Exotic patterns a resume

Advanced methods and approaches for solving Sudoku puzzles

Re: Exotic patterns a resume

Postby Leren » Thu Jun 27, 2013 5:52 am

I've tested the first 208 puzzles (numbers 1 - 500) in Champagne's 04c multi_fish rank 0.txt file for MSLS patterns and have provided a summary in the hidden section.

Hidden Text: Show
12.3.....4.5...6...7.....2.6..1..3....453.........8..9...45.1.........8......2..7;5;elev;1;2;2789;R;C; ; ;;

MSLS 1 : Base 1345; c13457 r3689: 20 Links; 35c1 13c3 c4 14c5 45c7; 689r3 267r6 279r8 89r9; 6b8;
MSLS 2 : Base 2789; c2689 r2457: 16 Links; 89c2 79c6 79c8 28c9; 13r2 45r4 16r5 36r7;
MSLS 3 : Base 2789; r3689 c13457: 20 Links; 89r3 27r6 279r8 89r9; 35c1 136c3 6c4 146c5 45c7;
MSLS 4 : Base 2789; c2689 r12457: 19 Links; 89c2 79c6 79c8 28c9; 456r1 13r2 45r4 16r5 36r7;

2.......6.5..8..1...4...9...7.3.1......82.......7.5.3...9...4...8..1..5.6.......2;10;tax;tarek-ultra-0203;3;2469;R;C;X;

MSLS 1 : Base 1357; r2468 c1379: 16 Links; 37r2 5r4 1r6 37r8; 49c1 26c3 26c7 49c9; 8b4 8b6;
MSLS 2 : Base 1357; r24568 c1379: 20 Links; 37r2 5r4 1357r5 1r6 37r8; 49c1 26c3 26c7 49c9; 8b4 8b6;
MSLS 3 : Base 1378; r24568 c1379: 20 Links; 37r2 8r4 137r5 18r6 37r8; 49c1 26c3 26c7 49c9; 5b4 5b6;
MSLS 4 : Base 1378; c24568 r1379: 20 Links; 13c2 1c4 37c5 378c6 78c8; 49r1 26r3 26r7 49r9; 5b2 5b8;
MSLS 5 : Base 2469; c1379 r2468: 16 Links; 49c1 26c3 26c7 49c9; 37r2 58r4 18r6 37r8;
MSLS 6 : Base 2469; r1379 c24568: 20 Links; 49r1 26r3 26r7 49r9; 13c2 15c4 357c5 378c6 78c8;
MSLS 7 : Base 2469; c1379 r24568: 20 Links; 49c1 26c3 26c7 49c9; 37r2 58r4 1357r5 18r6 37r8;
MSLS 8 : Base 3578; r24568 c1379: 20 Links; 37r2 58r4 357r5 8r6 37r8; 49c1 26c3 26c7 49c9; 1b4 1b6;

1.......2..94...5..6....7.....89..4....3.6.....8.4.....2....1..7.......6..5.8..3.;12;tax;gsf-2007-05-24-003 64879;3;1267;R;C;X; ;;

MSLS 1 : Base 1267; r1378 c3458: 16 Links; 67r1 12r3 67r7 12r8; 34c3 59c4 35c5 89c8;
MSLS 2 : Base 1267; r1378 c34568: 20 Links; 67r1 12r3 67r7 12r8; 34c3 9c4 3c5 3489c6 89c8; 5b2 5b8;
MSLS 3 : Base 1267; c1279 r24569: 20 Links; 26c1 17c2 26c7 17c9; 38r2 3r4 489r5 39r6 49r9; 5b4 5b6;
MSLS 4 : Base 1267; r13578 c3458: 19 Links; 67r1 12r3 127r5 67r7 12r8; 34c3 59c4 35c5 89c8;
MSLS 5 : Base 1267; c12679 r2469: 20 Links; 26c1 17c2 127c6 26c7 17c9; 38r2 35r4 359r6 49r9;
MSLS 6 : Base 1267; c12679 r24569: 24 Links; 26c1 17c2 127c6 26c7 17c9; 38r2 35r4 4589r5 359r6 49r9;
MSLS 7 : Base 3489; c3458 r1378: 16 Links; 34c3 9c4 3c5 89c8; 67r1 12r3 67r7 12r8; 5b2 5b8;
MSLS 8 : Base 3489; r24569 c1279: 20 Links; 38r2 3r4 489r5 39r6 49r9; 26c1 17c2 26c7 17c9; 5b4 5b6;
MSLS 9 : Base 3489; c34568 r1378: 20 Links; 34c3 9c4 3c5 3489c6 89c8; 67r1 12r3 67r7 12r8; 5b2 5b8;
MSLS 10 : Base 3489; r24569 c12679: 24 Links; 38r2 3r4 489r5 39r6 49r9; 26c1 17c2 1257c6 26c7 17c9; 5b4 5b6;

6.......2.9.4...5...1...7...5..84.......2.......3.5.4.2.....6...3...9.8...7.....1;13;tax;coloin-04-10;3;1267;R;C;X; ;;

MSLS 1 : Base 1267; c1379 r2468: 16 Links; 17c1 26c3 12c7 67c9; 38r2 39r4 89r6 45r8;
MSLS 2 : Base 1267; c1379 r24568: 20 Links; 17c1 26c3 12c7 67c9; 38r2 3r4 3458r5 8r6 45r8; 9b4 9b6;
MSLS 3 : Base 1267; r13579 c2468: 20 Links; 17r1 26r3 167r5 17r7 26r9; 48c2 589c4 38c6 39c8;
MSLS 4 : Base 1267; c13579 r2468: 19 Links; 17c1 26c3 167c5 12c7 67c9; 38r2 39r4 89r6 45r8;
MSLS 5 : Base 1267; r13579 c24568: 24 Links; 17r1 26r3 167r5 17r7 26r9; 48c2 589c4 3459c5 38c6 39c8;
MSLS 6 : Base 3458; r2468 c1379: 16 Links; 38r2 3r4 8r6 45r8; 17c1 26c3 12c7 67c9; 9b4 9b6;
MSLS 7 : Base 3458; r24568 c1379: 20 Links; 38r2 3r4 3458r5 8r6 45r8; 17c1 26c3 12c7 67c9; 9b4 9b6;
MSLS 8 : Base 3489; c24568 r13579: 24 Links; 48c2 89c4 349c5 38c6 39c8; 17r1 26r3 167r5 17r7 26r9; 5b2 5b8;

1.......2.9.4...5...6...7...5.3.4.......6........58.4...2...6...3...9.8.7.......1;14;tax;coloin-04-10;3;1267;R;C;X; ;;

MSLS 1 : Base 1267; c1379 r2468: 16 Links; 26c1 17c3 12c7 67c9; 38r2 89r4 39r6 45r8;
MSLS 2 : Base 1267; c1379 r24568: 20 Links; 26c1 17c3 12c7 67c9; 38r2 8r4 3458r5 3r6 45r8; 9b4 9b6;
MSLS 3 : Base 1267; r13579 c2468: 20 Links; 67r1 12r3 127r5 17r7 26r9; 48c2 589c4 35c6 39c8;
MSLS 4 : Base 1267; c13579 r2468: 19 Links; 26c1 17c3 127c5 12c7 67c9; 38r2 89r4 39r6 45r8;
MSLS 5 : Base 1267; r13579 c24568: 24 Links; 67r1 12r3 127r5 17r7 26r9; 48c2 589c4 3489c5 35c6 39c8;
MSLS 6 : Base 3458; r2468 c1379: 16 Links; 38r2 8r4 3r6 45r8; 26c1 17c3 12c7 67c9; 9b4 9b6;
MSLS 7 : Base 3458; r24568 c1379: 20 Links; 38r2 8r4 3458r5 3r6 45r8; 26c1 17c3 12c7 67c9; 9b4 9b6;
MSLS 8 : Base 3489; c2468 r13579: 20 Links; 48c2 89c4 3c6 39c8; 67r1 12r3 127r5 17r7 26r9; 5b2 5b8;
MSLS 9 : Base 3489; c24568 r13579: 24 Links; 48c2 89c4 3489c5 3c6 39c8; 67r1 12r3 127r5 17r7 26r9; 5b2 5b8;

1.......2.3.4...5...6...7...5.8.4.......29......3...9...7.....1.9...8.4.2.....6..;17;Hp54;4;3;1267;R;C;X; ;;

MSLS 1 : Base 1267; r1379 c2468: 16 Links; 67r1 12r3 26r7 17r9; 48c2 59c4 35c6 38c8;
MSLS 2 : Base 1267; r1379 c24568: 20 Links; 67r1 12r3 26r7 17r9; 48c2 9c4 3489c5 3c6 38c8; 5b2 5b8;
MSLS 3 : Base 1267; c1379 r24568: 20 Links; 67c1 12c3 12c7 67c9; 89r2 39r4 348r5 48r6 35r8; 5b6;
MSLS 4 : Base 1267; r13579 c2468: 19 Links; 67r1 12r3 167r5 26r7 17r9; 48c2 59c4 35c6 38c8;
MSLS 5 : Base 1267; c13579 r2468: 20 Links; 67c1 12c3 167c5 12c7 67c9; 89r2 39r4 458r6 35r8;
MSLS 6 : Base 1267; c13579 r24568: 24 Links; 67c1 12c3 167c5 12c7 67c9; 89r2 39r4 3458r5 458r6 35r8;
MSLS 7 : Base 3458; c24568 r1379: 20 Links; 48c2 c4 348c5 3c6 38c8; 67r1 12r3 26r7 17r9; 5b2 5b8 9b2 9b8;
MSLS 8 : Base 3489; c2468 r1379: 16 Links; 48c2 9c4 3c6 38c8; 67r1 12r3 26r7 17r9; 5b2 5b8;
MSLS 9 : Base 3489; c24568 r1379: 20 Links; 48c2 9c4 3489c5 3c6 38c8; 67r1 12r3 26r7 17r9; 5b2 5b8;
MSLS 10 : Base 3589; r24568 c1379: 20 Links; 89r2 39r4 38r5 8r6 35r8; 67c1 12c3 12c7 67c9; 5b6 4b4 4b6;
MSLS 11 : Base 3589; r24568 c13579: 24 Links; 89r2 39r4 358r5 58r6 35r8; 67c1 12c3 167c5 12c7 67c9; 4b4 4b6;

