Jigsaw Twodoku

For fans of Killer Sudoku, Samurai Sudoku and other variants

Re: Jigsaw Twodoku

Postby urhegyi » Sun Dec 13, 2020 3:10 pm

I generated one a little bit more difficult as the original.
The 2 different solvable grids with rating respectively 2.6 and 3.0:
grid1:
Code: Select all
15....87.48....96.....7.......8.4.....9.5.1.....6.2...26..3....37...............3 111233333112234443112554433122554466127754468227755668997755688977796688999996888

grid2:
Code: Select all
71..3.6..4......18.23......98..57.2.........5...9....7..5...........1............ 888699999886697779886557799866557722864457721664455221334455211344432211333332111
urhegyi
 
Posts: 757
Joined: 13 April 2020

Re: Jigsaw Twodoku

Postby Hajime » Sun Dec 13, 2020 7:07 pm

urhegyi wrote:I generated one a little bit more difficult as the original.
The 2 different solvable grids with rating respectively 2.6 and 3.0:
grid1:
Code: Select all
15....87.48....96.....7.......8.4.....9.5.1.....6.2...26..3....37...............3 111233333112234443112554433122554466127754468227755668997755688977796688999996888

grid2:
Code: Select all
71..3.6..4......18.23......98..57.2.........5...9....7..5...........1............ 888699999886697779886557799866557722864457721664455221334455211344432211333332111

Hi urhegyi
Your 2 grids can be solved independently.
The real goal for a gattai (overlapping sudoku's) puzzle is that each suduko needs information from another sudoku within a puzzle to be solved.

The puzzle below each sudoku cannot be solved on its own.
Each sudoku has multiple solutions, but in relation to the other sudoku only one unique solution for the whole puzzle is possible.
Like your puzzle this one is solvable with basic methods (some generalized intersections included).
It has the same layout and same jigsaws. Even same solution.
Code: Select all
#2//B4,JS/H16,JS
.5..93.7....7.5.........2.........9...................26..3....3.8...............
111233333112234443112554433122554466127754468227755668997755688977796688999996888
.....9......7...1............1..7..3.........5........1.5.9.7..............56....
888699999886697779886557799866557722864457721664455221334455211344432211333332111
User avatar
Hajime
 
Posts: 1391
Joined: 20 April 2018
Location: Fryslân

Re: Jigsaw Twodoku

Postby urhegyi » Mon Dec 14, 2020 3:45 pm

Can you check and rate this please.
overlapping.jpg

grid1:
Code: Select all
.....9.8.........7...947.....6...4.9..8...9..4.2...5.....786...7.........1.8..... 111233333112234443112554433122554466127754468227755668997755688977796688999996888

grid2:
Code: Select all
.....6.3.........5...865.....7...2.9..4...6..4.9...8.....594...5.........6.4..... 888699999886697779886557799866557722864457721664455221334455211344432211333332111
urhegyi
 
Posts: 757
Joined: 13 April 2020

Re: Jigsaw Twodoku

Postby 1to9only » Mon Dec 14, 2020 4:01 pm

Code: Select all
.....9.8.........7...947.....6...4.9..8...9..4.2...5.....786...7.........1.8..... ED=2.0/1.2/1.2
.....6.3.........5...865.....7...2.9..4...6..4.9...8.....594...5.........6.4..... ED=1.5/1.2/1.2

Solution:
Hidden Text: Show
Code: Select all
567219384945368217831947652186523479278435961492671538329786145753194826614852793
145276938826943175793865421617358249384719652459127863278594316532681794961432587

Solves in (hops) order: g1 - g2 - g1.
User avatar
1to9only
 
Posts: 4183
Joined: 04 April 2018

Re: Jigsaw Twodoku

Postby 1to9only » Mon Dec 14, 2020 7:05 pm

I appreciate that you are creating a twodoku jigsaw with a specific pattern of clues.
But generating these from randomly generated solution grids with just symmetry of clues is rather hard because the overlapping nonet is not the standard 3x3 block.
Here's two:
Code: Select all
..9...1.4...........8.....9......2.......1...5.1.9....8.................6....8... ED=3.0/1.5/1.5
...3....6.................7....5.6.9...2.......5......4.....8...........3.9...7.. ED=2.9/1.2/1.2
789362154254139768168254379496785213327641895571893426832916547943527681615478932
547391286681537924932684157274158639196245378865973412453729861718462593329816745

