88;8.1/1.2/1.2;SCLT;8.1/1.2/1.2;NFC/HS/HS
000000001002003400300050020060708004004090800700504090090070005003800700200000000;112;8.1/2.0/2.0;Robbie;8.1/2.0/2.0;NFC/DP/DP
000000001002003400500060020030107004007080100400605080080050006004700300100000000;128;8.1/7.3/7.2;1to9only;8.1/7.3/7.2;NFC/FC/BiCy
000000001002003400500060070040809005009020800200406010010040008003500100700000000;28;8.2/8.2/8.2;SCLT;8.2/8.2/8.2;RFC/RFC/RFC
000000001002003400400050030060705008009020600300906050010070004008500700900000000;26;8.3/8.3/8.3;SCLT;8.3/8.3/8.3;LFC/LFC/LFC
000000001002003400500060030070806004009050700300709060010080005006900800400000000;24;8.4/8.4/8.4;SCLT;8.4/8.4/8.4;RFC/RFC/RFC
000000004008005100600010050090602007006040200500301090060030009004200800700000000;30;8.5/8.5/8.5;Pat;8.5/8.5/8.5;RFC/RFC/RFC
000000001002003400500060070040308006003070100600105030020050009006400800700000000;34;8.6/8.6/8.6;1to9only;8.6/8.6/8.6;RFC/RFC/RFC
000000001002001300400050060070203008003060100200504030060040009005100800800000000;75;8.7/8.7/6.6;SCLT;8.7/8.7/6.6;DLFC/DLFC/TF
000000001002003400100050060070504008009020600300609010030040002008700300500000000;93;8.7/8.7/7.1;Robbie;8.7/8.7/7.1;RFC/RFC/FC
000000008006003200800010040040102007005060400300405010090020006007900300500000000;96;8.7/8.7/8.3;m_b_metcalf;8.7/8.7/8.3;DLFC/DLFC/LFC
000000001001002300400050060010203007002040800300508090070030004003800500900000000;99;8.7/8.7/8.6;Robbie;8.7/8.7/8.6;RFC/RFC/RFC
000000001002003400500060020040307008007050300800602070090080005006900700100000000;100;8.7/8.7/8.7;SCLT;8.7/8.7/8.7;DLFC/DLFC/DLFC
000000001002003400500060030070806004005020700300507060050080009006100800700000000;22;8.8/8.8/8.8;SCLT;8.8/8.8/8.8;DDFC/DDFC/DDFC
000000003001003400600010070090602001006040200500301080050030009004200800700000000;33;8.9/8.9/8.9;Pat;8.9/8.9/8.9;DLFC/DLFC/DLFC
000000001002003400500010060040307008003020700700106030070060002005400800900000000;36;9.0/9.0/9.0;1to9only;9.0/9.0/9.0;DRFC/DRFC/DRFC
000000001002003400100050060010507004007030800400208070050040009009800700600000000;39;9.1/9.1/9.1;1to9only;9.1/9.1/9.1;DCFC/DCFC/DCFC
000000001002003400500060030020704008009030700700609020080040005007300600100000000;41;9.2/9.2/9.2;1to9only;9.2/9.2/9.2;DCFC/DCFC/DCFC
000000005004002300200090040070103006003050700400709030060010008007800600500000000;13;9.3/9.1/6.6;m_b_metcalf;9.3/9.1/6.6;DCFC/DRFC/TF
000000001002003400500060070030801004008050900700609080050010006001900200300000000;40;9.3/9.3/9.0;SCLT;9.3/9.3/9.0;DCFC/DCFC/DCFC
000000001002003400500040060030701004007080100600405080090050008004900300200000000;43;9.3/9.3/9.3;1to9only;9.3/9.3/9.3;DCFC/DCFC/DCFC
000000002008006300200010070050801003004070200300405060010050004003100900800000000;35;9.4/1.7/1.7;Pat;9.4/1.7/1.7;DCFC/DP/DP
000000001002003400500040060060405007007080600300706090070050008008100200900000000;37;9.4/9.4/9.0;SCLT;9.4/9.4/9.0;DCFC/DCFC/DLFC
000000001002003400500040060070802004008030900600409010010020005004900100700000000;47;9.4/9.4/9.4;1to9only;9.4/9.4/9.4;DCFC/DCFC/DCFC
000000008005003600200040070070102006006050300500406090080020005001300700900000000;50;9.5/9.5/9.4;m_b_metcalf;9.5/9.5/9.4;DLFC/DLFC/DCFC
000000008002003400800040090070102006001030500600405010050020009008300100700000000;51;9.6/9.6/9.4;pseudocoup;9.6/9.6/9.4;DCFC+/DCFC+/DCFC
000000001002003400400010050060708004003050700700102090020080006007300100900000000;98;9.6/9.6/9.5;SCLT;9.6/9.6/9.5;DRFC+/DRFC+/DCFC
000000008007003600200010050030102006006040300500306080010020009004700800600000000;38;9.7/9.3/8.8;Pat;9.7/9.3/8.8;DCFC+/DCFC/DLFC