1.......2.3.4...5...6...7...5.9.4.......23......8...9...2...6...9...8.4.7.......1;18;Hp54;1;3;1267;R;C;X; ;; MSLS 1 : Base 1267; r1379 c2468: 16 Links; 67r1 12r3 17r7 26r9; 48c2 35c4 59c6 38c8;
.2.4..7....6.....17...3......5....6..4.2..9.......5..8..1..8....9..7.......92.3..;20;elev;10;2;1568;R;C; ; ;; MSLS 1 : Base 1568; r2467 c2457: 16 Links; 58r2 18r4 16r6 56r7; 37c2 37c4 49c5 24c7;
1.......9.5....2....87...4.2...3......48.5....8.6...7...6..4.5.........1....9.3..;21;elev;11;2;1239;R;C; ; ;; MSLS 1 : Base 1239; c1579 r3567: 16 Links; 39c1 12c5 19c7 23c9; 56r3 67r5 45r6 78r7;
5.......9.2.1...7...8...3...4.6.........5.......2.7.1...3...8...6...4.2.9.......5;22;tax;m_b_metcalf;3;3589;R;C;X; ;; MSLS 1 : Base 3589; r13579 c2468: 20 Links; 38r1 59r3 389r5 59r7 38r9; 17c2 47c4 126c6 46c8;
..3.8....7..2......6...9.1.........3.....596..9.....54.1...45..8...3......27.....;23;tax;tarek071223170000-;3;2378;R;C MSLS 1 : Base 2378; c1345 r3567: 16 Links; 23c1 78c3 38c4 27c5; 45r3 14r5 16r6 69r7;
1.......6.5.7...8...3...4.....5.8.9.....3.....8.92....6.....3...7...5.2...4.....1;24;col;H1;3;1346;R;C;X; ;; MSLS 1 : Base 1346; c1379 r2468: 16 Links; 34c1 16c3 16c7 34c9; 29r2 27r4 57r6 89r8;
98.7.....6..89......5..4...7...3.9....6...7....2....41.6..8.3.......1..5.......2.;25;GP;H2;2;1245;R;C; ; ;; MSLS 1 : Base 1245; c3689 r1247: 16 Links; 14c3 25c6 15c8 24c9; 36r1 37r2 68r4 79r7;
98.7.....6..89......5..4...7...3.9....6...7....2....51.6..8.3.......1.4.........2;26;GP;H3;2;1245;R;C; ; ;; MSLS 1 : Base 1245; c3689 r1247: 16 Links; 14c3 25c6 15c8 24c9; 36r1 37r2 68r4 79r7;
1......8......92....6.3...52....8.....5.7.....6.5....4..47...........91..3..6...7;28;elev;14;2;1289;R;C; ; ;; MSLS 1 : Base 1289; r1248 c23459: 20 Links; 29r1 18r2 19r4 28r8; 457c2 37c3 346c4 45c5 36c9;
.2....78.4.......6.9..7..1....5....3.....1.......9.12..7..1.8..5....4.....67.3...;29;elev;7;2;3456;R;C; ; ;; MSLS 1 : Base 3456; r2489 c2578: 16 Links; 35r2 46r4 36r8 45r9; 18c2 28c5 29c7 79c8;
.....6..94...8.2.....7...1.2.9...8....4.3.9...6.....5.3.8.4.......5......7...1...;31;elev;4;2;1567;R;C; ; ;; MSLS 1 : Base 1567; c2468 r2457: 16 Links; 15c2 16c4 57c6 67c8; 39r2 34r4 28r5 29r7;
1....6.......8.2...9.7....5.7.3...5......16....4....73..59....48...2.....3.......;32;elev;L1;2;1268;R;C; ; ;; MSLS 1 : Base 1268; c1567 r3467: 16 Links; 26c1 16c5 28c6 18c7; 34r3 49r4 59r6 37r7;
1.......9.4...3.8...2...6...7..58.......2.......7.4.5...6...2...3.8...7.9.......1;38;tax;tarek-2803;3;1269;R;C;X; ;; MSLS 1 : Base 1269; c1379 r2468: 16 Links; 26c1 19c3 19c7 26c9; 57r2 34r4 38r6 45r8;
1.......2.9.4...5...6...7...5.3.4......96.........8.4...2...6...3...9.8.7.......1;39;tax;coloin-04-10;3;1267;R;C;X; ;; MSLS 1 : Base 1267; r1379 c2468: 16 Links; 67r1 12r3 17r7 26r9; 48c2 58c4 35c6 39c8;
1.......2.3.4...5...6...7...5.8.3.......7.......95..8.7.....6...9...8.3...2.....1;40;tax;jpf-04/08;3;1267;R;C;X; ;; MSLS 1 : Base 1267; c1379 r2468: 16 Links; 26c1 17c3 12c7 67c9; 89r2 49r4 34r6 45r8;
..34..7.......9..2....1..5.2.........38...6..6.43.........2..9......5..1.6.8..3..;41;tarekdb;pearly6000-4268;3;1259;R;C;X; ;; MSLS 1 : Base 1259; c5689 r1569: 16 Links; 59c5 12c6 12c8 59c9; 68r1 47r5 78r6 47r9;
..34..7.......9..2....1..5.27........38...6....43.........2..9......5..1.6.8..3..;42;tarekdb;pearly6000-3802;3;1259;R;C;X; ;; MSLS 1 : Base 1259; r2378 c2347: 16 Links; 15r2 29r3 15r7 29r8; 48c2 67c3 67c4 48c7;
..345........89......2..4...1......7..4.2.8..9......6...28..5..6......9..7......1;45;tarekdb;pearly6000-3112;3;1679;R;C;X; ;; MSLS 1 : Base 1679; r4689 c3457: 16 Links; 69r4 17r6 17r8 69r9; 58c3 35c4 34c5 23c7;
..34...8..........7....25..2..........49...1.9.....6.7.....5..6..9.1..3..8.34....;46;elev;L2;2;2567;R;C; ; ;; MSLS 1 : Base 2567; c1679 r1589: 16 Links; 56c1 67c6 27c7 25c9; 19r1 38r5 48r8 19r9;
.2...6......1...3...9.7...5..5....78.3.....1.8...4.5....4.9.8...6...2...9.......7;47;elev;H1;2;1236;R;C; ; ;; MSLS 1 : Base 1236; r1258 c13579: 20 Links; 13r1 26r2 26r5 13r8; 457c1 78c3 58c5 479c7 49c9;
...4...8...6..91......3...42....56...7..4..3...5........1..2...5.....9...8..6...7;49;elev;29;2;3478;R;C; ; ;; MSLS 1 : Base 1259; c1367 r1359: 16 Links; 19c1 29c3 1c6 25c7; 37r1 78r3 68r5 34r9; 6b2;
...4....9....8.1...8..13........8..7.3..6.2....75......1...26....4.....59......7.;50;elev;L4;2;4579;R;C; ; ;; MSLS 1 : Base 4579; r1689 c2567: 16 Links; 57r1 49r6 79r8 45r9; 26c2 23c5 16c6 38c7;
1.......2..34...5..6....7.....85..9....3.6.....8.9.....2....1..7.......6..9.8..3.;51;tax;jpf-04/14/B4;3;1267;R;C;X; ;; MSLS 1 : Base 1267; r1378 c3458: 16 Links; 67r1 12r3 67r7 12r8; 45c3 59c4 34c5 48c8;
1.......2.3.4...5...6...7...5.8.4.......73......9...8.7.....6...4...8.9...2.....1;52;tax;jpf-04/14/01;3;1267;R;C;X; ;; MSLS 1 : Base 1267; r1379 c2468: 16 Links; 67r1 12r3 12r7 67r9; 89c2 35c4 59c6 34c8;
..1...5...2.4...6.3....7....6.28........9..2.......4.65.....1...9.8...4...7.....3;54;col;H2;3;1357;R;C;X; ;; MSLS 1 : Base 1357; c1379 r2458: 16 Links; 17c1 35c3 37c7 157c9; 89r2 9r4 8r5 26r8; 4b4;
....56.8...71.....6.....4.......85...3......29...4..6..1.7.......2.....38...9..5.;55;elev;30;2;1237;R;C; ; ;; MSLS 1 : Base 1237; r2578 c15678: 20 Links; 23r2 17r5 23r7 17r8; 45c1 68c5 459c6 689c7 49c8;
98.7.....7..6..8....5.4....37....6...6.........2....31...3..98.....1...2.....5..4;57;GP;H8;2;1245;R;C; ; ;; MSLS 1 : Base 1245; r3689 c1247: 16 Links; 12r3 45r6 45r8 12r9; 68c1 39c2 89c4 37c7;
12...6....5...92....8.3........7...3...8....49....15....4....7.56....9..........1;58;elev;L5;2;3478;R;C; ; ;; MSLS 1 : Base 3478; r3457 c1267: 16 Links; 47r3 48r4 37r5 38r7; 26c1 19c2 25c6 16c7;
1.......2..34...5..6....7......3..4....8.6.....954.....2....1..7.......6..5.9..8.;60;tax;jpf-04-10;3;1267;R;C;X; ;; MSLS 1 : Base 1267; r1378 c3458: 16 Links; 67r1 12r3 67r7 12r8; 48c3 39c4 58c5 39c8;
..34....9.5...9.......2.1..2...7.....84........98....3.9.5....86......7.....1.6..;62;elev;21;2;1267;R;C; ; ;; MSLS 1 : Base 1267; r3489 c2349: 16 Links; 67r3 16r4 12r8 27r9; 34c2 58c3 39c4 45c9;
.2...6......18......8.3.4....49....3....4.8..5......7.7......2...13..9...6...5...;63;elev;23;2;2567;R;C; ; ;; MSLS 1 : Base 2567; r1679 c3457: 16 Links; 57r1 26r6 56r7 27r9; 39c3 48c4 19c5 13c7;
.2....7..4....9..3....1..6....3.5..88.......5.6....2...1..7....5..9.4.....98.....;65;elev;22;2;1267;R;C; ; ;; MSLS 1 : Base 1267; r1367 c1469: 16 Links; 16r1 27r3 17r6 26r7; 39c1 45c4 38c6 49c9;
1.....7.9.57....3..8.7.....2...4......68......38....5......1..4....9...2...3..56.;68;elev;25;2;1249;R;C; ; ;; MSLS 1 : Base 1249; r1478 c2348: 16 Links; 24r1 19r4 29r7 14r8; 67c2 35c3 56c4 78c8;
1.....7.9.57....3..8.7.....2...4......68......38....5......1..2....9...4...3..56.;71;elev;26;2;1249;R;C; ; ;; MSLS 1 : Base 1249; r1478 c2348: 16 Links; 24r1 19r4 49r7 12r8; 67c2 35c3 56c4 78c8;
1....6.8.4......36....7.5...4...1..3....2......97......3...8.6...25..9...1.......;72;elev;27;2;2579;R;C; ; ;; MSLS 1 : Base 2579; c3457 r1247: 16 Links; 57c3 29c4 59c5 27c7; 34r1 18r2 68r4 14r7;
1.......2.3.4...5...6...7...5.8.3.......74......9...8.7.....6...9...8.3...2.....1;74;tax;jpf-04/14/02;3;1267;R;C;X; ;; MSLS 1 : Base 1267; r1379 c2468: 16 Links; 67r1 12r3 12r7 67r9; 48c2 35c4 59c6 49c8;
..34...8..5....1..7.......6.1....5....8.9..2.6.......7..294........3..4....8.5...;75;tarekdb;pearly6000-4143;3;1567;R;C;X; ;; MSLS 1 : Base 1567; r2346 c3458: 16 Links; 67r2 15r3 67r4 15r6; 49c3 23c4 28c5 39c8;
3.......8.7.5...1...6...4...9.2.1.......4.......97..2.4.....3...5...2.7...8.....6;76;tax;tarek-ultra-0313;3;3468;R;C;X; ;; MSLS 1 : Base 1279; r2468 c1379: 16 Links; 29r2 7r4 1r6 19r8; 68c1 34c3 68c7 34c9; 5b4 5b6;
3.......1.4...2.7...5...8......76.4.....5.....6.2.9...1.....5...7.6...9...8.....3;77;tax;tarek-1847;3;1358;R;C;X; ;; MSLS 1 : Base 1358; c1379 r2468: 16 Links; 58c1 13c3 13c7 58c9; 69r2 29r4 47r6 24r8;
1.......2.9.4...5...6...7...5.9.3.......7.......85..4.7.....6...3...9.8...2.....1;78;tax;Easter-Monster;3;1267;R;C;X; ;; MSLS 1 : Base 1267; c1379 r2468: 16 Links; 26c1 17c3 12c7 67c9; 38r2 48r4 39r6 45r8;