...4..5..3...1................7...2.4....3....7..62...............9......3.6..... ED=9.5/2.6/2.6
.....9.5......4...............53..6....8....9.2...8................1...8..6..7... ED=9.8/1.2/1.2
619428537386215749728539164593746821457193286174862953945381672862974315231657498
672389154315964782498125637847532961564871329123748596731296845259613478986457213

User avatar
1to9only
 
Posts: 4183
Joined: 04 April 2018

Re: Jigsaw Twodoku

Postby urhegyi » Mon Dec 14, 2020 10:05 pm

2 necessary conditions the two jigsaw will overlap so that rectangular box 9 of grid 1 and rectangular box 1 of grid 2 contain 1 to 9 are that R56C9 and R78C7 of grid 1 contain the same pair. The same is true for R23C3 and R45C1 of grid 2.
Have you found a way to generate the solution grids? At random is not possible I think. I generate them based on existing solution grids I manipulate to create new ones. I looked at your first example. I solved first grid 2 based on conditions of grid 1 with easy methods max pointing and claiming and naked/hidden subsets. For the first grid to solve I need generalized intersections.
urhegyi
 
Posts: 757
Joined: 13 April 2020

Re: Jigsaw Twodoku

Postby 1to9only » Mon Dec 14, 2020 10:39 pm

I generate solution grids, and filter on the two pairs.

Grid 1 solution grids:
Hidden Text: Show
Code: Select all
971358426864712359542896137259634781317429865683571942736145298198263574425987613
561397482238461975749285613915738246872654391623149857354816729497523168186972534
659874321381952476745213698173689542264598137426137859812745963598326714937461285
316958472248716359985427136561374298723169845432895617694581723179632584857243961
925761348732698415861453972498127563154932687347586291683279154216845739579314826
169547832328461975786253491493172568514938627275896143952784316831629754647315289
217546389596318742341289657874965231682753194923174568769431825158692473435827916
863574912291736548478291365526419837135682794947853126352967481714328659689145273
489127356125683974632475891798561432543916287374298615816732549251849763967354128
768495312941763258259138674386251749132874965527649831493586127614927583875312496
327465891412978563658319742861592374973824156536147289145286937294753618789631425
458679123623981475791523846172435689384162957546798312965817234839254761217346598
876354219129576348497821563342169857518432796683795124935247681261983475754618932
319842576475189623586327419632571894291465387743698251968214735857936142124753968
341298756793526481258617943619845372864371295475932168136759824982164537527483619
468391752157238694935724186249657318716485239682913475321849567873562941594176823
496872351135984276872153649547261893213649587368597124951438762629715438784326915
723486951518329764986541273652173498497235816174968325341692587235817649869754132
294185367678341952582673491147956823359812746963724185726438519815297634431569278
429567813153728964638471259762195348816934725945382671394256187271849536587613492
251938674894216735673854129365729841487192563716543982948361257529487316132675498
456182397815749236328976451769235148934617825241358769172564983697823514583491672
123985746674893152597624813452176938861437295319258674236749581785312469948561327
461593782378241695954738216296815347815627439732964158127459863583176924649382571
891324576762931458435867219576418932289756341143592687658273194314689725927145863
541972386768451239927368541316894752832519674253647918674125893189736425495283167
198726453546187329239564817623471598751839642485392761364918275972653184817245936
742856931319678452561923784875439126934182675426517893187265349298341567653794218
582193467613854792379642581924786135457918326761235948148529673236471859895367214
936147852789315246412586793245763981563928174874291635127834569351679428698452317
549371628214956873837612594758294361623489157165837249386745912492168735971523486
621348579782931456934567812568719234475296381153824697297483165319652748846175923
312479865948625173765983214873516492526148937194237586439862751257391648681754329
926817354549326178184573269372694815718245936653981427895732641261459783437168592
947518236289354617651283794124679853376942581865731429732495168413826975598167342

