I've wrote a program which performs exhaustive search for any pattern of certain type, i.e. for patterns having map
- Code: Select all
A B C
D 9 9
E 9 9
A, B, C, D, E, F - arbitrary digits in the range 0-9. In other words, I consider patterns having exactly 9 clues in B5, B6, B8, B9 boxes and arbitrary number of clues in remaining boxes (B1, B2, B3, B4, B7).
Though this program is intermediate result of my work only (I am planning to write a program searching any given pattern for valid puzzles), I decided to test it in one-crossing-free patterns investigation. I think searching results can be interesting to sudoku people. "Crossing" is combination of one band and one stack. For example, set of boxes B1, B2, B3, B4, B7 is crossing. Conceptually this investigation follows my previous Investigation of one-band-free patterns. Previously I fixed 6 boxes and changed 3 ("free") boxes. Now I'll try to fix 4 boxes only and keep 5 boxes free. I think, such investigation results can be used during 16/17/18-clue patterns exhaustive search projects.
Here is an example of pattern with free crossing - my favorite Magic Pattern:
- Code: Select all
+-----+-----+-----+
|. . .|. . x|. . x|
|. . .|. . x|. . x|
|. . x|. . x|. . x|
+-----+-----+-----+
|. . .|x x x|x x x|
|. . .|x x x|x x x|
|x x x|x x x|x x x|
+-----+-----+-----+
|. . .|x x x|x x x|
|. . .|x x x|x x x|
|x x x|x x x|x x x|
+-----+-----+-----+
Let's consider first patterns having 4 empty boxes (maximal possible empty boxes for valid puzzles). The only possible map (having 1 free crossing) for valid puzzles is
- Code: Select all
A 0 0
0 9 9
0 9 9
Let's consider all possible configurations of filled cells in the box B1, denoted by letter "A". There are 36 essentially different box patterns (rows/columns permutations are allowed, but transposing isn't allowed).
- Code: Select all
. . .
0 filled cells . . .
. . .
. . .
1 filled cells . . .
. . x
. . . . . . . . .
2 filled cells . . x . . . . . x
. x . . x x . . x
. . . . . . . . x . . . . . x . . x
3 filled cells . . x . . . . . x . . x . . x . x .
. x x x x x . . x x x . . x . x . .
. . x . . . . . x . . . . . x . . . . . x
4 filled cells . . x . . x . . x . x x . x . . x x . x .
x x . x x x . x x x . x . x x . x x x . x
*************************************
. . x . . . . . x * . . x . . x . . x . . x
5 filled cells . . x . x x . x x * . x x . x . x x . . x x
x x x x x x . x x * x . x x x x x x . x x .
****************************************
. . x . . . . x x . x x . . x . x x
6 filled cells . x x x x x . x x . x x x x . x . x
x x x x x x . x x x . x x x x x x .
. x x . . x . x x
7 filled cells x . x x x x . x x
x x x x x x x x x
. x x
8 filled cells x x x
x x x
x x x
9 filled cells x x x
x x x
It turns out, B1 box patterns placed upper asterisk line have no valid puzzles, but B1 box patterns placed lower asterisk line have valid puzzles.
In other words, there are following requirements to B1 box configuration if we want a pattern
- Code: Select all
A 0 0
0 9 9
0 9 9
could have valid puzzles:
1. B1 box must contain not less than 5 clues.
2. Patterns posted below (containing 5 clues each in B1) have no valid puzzles.
3. If B1 box contains 6 or more clues, pattern has valid puzzles.
- Code: Select all
Patterns having no valid puzzles:
P1 P2 P3
+-----+-----+-----+ +-----+-----+-----+ +-----+-----+-----+
|. . x|. . .|. . .| |. . .|. . .|. . .| |. . x|. . .|. . .|
|. . x|. . .|. . .| |. x x|. . .|. . .| |. x x|. . .|. . .|
|x x x|. . .|. . .| |x x x|. . .|. . .| |. x x|. . .|. . .|
+-----+-----+-----+ +-----+-----+-----+ +-----+-----+-----+
|. . .|x x x|x x x| |. . .|x x x|x x x| |. . .|x x x|x x x|
|. . .|x x x|x x x| |. . .|x x x|x x x| |. . .|x x x|x x x|
|. . .|x x x|x x x| |. . .|x x x|x x x| |. . .|x x x|x x x|
+-----+-----+-----+ +-----+-----+-----+ +-----+-----+-----+
|. . .|x x x|x x x| |. . .|x x x|x x x| |. . .|x x x|x x x|
|. . .|x x x|x x x| |. . .|x x x|x x x| |. . .|x x x|x x x|
|. . .|x x x|x x x| |. . .|x x x|x x x| |. . .|x x x|x x x|
+-----+-----+-----+ +-----+-----+-----+ +-----+-----+-----+
You can see patterns P2 and P3 are isomorphic.
Above result can be formulated in another form. If any pattern can be morphed to subset of following patterns, the pattern has no valid puzzles.
- Code: Select all
Patterns having no valid puzzles:
P1 P2 P4
+-----+-----+-----+ +-----+-----+-----+ +-----+-----+-----+
|. . x|. . .|. . .| |. . .|. . .|. . .| |. . x|. . .|. . .|
|. . x|. . .|. . .| |. x x|. . .|. . .| |. x .|. . .|. . .|
|x x x|. . .|. . .| |x x x|. . .|. . .| |x . x|. . .|. . .|
+-----+-----+-----+ +-----+-----+-----+ +-----+-----+-----+
|. . .|x x x|x x x| |. . .|x x x|x x x| |. . .|x x x|x x x|
|. . .|x x x|x x x| |. . .|x x x|x x x| |. . .|x x x|x x x|
|. . .|x x x|x x x| |. . .|x x x|x x x| |. . .|x x x|x x x|
+-----+-----+-----+ +-----+-----+-----+ +-----+-----+-----+
|. . .|x x x|x x x| |. . .|x x x|x x x| |. . .|x x x|x x x|
|. . .|x x x|x x x| |. . .|x x x|x x x| |. . .|x x x|x x x|
|. . .|x x x|x x x| |. . .|x x x|x x x| |. . .|x x x|x x x|
+-----+-----+-----+ +-----+-----+-----+ +-----+-----+-----+
Continuation follows ...
Serg