..3.5....4....9....8.7....1..5.3.....1.6...2.9....4......8...72.6......8......41.;80;tarekdb;pearly6000-3978;3;3459;R;C;X; ;; MSLS 1 : Base 1278; c2489 r1246: 16 Links; 27c2 12c4 8c8 7c9; 49r1 35r2 49r4 35r6; 6b3 6b6;
...1....9.......85..9.5..6...5.3...6.7...2...1..4.......3.8..9..2...73..4........;82;col;H3;3;1247;R;C;X; ;; MSLS 1 : Base 1247; r5689 c3589: 16 Links; 14r5 27r6 14r8 127r9; 68c3 69c5 5c8 8c9; 3b6;
.......35.....2.6...3.5..8...5.9...6.7....9..1..4.......6.8..9..2.1.....4....7...;83;col;H4;3;1247;R;C;X; ;; MSLS 1 : Base 1247; r5689 c3589: 16 Links; 124r5 27r6 47r8 12r9; 89c3 36c5 5c8 38c9;
..345.........9......2.34...1......7..4.2.8..9......6...28..5..6......9..7......1;86;tarekdb;pearly6000-3238;3;1679;R;C;X; ;; MSLS 1 : Base 1679; c1289 r1357: 16 Links; 17c1 69c2 17c8 69c9; 28r1 58r3 35r5 34r7;
...4......5..8...3..9..2....9..6.3.......4.1...47...2..6....8..8...9...5..1....7.;88;elev;43;2;1247;R;C; ; ;; MSLS 1 : Base 1247; c3468 r2478: 16 Links; 27c3 12c4 17c6 4c8; 69r2 58r4 359r7 36r8;
....5.7.....1.9.6.........52....8.16.......2..3....4.7.7..4......19.2...9.86.....;89;elev;42;2;3457;R;C; ; ;; MSLS 1 : Base 3457; c2579 r2489: 15 Links; 45c2 37c5 35c7 34c9; 28r2 9r4 68r8 12r9;
1...5..8...7.....6.9.2.........13....7.9..4..8..5......4.6..9.......5.3...2...6.7;90;elev;45;2;1358;R;C; ; ;; MSLS 1 : Base 1358; r1468 c23479: 19 Links; 3r1 58r4 13r6 18r8; 26c2 469c3 47c4 27c7 249c9;
1....6.8....7....3.9....5....5.4.....4....2..6....1.3...2.9....8....3.7....8....6;91;elev;44;2;2459;R;C; ; ;; MSLS 1 : Base 2459; r3457 c14689: 20 Links; 24r3 29r4 59r5 45r7; 37c1 136c4 78c6 16c8 178c9;
....5..8...67..1.......3..426.9.............19.7...2...3..4..1......8..5..21..6..;92;elev;41;3;3458;R;C;X; ;; MSLS 1 : Base 2679; r2469 c5689: 16 Links; 29r2 7r4 6r6 79r9; 38c5 45c6 345c8 38c9; 1b5;
..3.5...9...1..........2....7...1.6.5........9.8.3.4.....2...7...5...8.48...4...3;96;elev;49;2;1267;R;C; ; ;; MSLS 1 : Base 1267; c2468 r1689: 16 Links; 126c2 67c4 67c6 12c8; 48r1 5r6 39r8 59r9;
....5..8.4....9..3...2..1...6...3.....18...3.93......7..2...5...7...4..66..5.....;98;elev;L8;2;1258;R;C; ; ;; MSLS 1 : Base 1258; r1357 c1269: 16 Links; 12r1 58r3 25r5 18r7; 37c1 49c2 67c6 49c9;
.......8...6...12....2..6.5..15..9..8....3....4..7....3....8.....21....6.7..4....;99;col;H5;3;3478;R;C;X; ;; MSLS 1 : Base 3478; c1256 r2348: 16 Links; 47c1 38c2 38c5 47c6; 59r2 19r3 26r4 59r8;
3....97...6..4......18.....5......93.....327.........8..4.1....2....7.5..8.6.....;100;tax;tarek071223170000-;3;1468;R;C;X; ;; MSLS 1 : Base 1468; c2345 r1458: 16 Links; 14c2 68c3 14c4 68c5; 25r1 27r4 59r5 39r8;
1......8......913.......5.6..7.4....3....1.5..6.2.....5....89...4..7......26.....;101;tax;col-201107-M3-3;3;2467;R;C;X; ;; MSLS 1 : Base 2467; r4689 c1678: 16 Links; 26r4 47r6 26r8 47r9; 89c1 35c6 38c7 19c8;
987......65.........49..8..5..8..7......3..4......2..1.6.7..5......4...3.....1.2.;102;GP;H10;3;1234;R;C;X; ;; MSLS 1 : Base 1234; r5689 c1247: 16 Links; 12r5 34r6 12r8 34r9; 78c1 79c2 56c4 69c7;
5.......9.2.1...7...8...3...4...2.......5.......7.6.1...3...8...6...4.2.9.......5;103;tax;StrmCkr;3;3589;R;C;X; ;; MSLS 1 : Base 3589; r13579 c2468: 20 Links; 38r1 59r3 389r5 59r7 38r9; 17c2 246c4 17c6 46c8;
98.7..6....5.4.......9...8.6.....3.937......8..2....1..3.6..8......5.........1.4.;105;GP;H14;2;1245;R;C; ; ;; MSLS 1 : Base 1245; c3568 r1457: 16 Links; 14c3 12c5 245c6 25c8; 3r1 78r4 69r5 79r7;
....5.7.......9.32...1.2.6...4......8...4.....3.2.1....1.6...9.5.7...8...9....3..;107;elev;51;2;4578;R;C; ; ;; MSLS 1 : Base 4578; r1458 c2468: 16 Links; 48r1 578r4 57r5 4r8; 26c2 39c4 36c6 12c8;
.23..6...4...8......93.7.......6..7..769...2.5.......1........5.3.6...9.....1.8..;108;elev;54;2;1458;R;C; ; ;; MSLS 1 : Base 1458; c1579 r1358: 16 Links; 18c1 45c5 145c7 48c9; 79r1 26r3 3r5 27r8;
.23...7..4.......66......1....5.8.....57.....97..6.......8.23....2..58......1...4;109;elev;53;2;1469;R;C; ; ;; MSLS 1 : Base 1469; r2369 c3467: 16 Links; 19r2 49r3 14r6 69r9; 78c3 23c4 37c6 25c7;
98.7.....7..8..6....5.4....63....9...7.........2....31...3..89.....2...5.....4..2;111;GP;H12;2;1245;R;C; ; ;; MSLS 1 : Base 1245; r3689 c1247: 16 Links; 12r3 45r6 14r8 15r9; 38c1 69c2 69c4 37c7;
98.7.....6..89......5..4...7...3.9....6...7....2....41.6..8.3.......1.5.........2;112;GP;H15;2;1245;R;C; ; ;; MSLS 1 : Base 1245; c3689 r1247: 16 Links; 14c3 25c6 12c8 45c9; 36r1 37r2 68r4 79r7;
12.....8..5....13...9.....421...3.......7......76........94...6.....5..38....2.5.;113;elev;57;2;4679;R;C; ; ;; MSLS 1 : Base 4679; r3567 c1268: 16 Links; 67r3 469r5 49r6 7r7; 35c1 38c2 18c6 12c8;
1......8..5......68.9..21..............57...2..4..8.9.....6...3..1..4.2..7.3.....;114;elev;L9;2;3567;R;C; ; ;; MSLS 1 : Base 1489; r1368 c2459: 16 Links; 49r1 4r3 1r6 89r8; 236c2 67c4 35c5 57c9; 2b5;
1....67......8...6.9.2........9...5.3...1.8........6.1..2....4.7...3...8..45.....;115;elev;55;2;2459;R;C; ; ;; MSLS 1 : Base 2459; r3479 c1579: 16 Links; 45r3 24r4 59r7 29r9; 68c1 67c5 13c7 37c9;
1.3....8..5......6..9.2.1.......4..78...9..1....5....23..6......4...7.....1.3..2.;116;elev;56;2;4567;R;C; ; ;; MSLS 1 : Base 2389; r1359 c2469: 16 Links; 29r1 38r3 23r5 89r9; 67c2 47c4 56c6 45c9;
1.......2..34...5..6....7......3..4....5.6.....894.....2....1..7.......6..5.8..9.;117;tax;jpf-04/14/14;3;1267;R;C;X; ;; MSLS 1 : Base 1267; r1378 c3458: 16 Links; 67r1 12r3 67r7 12r8; 49c3 38c4 59c5 38c8;
..3.....9...1...63.....75....196.....4.......7....5......6...21..92...3.8.....4..;119;elev;L10;2;4578;R;C; ; ;; MSLS 1 : Base 4578; r3569 c3489: 16 Links; 48r3 578r5 48r6 57r9; 26c3 3c4 19c8 26c9;
....56..94......3...9...5.12..........6..81...4.7...........9....8.6...5.3.2...7.;122;elev;36;2;2347;R;C; ; ;; MSLS 1 : Base 2347; c1248 r1358: 16 Links; 37c1 27c2 34c4 24c8; 18r1 68r3 59r5 19r8;
1.3.......5...9...6...3.1..2.....3....4.1...2.8.....7..7...5......8...9...6.2.4..;124;elev;40;2;5789;R;C; ; ;; MSLS 1 : Base 5789; r2678 c1357: 16 Links; 78r2 59r6 89r7 57r8; 34c1 12c3 46c5 26c7;
1.....7.9.57....3..8.7.....2....4.....68......38....5......1..2....9...4...3..56.;125;elev;38;2;1249;R;C; ; ;; MSLS 1 : Base 1249; r1478 c2348: 16 Links; 24r1 19r4 49r7 12r8; 67c2 35c3 56c4 78c8;
1.......7.2.4...6...3...5...4.2.9.......46.9....5.......7...1...8.9...2.5.......3;133;col;H6;3;1357;R;C;X; ;; MSLS 1 : Base 1357; c1379 r2458: 16 Links; 37c1 15c3 37c7 15c9; 89r2 68r4 28r5 46r8;
.2...6......1...3...9.7...5..5....78.3.....1.8...4.5....4.9.8...6.2.....9.......7;135;elev;H3;2;1236;R;C; ; ;; MSLS 1 : Base 1236; r1258 c13579: 20 Links; 13r1 26r2 26r5 13r8; 457c1 78c3 58c5 479c7 49c9;
5.......8.3...2.4...9...1......27.3....5.4....7.63....8.....9...4.7...6...1.....5;140;tax;tarek-2228;3;1589;R;C;X; ;; MSLS 1 : Base 1589; c1379 r2468: 16 Links; 19c1 58c3 58c7 19c9; 67r2 46r4 24r6 23r8;
6.......2.9.4...5...1...7...5.34........6.......8.5.4.2.....6...3...9.8...7.....1;141;tax;coloin-04-10;3;1267;R;C;X; ;; MSLS 1 : Base 1267; c1379 r2468: 16 Links; 17c1 26c3 12c7 67c9; 38r2 89r4 39r6 45r8;
9.......7.1...8.3...2...5.......6.1....32.....6.1.4...7.....2...3.6...4...5.....9;142;tax;tarek-2164;3;2579;R;C;X; ;; MSLS 1 : Base 2579; r1379 c2468: 16 Links; 25r1 79r3 59r7 27r9; 48c2 48c4 13c6 68c8;
1.......2.3.4...5...6...7...8.5.9.......7.......83..4.7.....6...5...8.9...2.....1;144;tax;jpf-04/05;3;1267;R;C;X; ;; MSLS 1 : Base 1267; c1379 r2468: 16 Links; 26c1 17c3 12c7 67c9; 89r2 34r4 59r6 34r8;
1......89.....91.2......4....76......3..4....9....2..5..4.7....5....8.1..6.3.....;148;tax;tarek-4/08;3;3467;R;C;X; ;; MSLS 1 : Base 1289; r1268 c2345: 16 Links; 2r1 8r2 18r6 29r8; 47c2 36c3 47c4 36c5; 5b1 5b2;
9876.....65....7...........5...4..3..2......1..68..5....59..8......3..2......1..4;153;GP;H21;3;1234;R;C;X; ;; MSLS 1 : Base 1234; c5689 r1267: 16 Links; 12c5 234c6 14c8 23c9; 5r1 89r2 79r6 67r7;
98.7.....76....5....5.......9..4..3...85..6.......2..1..98..7......3..2......1..4;160;GP;H22;3;1234;R;C;X; ;; MSLS 1 : Base 1234; c5689 r1257: 16 Links; 12c5 34c6 14c8 23c9; 56r1 89r2 79r5 56r7;
2.......3.1.7...6...4...5...8.6.9.......2.......81..9.5.....2...7...6.1...3.....4;162;tax;tarek-3033;3;2345;R;C;X; ;; MSLS 1 : Base 1689; r2468 c1379: 16 Links; 89r2 1r4 6r6 89r8; 34c1 25c3 34c7 25c9; 7b4 7b6;