Grid 2 solution grids: Edit: grid 2 grids updated - bad filter was used.
Hidden Text: Show
Code: Select all
841356972736849251259671483615283749924538617472195368593714826168927534387462195
982146357713485269456793821678521943395867412521934786247318695164279538839652174
492581367751623894683174259129467583347956128874392615965238471516849732238715946
521347689976832541834916725697258134452179368215684973149763852783495216368521497
581439762279648531463217958328571649915382476756893124132764895694125387847956213
943718526651273849278965134864532971139426758592641387415387692387194265726859413
854132967219586734367249851738614529945371286621798345172453698486925173593867412
752693841138564792694318275819725634425981367371249586247856913963472158586137429
751893246236571498489362751672415839915786324348159672894627513523948167167234985
354782691971546283628931475196257348847315926235478169589164732462893517713629854
368127594495213768127485936786934125549368271934652817652871349271596483813749652
769152384835417296142683579593748612276394158687925431924831765351269847418576923
937586241812457369546291873271349586683912457394765128465178932128634795759823614
387614925465982317291457863524379681173825496836591742912768534749136258658243179
641759238798346521235981467814263795563478912927615843172834659459127386386592174
628354791917486253435791826781629345596137482263815974352948617874562139149273568
864173592293514678157289346346958217782645139921867453679431825435726981518392764
472685913953261784168493527397154268814379652546728391281536479629847135735912846
482537619951286374763914825146725983379452168897643251235168497528391746614879532
412985673576394821938516742627431598841263957153728469285679134794852316369147285
592367481817934265634185729486521397751649832123796548269873154945218673378452916
385947162192685473674312895258793614437521986716854329923168547849236751561479238
679251348134728956285134679463897215598643127817965432951372864342586791726419583
368479152241935876597612348153286497726851934684597213972143685439768521815324769
291657843473168952865243719327894165584932671942715386158376294716529438639481527
934726185175398264862154937549863712287431596618572349751649823423987651396215478
685231974941826735273954168154679823368415297796583412839742651412367589527198346
487651329913582476562913847278469153349276518194735682756128934635847291821394765
612873459984365172537924618495138267721689345168257934379546821843712596256491783
235684179497362815168759432729135648846527391513948267381296754974813526652471983
568247193321986745947351862754623981189475236632518479213894657476139528895762314
132467589987245361645179832768392415593621748319586274271854693824713956456938127
763928514418697253952481376835716942276134895149352687384569721627845139591273468
927138456546712839813964572692587143351279684485623917239841765174356298768495321
568324197341768925972541638284973561156237489695812743729186354837495216413659872

Grids layouts:
Code: Select all
111233333112234443112554433122554466127754468227755668997755688977796688999996888
888699999886697779886557799866557722864457721664455221334455211344432211333332111

Grid 2 block 1 must be remapped to Grid 1 block 9.
Last edited by 1to9only on Tue Dec 15, 2020 10:36 am, edited 1 time in total.
User avatar
1to9only
 
Posts: 4183
Joined: 04 April 2018

Re: Jigsaw Twodoku

Postby urhegyi » Mon Dec 14, 2020 11:54 pm

My new objective for tomorrow.
000238-1.png
000238-1.png (19.97 KiB) Viewed 907 times
urhegyi
 
Posts: 757
Joined: 13 April 2020

Re: Jigsaw Twodoku

Postby Hajime » Tue Dec 15, 2020 9:56 am

urhegyi wrote:My new objective for tomorrow.

Nice, and a challenge for the Jigsaw layout per grid.
User avatar
Hajime
 
Posts: 1391
Joined: 20 April 2018
Location: Fryslân

Re: Jigsaw Twodoku

Postby 1to9only » Tue Dec 15, 2020 1:01 pm

For generating solution grids for g1 and g2, I'd close off one end of the H (to make 9x9 jigsaw grid).
Then select 2 grids for g1 and g2 where: g1r79c8 = g2r13c2 = g1r6c9,g2r4c1.