000000001002003400500010060070108004004090300900204070090080005008300700600000000;52;9.7/9.7/9.4;m_b_metcalf;9.7/9.7/9.4;DCFC+/DCFC+/DCFC
000000001002003400500020060060708004007030900400209070040080005008300700100000000;81;9.7/9.7/9.5;SCLT;9.7/9.7/9.5;DRFC+/DRFC+/DDFC+
000000001004008500200010060070102005005030800300405090090020003001800700600000000;56;9.8/9.8/9.3;m_b_metcalf;9.8/9.8/9.3;DCFC+/DCFC+/DCFC
000000001002003400500020060050706004008030700400208090010060002004300600900000000;77;9.8/9.8/9.8;SCLT;9.8/9.8/9.8;DCFC+/DCFC+/DCFC+
000000007004003500200040060060102005005030100800405090070020008002300900900000000;46;9.9/9.9/9.3;m_b_metcalf;9.9/9.9/9.3;DCFC+/DCFC+/DCFC
000000001002003400500060070020608004008090200400207090090070005004300600100000000;49;9.9/9.9/9.9;1to9only;9.9/9.9/9.9;DCFC+/DCFC+/DCFC+
000000001002003400500060020020607004004030800900804010090070005006300700200000000;53;10.0/10.0/9.1;SCLT;10.0/10.0/9.1;DCFC+/DCFC+/DCFC
000000002003001700800070060040103006001050900500709020060030009007500600400000000;54;10.0/10.0/9.2;m_b_metcalf;10.0/10.0/9.2;DCFC+/DCFC+/DCFC
000000001002003400500060020020607004004030800900804010090070005007300600200000000;61;10.0/10.0/9.3;SCLT;10.0/10.0/9.3;DCFC+/DCFC+/DCFC
000000001002003400500020060040201007008060100100804090030040005001700300900000000;97;10.0/10.0/9.5;Robbie;10.0/10.0/9.5;DCFC+/DCFC+/DCFC
000000001002003400400050060030708005007030800500209070060090004009800600100000000;129;10.0/10.0/9.8;1to9only;10.0/10.0/9.8;DCFC+/DCFC+/DCFC+
000000001002003400500060020020607008009040700700905030080050009004100600200000000;133 10.0/10.0/10.0;Robbie;10.0/10.0/10.0;DCFC+/DCFC+/DCFC+
000000001002003400500060070020608004009030200400902010070080005004300600800000000;55;10.1/10.1/9.2;SCLT;10.1/10.1/9.2;DDFC+FC/DDFC+FC/DCFC
000000001002003400500010060020708009003090700700104020060080005007300100900000000;113;10.1/10.1/9.3;1to9only;10.1/10.1/9.3;DCFC+/DCFC+/DCFC
000000007006003200800040010060102005005030100900405060090020008002300400700000000;42;10.2/10.2/9.4;m_b_metcalf;10.2/10.2/9.4;DLFC+FC/DLFC+FC/DCFC
000000007006003500800040060020601005005030100900405020090020008002300400700000000;59;10.2/10.2/9.7;pseudocoup;10.2/10.2/9.7;DLFC+FC/DLFC+FC/DCFC+
000000008002003400900040060070102006001030500600405080050020009004300600700000000;48;10.3/10.3/9.7;m_b_metcalf;10.3/10.3/9.7;DLFC+FC/DLFC+FC/DCFC+
000000004008009500100060070060102005005030900300805060070020003002900100400000000;44;10.4/10.4/9.9;m_b_metcalf;10.4/10.4/9.9;DCFC+FC/DCFC+FC/DCFC+
000000007006001200800040060060102009005030100100405070090020008002300400600000000;57;10.5/10.3/6.6;pseudocoup;10.5/10.3/6.6;DLFC+FC/DLFC+FC/TF
000000001002003400500040060070408002008090700300207090010020005004800300600000000;58;10.5/10.5/7.8;SCLT;10.5/10.5/7.8;DCFC+FC/DCFC+FC/NFC
000000001002003400300050060060507008008040700900801040050010004001900200700000000;91;10.5/10.5/9.5;1to9only;10.5/10.5/9.5;DCFC+FC/DCFC+FC/DCFC
000000001002003400500040060020507004008030200400802090060070009007300500100000000;78 10.6/10.6/10.4;1to9only;10.6/10.6/10.4;DRFC+FC/DRFC+FC/DDFC+FC
000000001002003400500020060060207004004030800900408070090070005007300200100000000;108;10.7/1.2/1.2;Robbie;10.7/1.2/1.2;DCFC+FC/HS/HS
000000001002003400500020060050704002008030700700208090060040009007300200100000000;79;10.9/1.2/1.2;SCLT;10.9/1.2/1.2;DCFC+MFC/HS/HS
000000001002003400500020060060207004004030700700408090090080005008300200100000000;94;11.3/1.2/1.2;SCLT;11.3;1.2;1.2;DCFC+MFC;HS;HS