.2...6.....71....6....3..5...86......1...8..75...4......1..2..8....9..4.9..8..3..;166;elev;L11;2;3459;R;C; ; ;; MSLS 1 : Base 3459; r3689 c23469: 19 Links; 49r3 39r6 35r8 45r9; 678c2 26c3 27c4 17c6 12c9;
....5.....5.1....3..9..7.5..3....8..6.......1..5.2..4......5.7...2.94....8.6..4..;168;elev;133;2;1368;R;C; ; ;; MSLS 1 : Base 1368; r2459 c3568: 16 Links; 68r2 16r4 38r5 13r9; 47c3 47c5 29c6 29c8;
.2.4.......7..9...6...3.5.............4..1.9.8.....3.15...6...3....1.6.8..67...2.;172;elev;100;2;2479;R;C; ; ;; MSLS 1 : Base 2479; r1259 c1579: 16 Links; 79r1 24r2 27r5 49r9; 13c1 58c5 18c7 56c9;
98.7.....7..........6.5.7..4..8...7..3....89......2..1.9.4...3...2.6.........1..5;174;GP;H26;2;1256;R;C; ; ;; MSLS 1 : Base 1256; r3689 c1248: 16 Links; 12r3 56r6 15r8 26r9; 38c1 47c2 39c4 48c8;
....5....4....9.3..8.1....6.1.8....5.....24....756....3......2.......9...68.....7;175;elev;L12;2;2349;R;C; ; ;; MSLS 1 : Base 2349; c1678 r3469: 16 Links; 29c1 34c6 23c7 49c8; 57r3 67r4 18r6 15r9;
....5...9..67......8...2.4.23....8....79......4...3.1.....6...5......2.......143.;176;elev;101;2;5679;R;C; ; ;; MSLS 1 : Base 5679; r1257 c2678: 16 Links; 67r1 59r2 56r5 79r7; 12c2 48c6 13c7 28c8;
4....91...2..3......75.....8......9......461.......8.5..3.7....6....1.8..5.2.....;177;tax;tarek071223170000-;3;2357;R;C;X; ;; MSLS 1 : Base 1689; c1678 r2379: 16 Links; 19c1 68c6 9c7 6c8; 57r2 23r3 25r7 37r9; 4b3 4b9;
........94..7...3...9..15..2...6..7..9....8..........16..37......8..5....3..2..4.;178;elev;L13;2;1589;R;C; ; ;; MSLS 1 : Base 1589; c3679 r2479: 16 Links; 15c3 89c6 19c7 58c9; 26r2 34r4 24r7 67r9;
..7..1...6...9.2...3.5.....9.....6.8.......3.....8..922...4...9..13......5...7...;179;tax;tarek071223170000-;3;1357;R;C;X; ;; MSLS 1 : Base 1357; c2346 r2467: 16 Links; 17c2 35c3 17c4 35c6; 48r2 24r4 46r6 68r7;
1...56..9...7.........3.56...8...4...7.2.....6....3.1.3...9..5...2.......4....8..;183;elev;104;2;2478;R;C; ; ;; MSLS 1 : Base 2478; c2347 r1367: 15 Links; 28c2 47c3 48c4 27c7; 3r1 19r3 59r6 16r7;
...4....9....8.12.....135..2...3.8...4.........96.....3...21.5.5.........6......7;185;elev;105;2;4679;R;C; ; ;; MSLS 1 : Base 4679; c2349 r2347: 16 Links; 79c2 467c3 79c4 46c9; 35r2 28r3 15r4 8r7;
1...5...9..7...2...6.2.......83..6...7.......5....4..3....4...1....9..4..3.7..8..;186;elev;108;2;1459;R;C; ; ;; MSLS 1 : Base 1459; r1678 c2347: 16 Links; 4r1 19r6 59r7 15r8; 28c2 236c3 68c4 37c7;
..34..........9..6.9..7..1...4...8...7..6..2.5.....3......9...28..5.7....1...2.7.;191;elev;H7;2;3458;R;C; ; ;; MSLS 1 : Base 1269; c25689 r1468: 19 Links; 26c2 12c5 16c6 69c8 19c9; 58r1 35r4 48r6 34r8; 7b6;
....5...9...1...3.6.8...5..2.9.....8..5.9.....4...7...5...6...2.1...4......3...7.;198;elev;69;2;1347;R;C; ; ;; MSLS 1 : Base 1347; r2689 c1359: 16 Links; 47r2 13r6 37r8 14r9; 89c1 26c3 28c5 56c9;
.2.4...8......9..66.....5..2....39..........5.7..4..1.3....5.....17...2..8..1....;201;elev;88;2;3569;R;C; ; ;; MSLS 1 : Base 1478; r1689 c1679: 16 Links; 17r1 8r6 48r8 47r9; 59c1 26c6 36c7 39c9; 2b6;
...4..7......8...2..9..15....49...7..3......6...5..41...71.5...6........8...2....;211;elev;71;2;2368;R;C; ; ;; MSLS 1 : Base 2368; r2589 c34678: 20 Links; 36r2 28r5 238r8 36r9; 15c3 7c4 479c6 19c7 459c8;
....5.7.9..71....6.8.....4.2..........6.9.5...4...3...3....8.2.....6......19..6..;214;elev;70;2;2348;R;C; ; ;; MSLS 1 : Base 2348; c1268 r1259: 16 Links; 48c1 23c2 24c6 38c8; 16r1 59r2 17r5 57r9;
.....7.39.......85..3.5......9.3...6.7...2...1..4.......6.8..9..2.1..6..4........;216;col;H9;3;1247;R;C;X; ;; MSLS 1 : Base 1247; r5689 c3589: 16 Links; 14r5 27r6 47r8 127r9; 58c3 69c5 5c8 38c9;
1....67..4.7.8.....9.....5...4..16......4.....3.5....2...2...9.........3..8.1.4..;222;elev;93;2;2359;R;C; ; ;; MSLS 1 : Base 2359; c2489 r1249: 16 Links; 25c2 39c4 23c8 59c9; 48r1 16r2 78r4 67r9;
98.7.....7...8.6....5..4...6..3..9...9.....2...4..1..6.3.8..7.......2.1.........5;227;GP;H29;2;1245;R;C; ; ;; MSLS 1 : Base 1245; c3689 r1247: 16 Links; 12c3 5c6 45c8 124c9; 36r1 39r2 78r4 69r7;
..3.5...9...1..2...8...7.....4....6.3...4...5.7...2.....6.3..9.8......43...8..1..;232;elev;77;2;1278;R;C; ; ;; MSLS 1 : Base 1278; r2369 c3589: 16 Links; 78r2 12r3 18r6 27r9; 59c3 69c5 35c8 46c9;
1.....7...5......6...32.1.5.4...5.....6.....87..9..3....4..8......29....9...1..7.;234;elev;92;2;4568;R;C; ; ;; MSLS 1 : Base 4568; r2457 c1457: 16 Links; 48r2 68r4 45r5 56r7; 23c1 17c4 37c5 29c7;
8.......5.6...2.3...7...9......31.2.....7.....1.6.4...5.....7...3.1...4...9.....8;247;tax;tarek-2153;3;5789;R;C;X; ;; MSLS 1 : Base 5789; c1379 r2468: 16 Links; 79c1 58c3 58c7 79c9; 14r2 46r4 23r6 26r8;
8.......5.1...3.2...4...7.......1.3....28.....9.3.6...5.....4...2.9...6...7.....8;249;tax;tarek-3025;3;4578;R;C;X; ;; MSLS 1 : Base 4578; r1379 c2468: 16 Links; 47r1 58r3 78r7 45r9; 36c2 16c4 29c6 19c8;
1.......7.3...9.6...5...2......43.9.....1.....4.9.8...7.....5...6.4...8...2.....1;250;tax;tarek-3038;3;1257;R;C;X; ;; MSLS 1 : Base 1257; c1379 r2468: 16 Links; 25c1 17c3 17c7 25c9; 48r2 68r4 36r6 39r8;
98.7.....76....9....5.......5..4..3...98..6.......2..1..65..7......1...4.....3.2.;252;GP;H33;3;1234;R;C;X; ;; MSLS 1 : Base 1234; c5689 r1257: 16 Links; 23c5 14c6 14c8 23c9; 56r1 58r2 57r5 89r7;
3.....9...7...1.5...2.....4....76.1....3.5....6.81....4.....2...5.6...8...9.....3;254;tax;tarek-2191;3;2349;R;C;X; ;; MSLS 1 : Base 1678; r2468 c1379: 16 Links; 68r2 8r4 7r6 17r8; 29c1 34c3 34c7 29c9; 5b4 5b6;
98.7.....76....8....5......5...4..3...89..7.......2..1..95..6......3..2......1..4;257;GP;H36;3;1234;R;C;X; ;; MSLS 1 : Base 1234; c5689 r1257: 16 Links; 12c5 34c6 14c8 23c9; 56r1 59r2 56r5 78r7;
.7......1..29...5.8.....4....625.........7......3.6.9.4.....7...1......8..5.3..6.;261;tax;tarek-1839;3;1478;R;C;X; ;; MSLS 1 : Base 1478; c1279 r2469: 16 Links; 17c1 48c2 18c7 47c9; 36r2 39r4 25r6 29r9;
5.......7.8...9.3...4...2...1..36.......4.......1.8.6...2...4...9.3...1.7.......5;268;tax;tarek-1802;3;2457;R;C;X; ;; MSLS 1 : Base 1368; r2468 c1379: 16 Links; 16r2 8r4 3r6 68r8; 24c1 57c3 57c7 24c9; 9b4 9b6;
9.......2.8...7.4...6...1......58.7.....1.....5.7.3...2.....6...4.5...3...1.....9;269;tax;tarek-2263;3;1269;R;C;X; ;; MSLS 1 : Base 1269; c1379 r2468: 16 Links; 16c1 29c3 29c7 16c9; 35r2 34r4 48r6 78r8;
1...........7.9.3...9.32.....1.9..7.5.....6...4......8...6....5..2.7..1.8.....4..;275;elev;274;3;4568;R;C;X; ;; MSLS 1 : Base 2379; r2348 c1279: 16 Links; 2r2 7r3 23r4 39r8; 46c1 568c2 58c7 46c9; 1b3;
....5....4.7..9....89...4......3...1...2...6.7....58......6..2..1.5....39....85..;281;elev;272;3;1236;R;C;X; ;; MSLS 1 : Base 1236; c4589 r2369: 16 Links; 136c4 12c5 13c8 26c9; 8r2 7r3 49r6 47r9; 5b3;
...4....9.5..8..3......715.2...9.....8...15....46......7...3.1.6.......2......3.5;286;elev;L16;2;2469;R;C; ; ;; MSLS 1 : Base 2469; r1468 c2678: 16 Links; 26r1 46r4 29r6 49r8; 13c2 58c6 78c7 78c8;
.....67..4......3...82....5.1..9.......7..6....5..8..2..2..78...3..1....9......4.;288;elev;278;2;1349;R;C; ; ;; MSLS 1 : Base 1349; r2489 c34679: 20 Links; 19r2 34r4 49r8 13r9; 67c3 568c4 25c6 25c7 678c9;
3.......2.9...4.6...5...7......68.9.....7.....8.9.1...2.....5...6.8...1...7.....3;293;tax;tarek-2233;3;2357;R;C;X; ;; MSLS 1 : Base 2357; c1379 r2468: 16 Links; 57c1 23c3 23c7 57c9; 18r2 14r4 46r6 49r8;
.2...6.8.4..........93..1.....5..9.......7.2...6.9...3..16....58....4.7..4.......;300;elev;288;2;2478;R;C; ; ;; MSLS 1 : Base 1359; r3467 c1268: 16 Links; 5r3 13r4 15r6 39r7; 27c1 78c2 28c6 46c8; 6b1;
5.......4.8...6.9...1...2...7.3.8.......5.......79..3...2...1...6.9...8.4.......5;304;tax;tarek-ultra-0006;3;1245;R;C;X; ;; MSLS 1 : Base 1245; c1379 r2468: 16 Links; 12c1 45c3 45c7 12c9; 37r2 69r4 68r6 37r8;
.2.......4....9.3...8.2...1...7...5...6.....89....34..5..9......1..6.......5.4.7.;306;elev;291;2;1268;R;C; ; ;; MSLS 1 : Base 1268; r1358 c1468: 16 Links; 168r1 6r3 12r5 28r8; 37c1 34c4 57c6 49c8;
....5.7.9..71....6.8.....4.2..........6.9.1...4...3...3....8.2....9.......5.7.6..;311;elev;294;2;2348;R;C; ; ;; MSLS 1 : Base 2348; c1268 r1259: 16 Links; 48c1 23c2 24c6 38c8; 16r1 59r2 57r5 19r9;