Edit: Corrected a mistook!
Last edited by 1to9only on Wed Dec 16, 2020 1:04 pm, edited 1 time in total.
User avatar
1to9only
 
Posts: 4183
Joined: 04 April 2018

Re: Jigsaw Twodoku

Postby urhegyi » Wed Dec 16, 2020 12:17 am

A hard one to solve:
grid1:
Code: Select all
3...1.....9.8...........489.7.5.....1...2............5..7........3........8..2... 444442221455542221455532221455533111666333111666338888677738999677788999677788999

grid2:
Code: Select all
...6..2........7........8..7............4...2.....4.8.943...........7.6.....2...3 999887776999887776999837776888833666111333666111335554122235554122245554122244444

The very minimum I have to add from grid2 to make grid 1 valid and solvable with rating 7.2:
grid1:
Code: Select all
3...1.....9.8...3.......489.7.5.....1...2...3........5..7........3....9...8..2.7. 444442221455542221455532221455533111666333111666338888677738999677788999677788999

grid2:
Code: Select all
...6..2........7........8..7............4...2.....4.8.943...........7.6.....2...3 999887776999887776999837776888833666111333666111335554122235554122245554122244444

Could you rate it with your program to confirm?
2020-12-16.png
2020-12-16.png (116.45 KiB) Viewed 884 times
urhegyi
 
Posts: 757
Joined: 13 April 2020

Re: Jigsaw Twodoku

Postby 1to9only » Wed Dec 16, 2020 11:31 am

The 1st twodoku fails to solve/rate - prob needs more solving techniques, trying nested chains, not finished yet, but i think this will fail as well, last status before chains:
Code: Select all
385416927.9487513...135748997.54..1.1..72.54.8..1.4765..726....7.3.8......8..2.7. ED=3.6/1.7/1.7
...6..2.7......7...7.2..8..7...62.....7.4.6.2....7498.94378..26.....736.....28.73 ED=3.8/1.5/1.5

The 2nd twodoku rating:
Code: Select all
3...1.....9.8...3.......489.7.5.....1...2...3........5..7........3....9...8..2.7. ED=2.6/1.2/1.2
...6..2........7........8..7............4...2.....4.8.943...........7.6.....2...3 ED=2.9/1.5/1.5

385416927294875136621357489976543812169728543832194765417269358753681294548932671
358619247294536718671293854789462135837145692526374981943781526412857369165928473
User avatar
1to9only
 
Posts: 4183
Joined: 04 April 2018

Re: Jigsaw Twodoku

Postby urhegyi » Wed Dec 16, 2020 12:43 pm

It's the puzzle I posted as titled new challenge for tomorrow.
When I copy the 5 from grid 1 R6C9 to the overlapping area g1-R7C8 and the 7 from grid 2 R4C1 to g1-R9C8 the general twodoku solves.
grid1:
Code: Select all
3...1.....9.8...........489.7.5.....1...2............5..7....5...3........8..2.7. 444442221455542221455532221455533111666333111666338888677738999677788999677788999

grid2:
Code: Select all
.5.6..2........7...7....8..7............4...2.....4.8.943...........7.6.....2...3 999887776999887776999837776888833666111333666111335554122235554122245554122244444
urhegyi
 
Posts: 757
Joined: 13 April 2020

Re: Jigsaw Twodoku

Postby 1to9only » Wed Dec 16, 2020 12:57 pm

I've corrected the jigsaw definition, it now solves:
Code: Select all
3...1.....9.8...........489.7.5.....1...2............5..7........3........8..2... 111112223144412223144452223144455333666555333666557779688857979688877999688877999
...6..2........7........8..7............4...2.....4.8.943...........7.6.....2...3 999778886999778886979758886977755666333555666333554441322254441322214441322211111

Code: Select all
3...1.....9.8...........489.7.5.....1...2............5..7........3........8..2... ED=3.2/1.2/1.2
...6..2........7........8..7............4...2.....4.8.943...........7.6.....2...3 ED=2.6/1.2/1.2

385416927294875136621357489976543812169728543832194765417269358753681294548932671
358619247294536718671293854789462135837145692526374981943781526412857369165928473
User avatar
1to9only
 
Posts: 4183
Joined: 04 April 2018

Re: Jigsaw Twodoku

Postby urhegyi » Wed Dec 16, 2020 12:57 pm

1to9only wrote:For generating solution grids for g1 and g2, I'd close off one end of the H (to make 9x9 jigsaw grid).
Then select 2 grids for g1 and g2 where: g1r79c8 = g2r12c2 = g1r6c9,g2r4c1.

you mean g1r79c8 = g2r13c2 = g1r6c9,g2r4c1
urhegyi
 
Posts: 757
Joined: 13 April 2020

PreviousNext

Return to Sudoku variants