With the helpful puzzles from the patterns game pointed out and supplied by Mike, I also looked at most puzzles rated 4.5-5.1 (Except 5.0) for re-rating. Some of the interesting results:
Code: Select all
+-------------------+-------------------+-------------------+
| 35689 367   389   | 467   467   1     | 57    89    2     |
| 5689  267   289   | 267   3     89    | 57    4     1     |
| 4     127   12    | 5     27    89    | 3     6     89    |
+-------------------+-------------------+-------------------+
| 69    26    5     | 289   28    3     | 1     7     4     |
| 39    8     379   | 179   17    4     | 2     5     6     |
| 1     4     27    | 267   5     67    | 89    89    3     |
+-------------------+-------------------+-------------------+
| 38    13    6     | 18    9     5     | 4     2     7     |
| 2     5     4     | 3     67    67    | 89    1     89    |
| 7     9     18    | 148   148   2     | 6     3     5     |
+-------------------+-------------------+-------------------+
10 cells Unique Loop type 3 (with Hidden Triplet)
5.1/1.2/1.2 champagne becomes 5.0/1.2/1.2 UL103/HS/HS

+-------------+-------------+-------------+
| 57  1   6   | 4   3   2   | 789 58  59  |
| 3   89  57  | 1   6   89  | 27  257 4   |
| 2   4   89  | 7   5   89  | 1   6   3   |
+-------------+-------------+-------------+
| 1   6   57  | 2   89  3   | 789 4   59  |
| 57  89  2   | 6   89  4   | 3   57  1   |
| 89  3   4   | 5   1   7   | 289 28  6   |
+-------------+-------------+-------------+
| 6   5   3   | 8   7   1   | 4   9   2   |
| 4   7   1   | 9   2   6   | 5   3   8   |
| 89  2   89  | 3   4   5   | 6   1   7   |
+-------------+-------------+-------------+
12 cells Unique Loop type 3 (with Naked Pair)
5.1/1.2/1.2 champagne becomes 5.0/1.2/1.2 UL123/HS/HS


tarek
User avatar
tarek
 
Posts: 3151
Joined: 05 January 2006

Re: Revision of SE ratings and resolution rules

Postby tarek » Sun Sep 15, 2019 8:14 am

I haven't got much feedback about rating changes especially after 999_Springs post. No feedback about what I said regarding Patterns game either.