98.76....5.....9...4.....7.3.......5.2.4...6......91....8.2..4....84.........1..3;317;GP;H50;2;1359;R;C; ; ;; MSLS 1 : Base 1359; r2469 c2458: 16 Links; 13r2 19r4 35r6 59r9; 67c2 26c4 78c5 28c8;
98.76....7..5..9....4......5...8.6...3.....4...2.....1...9....3...85.7.......1.2.;318;GP;H49;2;1234;R;C; ; ;; MSLS 1 : Base 1234; r3569 c1457: 16 Links; 123r3 12r5 34r6 34r9; 68c1 6c4 79c5 58c7;
..3..67...5.1.........2.......59...4.......1...4..78...9.....2...6.....88....46.3;319;elev;L18;2;1259;R;C; ; ;; MSLS 1 : Base 1259; c2458 r1689: 16 Links; 12c2 29c4 15c5 59c8; 48r1 36r6 347r8 7r9;
........9.....1.35..3.9..6...5.3...6.7...2...1..4.......9.8..5..2.7.....4.....8..;321;col;H12;1;1247; ; ;X; ;; MSLS 1 : Base 1247; r5689 c3589: 16 Links; 14r5 27r6 14r8 127r9; 68c3 56c5 9c8 3c9; 8b6;
....5.7..4....9.3..8.2..........5.4.3...4.9.....6....15...7..9..68........1.....2;322;elev;210;2;1268;R;C; ; ;; MSLS 1 : Base 1268; c2349 r12457: 20 Links; 12c2 26c3 18c4 68c9; 349r1 57r2 379r4 57r5 34r7;
.2.4....9..7.8....6....3.1....3..5....1.6.....3...5..2.4.5..9........3.48......7.;324;elev;L21;2;1678;R;C; ; ;; MSLS 1 : Base 1678; r2359 c2479: 16 Links; 16r2 78r3 78r5 16r9; 59c2 29c4 24c7 35c9;
98.7.....6...5.9....5....6.5...4..3..7...2..1..6...4....3.9..4....1....2.....8...;327;GP;H51;2;1278;R;C; ; ;; MSLS 1 : Base 1278; r1589 c13578: 19 Links; 12r1 8r5 78r8 127r9; 34c1 49c3 36c5 356c7 59c8;
1..4..7....6.8..2..9...1....1.3......7...49....5.....8....2...6...1.73.........5.;329;elev;216;2;2568;R;C; ; ;; MSLS 1 : Base 2568; r2679 c2467: 16 Links; 5r2 26r6 58r7 268r9; 34c2 79c4 39c6 14c7;
1....6.......892.....3...4.2...9.6...3.6....7..4....5...57...6..........8....21..;330;elev;L22;1;12689;R; ; ; ;; MSLS 1 : Base 3457; r3567 c1567: 16 Links; 57r3 45r5 37r6 34r7; 69c1 12c5 18c6 89c7;
1....6....5.7.......8.3..4......3.9...4.9.8.....5....6.7......1..9...23.8...2.9..;331;elev;214;2;1567;R;C; ; ;; MSLS 1 : Base 1567; r1267 c3578: 16 Links; 57r1 16r2 17r6 56r7; 23c3 48c5 34c7 28c8;
.....6..9.5..8.1..7..2.....2.......6......84..8..3..1...1.4..3..4....5..9....7...;332;elev;209;2;2679;R;C; ; ;; MSLS 1 : Base 2679; r1349 c2578: 16 Links; 27r1 69r3 79r4 26r9; 13c2 15c5 34c7 58c8;
1....6....5.....3...9.2...4...89......82....7.3...5.......4...8.1.....6...27..9..;337;elev;220;2;1356;R;C; ; ;; MSLS 1 : Base 1356; r1268 c3459: 16 Links; 35r1 16r2 16r6 35r8; 47c3 49c4 78c5 29c9;
1..4...8..5......6..9...1......7...3..89...2.9.....4...6...5.....28...1.....3...7;338;elev;221;2;3567;R;C; ; ;; MSLS 1 : Base 3567; r2479 c13478: 20 Links; 37r2 56r4 37r7 56r9; 248c1 14c3 12c4 289c7 49c8;
1...5.7.......9.....62...4......59..3...91....4.8.....5....73....2.....8.......67;341;elev;226;2;2468;R;C; ; ;; MSLS 1 : Base 2468; r3689 c1567: 16 Links; 8r3 26r6 46r8 248r9; 79c1 137c5 3c6 15c7;
1..4......5...9.3...8.2......9..836..3....9..7.......2.6...58.....7.........1...4;342;elev;227;2;1247;R;C; ; ;; MSLS 1 : Base 1247; c1459 r2457: 16 Links; 24c1 12c4 47c5 17c9; 68r2 5r4 568r5 39r7;
1....6..9..7.8.2.....3......8....94........7.9..5....33..9.5.....2.4..9....6....1;343;elev;225;2;2478;R;C; ; ;; MSLS 1 : Base 2478; r2458 c1469: 16 Links; 4r2 27r4 248r5 78r8; 56c1 1c4 139c6 56c9;
.2...6.8.4..........93....4.8..6...7....27.1....5..9..3.......1..5...4...7..1..6.;344;elev;L25;2;3459;R;C; ; ;; MSLS 1 : Base 3459; c1347 r1459: 16 Links; 59c1 34c3 49c4 35c7; 17r1 12r4 68r5 28r9;
.2.4..........9.3.6...37....6......1..8...4..9....5.6..1.8....27...9..5......3...;345;elev;224;2;1248;R;C; ; ;; MSLS 1 : Base 1248; r1457 c1568: 16 Links; 18r1 248r4 12r5 4r7; 35c1 567c5 6c6 79c8;
.2...6.8...71.......9.....5..59.........6.....3..42........864..4..3..2.7.......1;346;elev;L24;2;1579;R;C; ; ;; MSLS 1 : Base 1579; r2349 c2568: 16 Links; 59r2 17r3 17r4 59r9; 68c2 28c5 34c6 36c8;
....5...9..71..2.......3.4.2..7..6...3...2..5..8........28......4..9....8.6...1..;347;elev;L23;2;3459;R;C; ; ;; MSLS 1 : Base 3459; r1358 c1347: 16 Links; 34r1 59r3 49r5 35r8; 167c1 1c3 26c4 78c7;
1...5......7..92...89.....4...6...5.3...1......4..7..8......8.......29.7...3...6.;348;elev;L26;2;1356;R;C; ; ;; MSLS 1 : Base 1356; r1459 c3679: 16 Links; 36r1 13r4 56r5 15r9; 28c3 48c6 47c7 29c9;
.2...6.....71...3.8.......4..5...97.6...9...8......3...4...2......97..1...93..5..;349;elev;229;2;2468;R;C; ; ;; MSLS 1 : Base 2468; r1357 c3478: 16 Links; 48r1 26r3 24r5 68r7; 13c3 57c4 17c7 59c8;
...45...9.......3......71...3...8.7...65....29.........1....8..5.4.6......92....4;352;elev;228;2;1378;R;C; ; ;; MSLS 1 : Base 1378; c2678 r1589: 16 Links; 78c2 13c6 37c7 18c8; 26r1 49r5 29r8 56r9;
...45.7...5.1....6..8..3.5..4.5....7..9....2.8.....3.....7..........29...6..4...1;356;elev;L27;2;2389;R;C; ; ;; MSLS 1 : Base 2389; r3568 c2459: 16 Links; 29r3 38r5 29r6 38r8; 17c2 6c4 167c5 45c9;
1......89.....913.........6..7.4....3....1.5..6.2.....5....89...4..7......26.....;360;tax;col-201107-M3-4;3;2467;R;C;X; ;; MSLS 1 : Base 1389; r1257 c2345: 16 Links; 3r1 8r2 89r5 13r7; 27c2 46c3 47c4 26c5; 5b1 5b2;
5.......9.2.1...7...8...3...4.7.2.......9.......46..1.3.....8...6...4.2...9.....5;362;tax;stpatrick-01;3;3589;R;C;X; ;; MSLS 1 : Base 3589; c1379 r2468: 16 Links; 89c1 35c3 59c7 38c9; 46r2 16r4 27r6 17r8;
1.......2.9.4...5...6...7...8.9.3.......7.......85..3.7.....6...5...9.8...2.....1;363;tax;jpf;3;1267;R;C;X; ;; MSLS 1 : Base 1267; c1379 r2468: 16 Links; 26c1 17c3 12c7 67c9; 38r2 45r4 49r6 34r8;
5.......9.2.1...7...8...3...4.7.2.......51......6...1...3...8...6...4.2.9.......5;364;tax;coloin-mbmplus5b;3;3589;R;C;X; ;; MSLS 1 : Base 3589; r1379 c2468: 16 Links; 38r1 59r3 59r7 38r9; 17c2 24c4 67c6 46c8;
...6..7......2...4..9..3.8.3....8.1....7..6......4...29.8....5.51...9....4.......;369;tax;tarek071223170000-;3;2467;R;C;X; ;; MSLS 1 : Base 1589; r3478 c4579: 16 Links; 15r3 59r4 1r7 8r8; 24c4 67c5 24c7 67c9; 3b8 3b9;
.....3..27...9..6....5..4.....2....5..1.6..9......43..8.5.1....16........97....8.;370;tax;tarek-ultra-0339;3;2345;R;C;X; ;; MSLS 1 : Base 1678; r25789 c4679: 20 Links; 18r2 78r5 67r7 78r8 16r9; 34c4 25c6 25c7 34c9; 9b8 9b9;
...4..7....6.8...2.....3.5......73...1..2...6...5...4.5.2......86..9....9.1.....8;371;elev;H40;3;3457;R;C;X; ;; MSLS 1 : Base 1689; r2589 c4678: 16 Links; 19r2 89r5 1r8 6r9; 37c4 45c6 45c7 37c8; 2b8 2b9;
9.......4.5...3.7...2...6.....7.1.3.....6.....1.35....4.....2...3.8...5...6.....9;372;tax;tarek071223170000- 95371;3;2469;R;C;X;MSLS 1 : Base 1578; r2468 c1379: 16 Links; 18r2 58r4 78r6 17r8; 26c1 49c3 49c7 26c9;
1.......6.2.5...4...3...7...4.89.......2.4.......15.8...7...3...5...9.2.6.......1;373;tax;coloin-05/11/01;3;1367;R;C;X; ;; MSLS 1 : Base 1367; r1379 c2468: 16 Links; 37r1 16r3 16r7 37r9; 89c2 49c4 28c6 59c8;
98.7.....7.6...9...54......8..5..6......4..3......2..1.7.9..5......3..4......1..2;375;GP;H61;3;1234;R;C;X; ;; MSLS 1 : Base 1234; r5689 c1247: 16 Links; 12r5 34r6 12r8 34r9; 56c1 69c2 68c4 78c7;
98.7.....7.6...9...54......8..4..6......5..3......2..1..96..8......3...5.....1.2.;376;GP;H63;3;1235;R;C;X; ;; MSLS 1 : Base 1235; r5689 c1347: 16 Links; 12r5 35r6 12r8 35r9; 46c1 78c3 89c4 47c7;
98.7.....7.6...8...54.......7.6..9......3..4......2..1..89..5......1..3......4..2;377;GP;H60;3;1234;R;C;X; ;; MSLS 1 : Base 1234; c5689 r1247: 16 Links; 24c5 13c6 12c8 34c9; 56r1 59r2 58r4 67r7;
9876.....65....9............4..3..9...69..8.......2..1..58..7......4...2.....1.3.;378;GP;H66;3;1234;R;C;X; ;; MSLS 1 : Base 1234; c5689 r1257: 16 Links; 12c5 34c6 124c8 34c9; 5r1 78r2 57r5 69r7;
9876.....65....8...........5...4..3..2......1..97..5....58..6......1...2.....3.4.;379;GP;H62;3;1234;R;C;X; ;; MSLS 1 : Base 1234; c5689 r1267: 16 Links; 23c5 124c6 12c8 34c9; 5r1 79r2 68r6 79r7;
987......65.........49..6..7..5..8......4..3......2..1.9.6..5......1..4......3..2;382;GP;H65;3;1234;R;C;X; ;; MSLS 1 : Base 1234; r5689 c1247: 16 Links; 12r5 34r6 23r8 14r9; 58c1 67c2 78c4 79c7;
1.......6.5.9...8...3...4.....2.9.7.....67....9.5.....6.....3...8...5.2...4.....1;383;col;H14;3;1346;R;C;X; ;; MSLS 1 : Base 1346; r1379 c2468: 16 Links; 34r1 16r3 14r7 36r9; 27c2 78c4 28c6 59c8;
1.......2.3.4...5...6...7...9.54.......3.9.......86.4...2...1...5...8.3.7.......6;384;tax;col-201107-M2-17;3;1267;R;C;X; ;; MSLS 1 : Base 1267; r1379 c24568: 20 Links; 67r1 12r3 67r7 12r9; 48c2 89c4 359c5 345c6 89c8;
