First, I investigated patterns, having 2 empty boxes in the same band.
- Code: Select all
+-----+-----+-----+
|A A A|. . .|. . .|
|A A A|. . .|. . .|
|A A A|. . .|. . .|
+-----+-----+-----+
|x x x|x x x|x x x|
|x x x|x x x|x x x|
|x x x|x x x|x x x|
+-----+-----+-----+
|x x x|x x x|x x x|
|x x x|x x x|x x x|
|x x x|x x x|x x x|
+-----+-----+-----+
Let's consider all possible configurations of filled cells in the box B1, denoted by letters "A". I'll treat 2 box patterns being isomorphic if second box pattern can be reduced to the first box pattern by box rows/columns permutations (but not by transposing!). There are 36 possible box patterns.
- Code: Select all
. . .
0 filled cells . . .
. . .
. . .
1 filled cells . . .
x . .
. . . . . . . . .
2 filled cells . . . x . . . x .
x x . x . . x . .
. . . . . . . . . x . . . x . . . x
3 filled cells . . . x . . . . x x . . x . . . x .
x x x x x . x x . x . . x . . x . .
. . . . . . . . . x . . . x . . . x . . x
4 filled cells x . . x x . x . x x . . x . . x . . . . x
x x x x x . x x . x x . x x . x x . x x .
. . . x . . x . . x . . . x . . . x . x .
5 filled cells x x . x x . x . x x . . x . x x x . x . .
x x x x x . x x . x x x x x . x x . x x x
. . . x . . . . x x x . . x x x . x
6 filled cells x x x x x . x x . x x . x . x x x .
x x x x x x x x x x x . x x . x x .
x . . x x . x . x
7 filled cells x x x x x . x x .
x x x x x x x x x
x x .
8 filled cells x x x
x x x
x x x
9 filled cells x x x
x x x
I've done exhaustive search for all box patterns. (Really not for all patterns, because it is possible to determine - does a box pattern have valid puzzle - using other box patterns which are subsets or supersers of the considered pattern.)
Here is the list of box B1 patterns, which have no valid puzzles.
- Code: Select all
. . .
0 filled cells . . .
. . .
. . .
1 filled cells . . .
x . .
. . . . . . . . .
2 filled cells . . . x . . . x .
x x . x . . x . .
. . . . . . . . . x . . . x . . . x
3 filled cells . . . x . . . . x x . . x . . . x .
x x x x x . x x . x . . x . . x . .
. . . x . . . . x
4 filled cells x . . x . . . . x
x x x x x . x x .
x . .
5 filled cells x . .
x x x
Here is the list of patterns, having valid puzzles.
- Code: Select all
. . . . . . . x . . . x
4 filled cells x x . x . x x . . x . .
x x . x x . x x . x x .
. . . x . . x . . . x . . . x . x .
5 filled cells x x . x x . x . x x . x x x . x . .
x x x x x . x x . x x . x x . x x x
. . . x . . . . x x x . . x x x . x
6 filled cells x x x x x . x x . x x . x . x x x .
x x x x x x x x x x x . x x . x x .
x . . x x . x . x
7 filled cells x x x x x . x x .
x x x x x x x x x
x x .
8 filled cells x x x
x x x
x x x
9 filled cells x x x
x x x
It is possible to devide (by asterisk line) general 36-patterns diagram into 2 areas, containing box patterns having no valid puzzles and box patterns having valid puzzles.
- Code: Select all
. . .
0 filled cells . . .
. . .
. . .
1 filled cells . . .
x . .
. . . . . . . . .
2 filled cells . . . x . . . x .
x x . x . . x . .
. . . . . . . . . x . . . x . . . x
3 filled cells . . . x . . . . x x . . x . . . x .
x x x x x . x x . x . . x . . x . .
***************** ***************** *****
. . . * . . . . . . * x . . * . x . . . x * . . x *
4 filled cells x . . * x x . x . x * x . . * x . . x . . * . . x *
x x x * x x . x x . * x x . * x x . x x . * x x . *
************************ * * *********
. . . x . . x . . * x . . * . x . . . x . x .