Rating Quads in general higher than UR/UL when a UL + Quad would rank lower is silly.

The only way to bring Quads any further down would risk having a quad ranked easier than a simple UR1.

The way that Explainer currently ranks methods would guarantee that a Turbot fish at ER=6.6 will always be ranked higher than any 12 cell Unique loop Type 3 with a quad or any type of BUG. A 4x3x3x3 Jellyfish will always be ranked less than a turbot fish despite an obvious disparity.

The next releases of Sukaku Explainer will allow the command line solver to toggle between old and the proposed new ratings. It should allow also 2 different ways of batch solving one of them is lksudoku's enhancement in his FIxed14 release. I can discuss that in the thread the deals with Sukaku explainer improvements if needed.
User avatar
tarek
 
Posts: 3151
Joined: 05 January 2006

Re: Revision of SE ratings and resolution rules

Postby tarek » Mon Sep 16, 2019 10:00 am

Having now integrated lksudoku's fixes and enhancements into the project, some of you may like the fact that in the future release you can control (form the command line) what techniques to use or omit. The solving and rating can therefore be done in a variety of ways!

The ability to use the suggested new rating can be done also from the command line via an option in addition to using 2 optional batch solving modes.

These modifications have made Sukaku explainer more versatile but the main driving force behind the project was to improve functionality / Speed / rating especially in the very difficult area of the ratings with very difficult Sukakus. That would be the main focus of the next phase of improvements if there is going to be more work done

let me know if there are still any suggestions feedback regarding old/new ratings.

tarek
User avatar
tarek
 
Posts: 3151
Joined: 05 January 2006

Re: Rating of WXYZ wing

Postby tarek » Tue Oct 08, 2019 5:09 pm

This is the proposed rating mechanism for #wxyz wing which will be followed by similar rating techniques for larger wings.

Base rate: A fixed number (5.5 for WXYZ wing)
Total candidate number difficulty: Added to Base rate. (Total candidates in Larger ALS / 2 - number of cells in larger ALS) * 0.1
Largest cell size difficulty:Added to Base rate. (Total number of cells in the wing - number of candidates in largest cell )* 0.1

Code: Select all
WXYZ wing ratings
    ALS 6       7       8       9       10      11      12
    Cand#
LC 
2       5.7     5.7     5.8     5.8     5.9     5.9     6.0
3       5.6     5.6     5.7     5.7     5.8     5.8     5.9
4       5.5     5.5     5.6     5.6     5.7     5.7     5.8


[This post is no longer valid as the rating has been revised and changed]
Last edited by tarek on Wed Oct 09, 2019 6:21 am, edited 1 time in total.
User avatar
tarek
 
Posts: 3151
Joined: 05 January 2006

Re: Revision of SE ratings and resolution rules

Postby tarek » Tue Oct 08, 2019 9:59 pm

I decided to abandon the WXYZ wing rating idea above and change to a simpler (sort of) method.

Base rate remains at 5.5.
Added difficulty depends on size of largest cell. I decided to consider it easier if the largest cell is bigger or smaller than the average of Possible largest cell sizes
This means that if the largest cell size is 3 then it is more difficult. The largest cell of size 4 or of size 2 would be considered easier. 0 for 2 1 for 3 and 0 for 4.
So in short the final rating would always be 5.5 unless the largest cell has 3 candidates. this would have a rating of 5.6
User avatar
tarek
 
Posts: 3151
Joined: 05 January 2006

Previous

Return to Software