98.7.....6.7...8...54.......7.8..5......3..6......2..1..95..4......6...3.....1.2.;385;GP;H56;3;1236;R;C;X; ;; MSLS 1 : Base 1236; r5689 c2347: 16 Links; 12r5 36r6 12r8 36r9; 49c2 58c3 49c4 79c7;
987......65.9..7............4..6..3...85..6.......2..1..56..9......1..2......3..4;386;GP;H69;3;1234;R;C;X; ;; MSLS 1 : Base 1234; c5689 r1257: 16 Links; 234c5 14c6 14c8 23c9; 56r1 8r2 79r5 78r7;
987......65.........47..6..7..9..5......4..3......2..1.6.5..8......3..4......1..2;387;GP;H68;3;1234;R;C;X; ;; MSLS 1 : Base 1234; r5689 c1247: 16 Links; 12r5 34r6 12r8 34r9; 58c1 79c2 68c4 79c7;
1.......2.3.4...5...6...7...8.9.3.......7.......85..4.7.....6...4...9.3...2.....1;391;tax;jpf-04/05;3;1267;R;C;X; ;; MSLS 1 : Base 1267; c1379 r2468: 16 Links; 26c1 17c3 12c7 67c9; 89r2 45r4 39r6 58r8;
98.7..6..5.7.......46......4..5..7......8..3......2..1..54..9......3..8......1..2;392;GP;H67;3;1238;R;C;X; ;; MSLS 1 : Base 1238; r5689 c1347: 16 Links; 12r5 38r6 12r8 38r9; 67c1 49c3 69c4 45c7;
..345.....5...91..7..2.....2..5....3.9....56..6...8.1......589..............7...4;394;elev;L31;2;2347;R;C; ; ;; MSLS 1 : Base 2347; r1349 c2678: 16 Links; 27r1 34r3 47r4 23r9; 18c2 16c6 69c7 58c8;
...4....9..7.8.2.......3.5......5..43..9.......8.2.1..76....8..81..6............2;395;tarekdb;colx180;1;3459; ; ;X; ;; MSLS 1 : Base 1267; r2678 c4689: 16 Links; 16r2 67r6 1r7 7r8; 35c4 49c6 349c8 35c9; 2b8;
5.......9.2.1...7...8...3...4.62........5.......4.7.1.3.....8...6...4.2...9.....5;397;tax;stpatrick-03;3;3589;R;C;X; ;; MSLS 1 : Base 1467; c2468 r1379: 16 Links; 17c2 7c4 6c6 46c8; 38r1 59r3 59r7 38r9; 2b2 2b8;
...4....9..7.8.2..6.....5..2.....67...5.2.....1...3........1..4.3.9.......8.6..5.;398;elev;L29;2;1349;R;C; ; ;; MSLS 1 : Base 1349; r1678 c13578: 20 Links; 13r1 49r6 39r7 14r8; 578c1 26c3 57c5 78c7 268c8;
.2......9..71.....6....35.......5.4.3....48.....7....1...9.......1.6...28...4..6.;404;elev;239;2;1279;R;C; ; ;; MSLS 1 : Base 1279; c2349 r3459: 16 Links; 179c2 29c3 2c4 7c9; 48r3 368r4 56r5 35r9;
....5...9...7......8...34....15.....3....4.2.64....8...6.........7.9...1.....236.;405;elev;L28;2;1579;R;C; ; ;; MSLS 1 : Base 1579; c3459 r3569: 16 Links; 59c3 19c4 17c5 57c9; 26r3 68r5 23r6 48r9;
5.......9.2.1...7...8...3...4.2.........57......4.6.1.3.....8...6...4.2...9.....5;406;tax;stpatrick-13;3;3589;R;C;X; ;; MSLS 1 : Base 1467; r24568 c1379: 20 Links; 46r2 67r4 146r5 7r6 17r8; 89c1 35c3 59c7 38c9; 2b4 2b6;
.2.4..7.......9.6....73.1....5..8.3..3.24....9..........6....5..7..1.3..8........;408;elev;244;2;5689;R;C; ; ;; MSLS 1 : Base 5689; c1368 r1358: 16 Links; 56c1 89c3 56c6 89c8; 13r1 24r3 17r5 24r8;
1........4...8.1.2..9....5....6...7......2..4....413..3...2...8.7.9.......5....6.;409;elev;255;2;5679;R;C; ; ;; MSLS 1 : Base 5679; c2348 r2567: 16 Links; 569c2 67c3 57c4 9c8; 3r2 138r5 28r6 14r7;
..34..7...5...9.......3..6.........8..4.7..2.91...........6.2....23...4.8..2.5..1;410;elev;238;2;1589;R;C; ; ;; MSLS 1 : Base 1589; r2469 c34578: 19 Links; 18r2 159r4 58r6 9r9; 67c3 67c4 24c5 346c7 37c8;
6.......2.9.4...5...1...7...5.8.........15......9.3.4.7.....6...3...9.8...2.....1;411;tax;coloin-04-10;3;1267;R;C;X; ;; MSLS 1 : Base 1267; r1379 c2468: 16 Links; 17r1 26r3 12r7 67r9; 48c2 35c4 48c6 39c8;
1...5...9..7........83...4..4.8.7.......1...2.6...3.7.......2...8.6...3.9.....5..;414;elev;L32;2;1259;R;C; ; ;; MSLS 1 : Base 1259; c1579 r3468: 16 Links; 25c1 29c5 19c7 15c9; 67r3 36r4 48r6 47r8;
1......8..567..........3..6..7..5.......2.9...3.6....4....9..1..4.5....78.....2..;415;elev;246;2;1289;R;C; ; ;; MSLS 1 : Base 1289; r1579 c23469: 20 Links; 29r1 18r5 28r7 19r9; 67c2 345c3 34c4 467c6 35c9;
1......8...7..92...6..3.........4..5..9...4.7...92.....3.6.......4..25..8...1....;416;elev;245;3;1368;R;C;X; ;; MSLS 1 : Base 1368; c1245 r2458: 16 Links; 36c1 18c2 138c4 68c5; 45r2 7r4 5r5 79r8; 2b4;
1.......9..67...2..8....5......6..7....3.8.....427.....9....8..5.......1..2.4..3.;418;tax;rw-04-06;3;1589;R;C;X; ;; MSLS 1 : Base 1589; r1378 c3458: 16 Links; 58r1 19r3 15r7 89r8; 37c3 46c4 23c5 46c8;
1....67...5.........927......87...4.3....1...57....3.....9....8.6...75......4..2.;419;elev;248;2;2489;R;C; ; ;; MSLS 1 : Base 2489; r3479 c1267: 16 Links; 48r3 29r4 24r7 89r9; 67c1 13c2 35c6 16c7;
1....5....6.2...4...3...7...4.69........8..6.......2.4..7...1...8.9...2.5.......3;424;col;H16;3;1357;R;C;X; ;; MSLS 1 : Base 1357; c1379 r2458: 16 Links; 37c1 15c3 35c7 157c9; 89r2 8r4 9r5 46r8; 2b4;
..3...7.......9.2..8.1....4...8.......7..52......6...13.2....5.5....39...6..4....;430;elev;156;2;1468;R;C; ; ;; MSLS 1 : Base 1468; r3469 c13678: 20 Links; 6r3 146r4 48r6 18r9; 279c1 59c3 27c6 35c7 379c8;
.2......9...1..2..6...7..4..3....1..7....8.....5.4..7...4..7.5....9....38...6....;434;elev;173;2;1239;R;C; ; ;; MSLS 1 : Base 1239; r1248 c13568: 20 Links; 13r1 39r2 29r4 12r8; 45c1 678c3 58c5 456c6 68c8;
.2...6...4.71.......97...4..3....8..5.1....9.........2.....89......7.6.39..5...7.;436;elev;178;2;2368;R;C; ; ;; MSLS 1 : Base 2368; c2679 r2359: 16 Links; 68c2 23c6 23c7 68c9; 59r2 15r3 47r5 14r9;
..3.....9.5.1..2......7..4.2..5..8......9...3.8.2.1.....4....7.5........81....6..;441;elev;L33;4;3479;R;C; ; ;; MSLS 1 : Base 3479; r1357 c1247: 16 Links; 47r1 39r3 47r5 39r7; 16c1 26c2 68c4 15c7;
..34.6....5..8......9..2.4.....7.1..........2...2.3.9...46...2.8.......5.1....4.7;443;elev;169;2;1578;R;C; ; ;; MSLS 1 : Base 1578; r2489 c3468: 16 Links; 17r2 58r4 17r8 58r9; 26c3 39c4 49c6 36c8;
...45..8......92.....7...452.....3....8........586..7.3..........6.7...4.9...1...;447;elev;153;2;1239;R;C; ; ;; MSLS 1 : Base 1239; c1267 r1368: 16 Links; 19c1 123c2 23c6 19c7; 67r1 68r3 4r6 58r8;
..34....9.5.......7....2.6.2...7.....95...4....85..3.....8..9.3.....1.......6..1.;448;elev;167;2;1267;R;C; ; ;; MSLS 1 : Base 1267; c1568 r1567: 16 Links; 16c1 12c5 67c6 27c8; 58r1 38r5 49r6 45r7;
.....6.....71....68...3......65...7......2.61.9....4..3...9.....4....8....26...5.;460;elev;138;4;1257;R;C; ; ;; MSLS 1 : Base 1257; r2459 c1257: 16 Links; 25r2 12r4 57r5 17r9; 49c1 38c2 48c5 39c7;
.....1..9.......65..9.5..3...8.3...6.7.2.....1....48....3.8..5..2.......4..7.....;470;col;H18;3;1247;R;C;X; ;; MSLS 1 : Base 1247; r5689 c3589: 16 Links; 14r5 27r6 147r8 12r9; 56c3 69c5 9c8 3c9; 8b9;
.....1..9.......35..9.5..6...8.3...6.7.2.....1....48....3.8..5..2.......4..7.....;471;col;H20;3;1247;R;C;X; ;; MSLS 1 : Base 1247; r5689 c3589: 16 Links; 14r5 27r6 147r8 12r9; 56c3 69c5 9c8 3c9; 8b9;
.....1..9.......65..9.5..3...8.9...6.7.2.....1....48....3.8..5..2.......4..7.....;472;col;H19;3;1247;R;C;X; ;; MSLS 1 : Base 1247; r5689 c3589: 16 Links; 14r5 27r6 147r8 12r9; 56c3 36c5 9c8 3c9; 8b9;
.2.4.......6......7....35....8.....63...91.7.9...........2....8....1.35.....75.9.;477;elev;L34;2;2468;R;C; ; ;; MSLS 1 : Base 2468; c2349 r3589: 16 Links; 468c2 24c3 68c4 24c9; 19r3 5r5 79r8 13r9;
1....67...5..8......9.....4....9....7....3.2...8...3..3..1...7......261.....4...5;492;elev;L36;2;4589;R;C; ; ;; MSLS 1 : Base 4589; c2359 r1578: 16 Links; 489c2 45c3 5c5 89c9; 23r1 16r5 26r7 37r8;
1.......9.5....23...8.........8....1....24.5.....6.32..3........6...354.9..7.....;494;elev;182;2;1789;R;C; ; ;; MSLS 1 : Base 1789; c1349 r2568: 16 Links; 78c1 179c3 19c4 78c9; 46r2 36r5 45r6 2r8;
1....6....5.7.......9.2.4........9..6....1.....4.3...8.4..9.8..5......7...2...3.4;495;elev;L37;2;1567;R;C; ; ;; MSLS 1 : Base 1567; r1258 c3579: 16 Links; 57r1 16r2 57r5 16r8; 38c3 48c5 2c7 239c9;
98.7.....76....5....4.6....3..9..7....8.2..4.........1.5.6..3......4..7......1..2;498;GP;H74;2;124;R;C; ; ;; MSLS 1 : Base 124; r35689 c1247: 20 Links; 12r3 1r5 24r6 12r8 4r9; 568c1 379c2 358c4 689c7;
1.3....8..5......6..9.2.1....8..4....7.5.....9...1..2......73......3.89....6....4;499;elev;202;2;4567;R;C; ; ;; MSLS 1 : Base 4567; c2469 r1368: 16 Links; 46c2 47c4 56c6 57c9; 29r1 38r3 38r6 12r8;
1.3.......5...9.....8.3.4...6.5..........7.9.8...4...23.2....61....1...4...6...7.;500;elev;203;2;5679;R;C; ; ;; MSLS 1 : Base 5679; r2459 c1359: 16 Links; 67r2 79r4 56r5 59r9; 24c1 14c3 28c5 38c9;