5 filled cells x x . x x . x . x * x . . * x . x x x . x . .
x x x x x . x x . * x x x * x x . x x . x x x
*********
. . . x . . . . x x x . . x x x . x
6 filled cells x x x x x . x x . x x . x . x x x .
x x x x x x x x x x x . x x . x x .
x . . x x . x . x
7 filled cells x x x x x . x x .
x x x x x x x x x
x x .
8 filled cells x x x
x x x
x x x
9 filled cells x x x
x x x
Box patterns placed upper asterisk line have no valid puzzles, box patterns placed lower asterisk line have valid puzzles.
It turns out, it is sufficiently to publish examples for box patterns having valid puzzles with 4 filled cells only to prove that all other "right" patterns have valid puzzles. Here are examples of valid puzzles having 4 filled cells in the box B1.
- Code: Select all
+-----+-----+-----+ +-----+-----+-----+
|. . .|. . .|. . .| |. . .|. . .|. . .|
|. 5 6|. . .|. . .| |4 . 6|. . .|. . .|
|. 8 9|. . .|. . .| |7 8 .|. . .|. . .|
+-----+-----+-----+ +-----+-----+-----+
|2 1 4|5 3 7|8 9 6| |2 1 4|3 6 5|7 9 8|
|3 6 5|8 9 1|2 4 7| |3 6 7|8 9 1|5 2 4|
|8 9 7|6 2 4|3 1 5| |5 9 8|7 2 4|1 3 6|
+-----+-----+-----+ +-----+-----+-----+
|5 3 1|7 4 2|9 6 8| |6 3 1|5 7 8|9 4 2|
|6 4 2|9 8 3|7 5 1| |8 4 5|9 1 2|3 6 7|
|9 7 8|1 6 5|4 3 2| |9 7 2|6 4 3|8 1 5|
+-----+-----+-----+ +-----+-----+-----+
+-----+-----+-----+ +-----+-----+-----+
|. 2 .|. . .|. . .| |. . 3|. . .|. . .|
|4 . .|. . .|. . .| |4 . .|. . .|. . .|
|7 8 .|. . .|. . .| |7 8 .|. . .|. . .|
+-----+-----+-----+ +-----+-----+-----+
|2 1 4|3 5 6|7 9 8| |2 1 4|3 7 5|8 9 6|
|3 6 7|8 9 1|2 4 5| |3 6 5|8 9 1|7 2 4|
|5 9 8|7 2 4|6 1 3| |8 9 7|6 2 4|1 3 5|
+-----+-----+-----+ +-----+-----+-----+
|6 3 1|5 4 8|9 2 7| |5 3 1|7 4 2|9 6 8|
|8 7 2|9 1 3|4 5 6| |6 4 2|9 3 8|5 1 7|
|9 4 5|6 7 2|8 3 1| |9 7 8|5 1 6|3 4 2|
+-----+-----+-----+ +-----+-----+-----+
Here are the same 4 examples but given in linear form.
- Code: Select all
..........56.......89......214537896365891247897624315531742968642983751978165432
.........4.6......78.......214365798367891524598724136631578942845912367972643815
.2.......4........78.......214356798367891245598724613631548927872913456945672831
..3......4........78.......214375896365891724897624135531742968642938517978516342
Resulting rule for patterns, having partially filled box B1 and empty boxes B2, B3.
1. If box B1 has 6 or greater filled cells, the pattern has valid puzzles.
2. If box B1 has 5 filled cells, the pattern has valid puzzles with exception of L-shape of filled cells in the box B1, when pattern has no valid puzzles.
3. If box B1 has 4 filled cells, the pattern has valid puzzles with exception of box patterns produced from 5-cells L-shape by subtraction 1 filled cell.
4. If box B1 has 3 or less filled cells, the pattern has no valid puzzles.
Continuation follows.
Serg