For the first 6 puzzles I put my solver in survey mode to show the full range of MSLS patterns that I can currently see. For the remainder I've just shown the first (and smallest) pattern that was used in the solution of the puzzle.

I think these results show conclusively that MSLS 16 or 20 cell pattern(s) will provide an equivalent solution wherever 4 or 5 digit Multifish(es) can be seen. It's faster, easier to code than Multifish and there is basically only one pattern to consider. The majority of cases only require a 16 cell pattern - a 20 cell pattern is required when the smallest Multifish pattern contains at least 19 truths. 24-25 cell patterns show up in the surveys but I haven't needed one to solve a puzzle yet. There are a few 19 and 15 link patterns (one cell in the 16 or 20 cell pattern is a given). Overall this method appears to be vastly superior to the Multifish approach - quite frankly I''m stunned :shock:

The one puzzle I didn't see an MSLS pattern in is # 498, but the Multifish pattern in that puzzle is 3 digit and I can't see that either - something to work on this afternoon.

Leren

<Edit> - Based on information provided by Champagne - I've now found an MSLS solution for puzzle 498 - I''m now batting 208/208 - well done Champers!

Leren
Last edited by Leren on Thu Jun 27, 2013 12:35 pm, edited 3 times in total.
Leren
 
Posts: 5116
Joined: 03 June 2012

Re: Exotic patterns a resume

Postby JC Van Hay » Thu Jun 27, 2013 6:28 am

Congratulations, Leren. You did an incredible good job !

I will also have a look at #498.
If you have the time, would you mind also looking at #3218, analysed by Danny some time ago, where I got a Rank 0 of 22 Cells, but didn't look for any other one.

Best Regards, JC.
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: Exotic patterns a resume

Postby JC Van Hay » Thu Jun 27, 2013 7:16 am

Hi David,

Some not so "trivial" comments.

Concerning basics, I only generalized Steve Kurzhals' basics, as they can be found in his blog on the au site, to include all Rank 0 configurations.
The sk-basics, as I would be tempted to call them, are very important because all the informations collected while doing them combined with an analysis of the distribution of the givens let the puzzle himself show how it can be solved.

I particularly appreciate your detailed informations on the handling of the givens distribution to find multifishes (I too often had to struggle with your use of "promising" pairs, digits, ... ;)). They are of great help to accelerate the search for Rank 0 of Cells :) !
David wrote:You should find that 5x5 and 4x4 grids come in complementary pairs (like simple fish) that will make the same eliminations, when the 4x4 one is easier to notate.

For 4x5 the compliment is another 5x4, but one may use fewer digits than the other.
The idea of "complementary pairs" is very exciting. I did a rapid check on 2 puzzles. Here they are ! You will see a. how their sizes are related and b. they don't give the same "direct" eliminations but well after basics !

First example : 5;elev

12.3.....4.5...6...7.....2.6..1..3....453.........8..9...45.1.........8......2..7;11.90;11.90;2.60;elev;1;5;22
Basics : LC(6C2,8R7) :=> -6r789c3,-8r9c123
Code: Select all
+-------------------------+----------------------+-----------------------+
| 1       2        689    | 3     46789   456-79 | 45789  45-79   45-8   |
| 4       (389)    5      | 2789  2789-1  (179)  | 6      (1379)  (138)  |
| 389     7        3689   | 689   14689   1456-9 | 4589   2       1345-8 |
+-------------------------+----------------------+-----------------------+
| 6       (589)    2789   | 1     279-4   (479)  | 3      (457)   (2458) |
| 2789    (189)    4      | 5     3       (679)  | 278    (167)   (1268) |
| 2357    135      1237   | 267   2467    8      | 2457   1456-7  9      |
+-------------------------+----------------------+-----------------------+
| 2789-3  (3689)   2789-3 | 4     5       (3679) | 1      (369)   (236)  |
| 23579   13456-9  12379  | 679   1679    136-79 | 2459   8       3456-2 |
| 359     13456-9  139    | 689   1689    2      | 459    3456-9  7      |
+-------------------------+----------------------+-----------------------+
All Cells Loop[4x4=16] : {2457N2 2457N6 2457N8 2457N9}
-{1r25 3r27 4r4 5r4 6r57 2c9 7c68 8c29 9c268}
18 Eliminations --> r138c6<>9, r1c68<>7, r7c13<>3, r9c28<>9, r13c9<>8, r1c8<>9, r2c5<>1, r4c5<>4, r6c8<>7, r8c9<>2, r8c6<>7, r8c2<>9

Basics : NP(45)r1c89 :=> -45r1c567.r3c79; 9 Singles; LC(6R5) :=> -6r6c8; FSF(9C268) :=> -9r5c1; LC(9C1) :=> -9r789c23

Complementary Rank 0 Logic of cells
Code: Select all
+---------------------------+------------------------+------------------------+
| 1        2        89-6    | 3      789-46   45679  | 789-45  4579    458    |
| 4        389      5       | 2789   2789-1   179    | 6       1379    138    |
| (389)    7        (3689)  | (689)  (14689)  1456-9 | (4589)  2       1345-8 |
+---------------------------+------------------------+------------------------+
| 6        589      2789    | 1      279-4    479    | 3       457     2458   |
| 2789     189      4       | 5      3        679    | 278     167     1268   |
| (2357)   135      (1237)  | (267)  (2467)   8      | (2457)  1456-7  9      |
+---------------------------+------------------------+------------------------+
| 2789-3   3689     2789-3  | 4      5        3679   | 1       369     236    |
| (23579)  13456-9  (12379) | (679)  (1679)   136-79 | (2459)  8       3456-2 |
| (359)    13456-9  (139)   | (689)  (1689)   2      | (459)   3456-9  7      |
+---------------------------+------------------------+------------------------+
All Cells Loop[4x5=20] : {3N13457 6N13457 8N13457 9N13457}-{2r68 7r68 8r3 9r389 1c35 3c13 4c57 5c17 6c345 8b8}
18 Eliminations --> r1c57<>4, r1c35<>6, r7c13<>3, r8c26<>9, r9c28<>9, r1c7<>5, r2c5<>1, r3c9<>8, r3c6<>9, r4c5<>4, r6c8<>7, r8c9<>2, r8c6<>7

Basics : 9 Singles; LC(6R5) :=> -6r6c8; HP(45)r1c89; FSF(9C268) :=> -9r5c1; LC(9C1) :=> -9r789c23

The puzzle is then reduced to the same easy SE9.0 puzzle
Code: Select all
+-------------------+----------------+-----------------+
| 1     2      89   | 3     789   6  | 789   45    45  |
| 4     89     5    | 2789  2789  1  | 6     379   38  |
| 3     7      6    | 89    4     5  | 89    2     1   |
+-------------------+----------------+-----------------+
| 6     589    2789 | 1     279   4  | 3     57    258 |
| 278   189    4    | 5     3     79 | 278   167   268 |
| 257   135    1237 | 267   267   8  | 2457  145   9   |
+-------------------+----------------+-----------------+
| 2789  368    278  | 4     5     79 | 1     369   236 |
| 2579  1456   127  | 679   1679  3  | 2459  8     456 |
| 59    13456  13   | 689   1689  2  | 459   3456  7   |
+-------------------+----------------+-----------------+
Solving the Rank 0 R2457xC2689 ...
Code: Select all
#1. r5c6=7->C(S) :=> r5c6=9,r7c6=7; HP(27)r26c4 :=> r6c5=6; FXW(7C48) :=>-7r6c7
#2. r4c8=5->7 Singles
            NP(59)r9c17 :=> -9r9c45
            Chain[4] : (3=6)r9c8-(6=8)r9c4-8r3c4=8r3c7-(8=3)r2c9 :=> r2c9=3
            LC(9B8) :=> -9r8c7; NP(89)r24c2 :=> -8r7c2; XYW(25-6)r8c27.r7c9 :=> r7c2=3
            C(S) :=> r4c8=7; ste
where C(S)=Contradiction(Singles)

Second example : 21;elev

1.......9.5....2....87...4.2...3......48.5....8.6...7...6..4.5.........1....9.3..;11.80;11.80;7.90;elev;11;21;21
Basics : JF(9C3468) : r4c4=r2c4-r2c3.r23c6=FSF(C368) :=> -9r4c7
Code: Select all
+------------------------+----------------------+------------------------+
| 1        23467   237   | 2345  4568-2  2368   | 5678    368     9      |
| 467-39   5       379   | 1349  468-1   13689  | 2       1368    678-3  |
| (369)    239-6   8     | 7     (1256)  1239-6 | (156)   4       (356)  |
+------------------------+----------------------+------------------------+
| 2        1679    1579  | 149   3       179    | 4568-1  1689    4568   |
| (3679)   139-67  4     | 8     (127)   5      | (169)   1239-6  (236)  |
| (359)    8       139-5 | 6     (124)   129    | (1459)  7       (2345) |
+------------------------+----------------------+------------------------+
| (3789)   1239-7  6     | 123   (1278)  4      | (789)   5       (278)  |
| 4578-39  23479   23579 | 235   5678-2  23678  | 4678-9  2689    1      |
| 4578     1247    1257  | 125   9       12678  | 3       268     4678-2 |
+------------------------+----------------------+------------------------+
All Cells Loop[4x4=16] : {3567N1 3567N5 3567N7 3567N9}
-{4r6 5r36 6r35 7r57 8r7 1c57 2c59 3c19 9c17}
18 Eliminations --> r2c19<>3, r3c26<>6, r5c28<>6, r8c17<>9, r57c2<>7, r18c5<>2, r2c5<>1, r2c1<>9, r4c7<>1, r6c3<>5, r8c1<>3, r9c9<>2

Complementary Rank 0 Logic of cells
Code: Select all
+---------------------------+-------------------------+------------------------+
| 1        (23467)  (237)   | (2345)  4568-2  (2368)  | 5678    (368)   9      |
| 467-39   5        (379)   | (1349)  468-1   (13689) | 2       (1368)  678-3  |
| 369      239-6    8       | 7       1256    1239-6  | 156     4       356    |
+---------------------------+-------------------------+------------------------+
| 2        (1679)   (1579)  | (149)   3       (179)   | 4568-1  (1689)  4568   |
| 3679     139-67   4       | 8       127     5       | 169     1239-6  236    |
| 359      8        139-5   | 6       124     129     | 1459    7       2345   |
+---------------------------+-------------------------+------------------------+
| 3789     1239-7   6       | 123     1278    4       | 789     5       278    |
| 4578-39  (23479)  (23579) | (235)   5678-2  (23678) | 4678-9  (2689)  1      |
| 4578     (1247)   (1257)  | (125)   9       (12678) | 3       (268)   4678-2 |
+---------------------------+-------------------------+------------------------+
All Cells Loop[5x5-1=24] : {1489N2 12489N3 12489N4 12489N6 12489N8}
-{1r249 2r189 3r128 9r248 4c24 5c34 6c268 7c236 8c68}
18 Eliminations --> r2c19<>3, r3c26<>6, r5c28<>6, r8c17<>9, r57c2<>7, r18c5<>2, r2c5<>1, r2c1<>9, r4c7<>1, r6c3<>5, r8c1<>3, r9c9<>2

Here, the direct eliminations are the same and the puzzle remains among the hardest.

Best Regards, JC.
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: Exotic patterns a resume

Postby JC Van Hay » Thu Jun 27, 2013 7:50 am

Puzzle #498

98.7.....76....5....4.6....3..9..7....8.2..4.........1.5.6..3......4..7......1..2;498;GP;H74;2;124;R;C; ; ;;
Code: Select all
+------------------------+---------------------------+--------------------------+
| 9        8      35(12) | 7         35(1)   35(24)  | -6(124)  36(12)   36(4)  |
| 7        6      3(12)  | -38(124)  389(1)  389(24) | 5        389(12)  389(4) |
| 125      123    4      | 12358     6       3589-2  | 1289     389-12   7      |
+------------------------+---------------------------+--------------------------+
| 3        (124)  56(12) | 9         58(1)   568(4)  | 7        568(2)   568    |
| 156      179    8      | 135       2       3567    | 69       4        3569   |
| 2456     2479   5679-2 | 3458      3578    35678-4 | 2689     35689-2  1      |
+------------------------+---------------------------+--------------------------+
| -8(124)  5      79(12) | 6         789     789(2)  | 3        89(1)    89(4)  |
| 1268     1239   369-12 | 2358      4       3589-2  | 1689     7        5689   |
| 468      3479   3679   | 358       35789   1       | 4689     5689     2      |
+------------------------+---------------------------+--------------------------+
All Rows Loop[12] : {1R1247 2R1247 4R1247}-{1c358 2c368 4c69 7n1 4n2 2n4 1n7}
13 Eliminations --> r3c68<>2, r6c38<>2, r8c36<>2, r2c4<>38, r1c7<>6, r3c8<>1, r6c6<>4, r7c1<>8, r8c3<>1

Code: Select all
+---------------------+-------------------------+------------------------+
| 9      8     (1235) | 7       (135)   (2345)  | 124-6  (1236)   (346)  |
| 7      6     (123)  | 124-38  (1389)  (23489) | 5      (12389)  (3489) |
| 125    123   4      | 12358   6       3589-2  | 1289   389-12   7      |
+---------------------+-------------------------+------------------------+
| 3      124   (1256) | 9       (158)   (4568)  | 7      (2568)   (568)  |
| 156    179   8      | 135     2       3567    | 69     4        3569   |
| 2456   2479  5679-2 | 3458    3578    35678-4 | 2689   35689-2  1      |
+---------------------+-------------------------+------------------------+
| 124-8  5     (1279) | 6       (789)   (2789)  | 3      (189)    (489)  |
| 1268   1239  369-12 | 2358    4       3589-2  | 1689   7        5689   |
| 468    3479  3679   | 358     35789   1       | 4689   5689     2      |
+---------------------+-------------------------+------------------------+
All Cells Loop[20] : {1N35689 2N35689 4N35689 7N35689}-{3r12 5r14 6r4 7r7 8r247 9r27 1c358 2c368 4c69 6b3}
13 Eliminations --> r3c68<>2, r6c38<>2, r8c36<>2, r2c4<>38, r1c7<>6, r3c8<>1, r6c6<>4, r7c1<>8, r8c3<>1

Complementary All Cells Loop :
Code: Select all
+------------------------+-------------------------+-----------------------+
| 9       8       1235   | 7        135    2345    | 124-6   1236     346  |
| 7       6       123    | 124-38   1389   23489   | 5       12389    3489 |
| (125)   (123)   4      | (12358)  6      3589-2  | (1289)  389-12   7    |
+------------------------+-------------------------+-----------------------+
| 3       124     1256   | 9        158    4568    | 7       2568     568  |
| (156)   (179)   8      | (135)    2      3567    | (69)    4        3569 |
| (2456)  (2479)  5679-2 | (3458)   3578   35678-4 | (2689)  35689-2  1    |
+------------------------+-------------------------+-----------------------+
| 124-8   5       1279   | 6        789    2789    | 3       189      489  |
| (1268)  (1239)  369-12 | (2358)   4      3589-2  | (1689)  7        5689 |
| (468)   (3479)  3679   | (358)    35789  1       | (4689)  5689     2    |
+------------------------+-------------------------+-----------------------+
All Cells Loop[20] : {35689N1 35689N2 35689N4 35689N7}-{1r358 2r368 4r69 56c1 379c2 358c4 689c7 8b7}
13 Eliminations --> r3c68<>2, r6c38<>2, r8c36<>2, r2c4<>38, r1c7<>6, r3c8<>1, r6c6<>4, r7c1<>8, r8c3<>1
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: Exotic patterns a resume

Postby David P Bird » Thu Jun 27, 2013 11:38 am

Yes! It looks as if the case for using MSLS is pretty well demonstrated now.

Puzzle #498 is tricky as the 4 digit set that stands out is (1247) because of the SK loop potential, but that only gives a rank 2 pattern.

This is the sort of co-residency grid I was considering where the number of times pairs of givens occur in the same row or column are counted.

`| 1 2 3 4 5 6 7 8 9
1| - 2 0 0 0 0 0 0 0
2| 2 - 0 2 0 1 0 1 0
3| 0 0 - 0 2 1 3 0 2
4| 0 2 0 - 0 0 1 2 0
5| 0 0 2 0 - 3 2 1 0
6| 0 1 1 0 3 - 2 1 1
7| 0 0 3 1 2 2 - 1 3
8| 0 1 0 2 1 1 1 - 1
9| 0 0 2 0 1 1 3 1 –

This shows that (124) looks the most promising subset. But even then there are more row/column options to explore.

Having a further grid where pairs in boxes are counted would also be possible. Together these grids might also give some insight into what makes the more difficult puzzles tougher. I'm not sure whether adding solved cells would make things more or less obvious.

David
David P Bird
2010 Supporter
 
Posts: 1043
Joined: 16 September 2008
Location: Middle England

Re: Exotic patterns a resume

Postby Leren » Thu Jun 27, 2013 12:48 pm

MSLS move for puzzle 498 based on information provided to me by Champagne.

Code: Select all
*--------------------------------------------------------------------------------*
| 9       8       1235     | 7       135     2345     | 124-6   1236    346      |
| 7       6       123      | 124-38  1389    23489    | 5       12389   3489     |
|*125    *123     4        |*12358   6       3589-2   |*1289    389-12  7        |
|--------------------------+--------------------------+--------------------------|
| 3       124     1256     | 9       158     4568     | 7       2568    568      |
|*156    *179     8        |*135     2       3567     |*69      4       3569     |
|*2456   *2479    5679-2   |*3458    3578    35678-4  |*2689    35689-2 1        |
|--------------------------+--------------------------+--------------------------|
| 124-8   5       1279     | 6       789     2789     | 3       189     489      |
|*1268   *1239    369-12   |*2358    4       3589-2   |*1689    7       5689     |
|*468    *3479    3679     |*358     35789   1        |*4689    5689    2        |
*--------------------------------------------------------------------------------*

MSLS 1 : Base 124; r35689 c1247: 20 Links; 12r3 1r5 24r6 12r8 4r9; 568c1 379c2 358c4 689c7;

20 Grid cells and 13 eliminations shown on the PM.

There was also MSLS 2 : Base 124; c35689 r1247: 20 Links; 12c3 1c5 24c6 12c8 4c9; 356r1 389r2 568r4 789r7;

Again its late at night so I hope I haven't made any late night blunders.

Leren
Leren
 
Posts: 5116
Joined: 03 June 2012

Re: Exotic patterns a resume

Postby champagne » Thu Jun 27, 2013 2:42 pm

JC Van Hay wrote:Hi David,
Try the following, if you want to, in the last Champagne's list : do find if it is possible to extract 16 unsolved cells containing a maximum of 4 candidates at the intersection of 4 rows and 4 columns and check if it gives rise to a Rank 0 Logic! This is a topological problem relatively easy to solve and a' little' more general than your MSLS approach.
Best Regards, JC.


a question to JC Van Hay

looking at examples given by leren I see some crossing with 5 candidates in a 5x5 matrix.

what is exactly the rule for the crossing if any.
If I consider Leren's lay out I got through pm, I see no constraint on the crossing (except that they must be there with a limit of one given, but this seems more a practical limit to speed up the process).
champagne
2017 Supporter
 
Posts: 7454
Joined: 02 August 2007
Location: France Brittany

Re: Exotic patterns a resume

Postby ronk » Thu Jun 27, 2013 3:47 pm

Leren wrote:MSLS move for puzzle 498 based on information provided to me by Champagne.

Code: Select all
*--------------------------------------------------------------------------------*
| 9       8       1235     | 7       135     2345     | 124-6   1236    346      |
| 7       6       123      | 124-38  1389    23489    | 5       12389   3489     |
|*125    *123     4        |*12358   6       3589-2   |*1289    389-12  7        |
|--------------------------+--------------------------+--------------------------|
| 3       124     1256     | 9       158     4568     | 7       2568    568      |
|*156    *179     8        |*135     2       3567     |*69      4       3569     |
|*2456   *2479    5679-2   |*3458    3578    35678-4  |*2689    35689-2 1        |
|--------------------------+--------------------------+--------------------------|
| 124-8   5       1279     | 6       789     2789     | 3       189     489      |
|*1268   *1239    369-12   |*2358    4       3589-2   |*1689    7       5689     |
|*468    *3479    3679     |*358     35789   1        |*4689    5689    2        |
*--------------------------------------------------------------------------------*

MSLS 1 : Base 124; r35689 c1247: 20 Links; 12r3 1r5 24r6 12r8 4r9; 568c1 379c2 358c4 689c7;

20 Grid cells and 13 eliminations shown on the PM.

Using only digits <124> there exists a 0-rank row/col logic set requiring only 12 truths for the same exclusions. There may even be a smaller set of truths.

Code: Select all
+-------------------------+---------------------------+-------------------------+
| 9        8       235(1) | 7         35(1)   2345    | -6(124)  236(1)   346   |
| 7        6       23(1)  | -38(124)  389(1)  23489   | 5        2389(1)  3489  |
| 15(2)    13(2)   4      | 1358(2)   6       3589-2  | 189(2)   389-12   7     |
+-------------------------+---------------------------+-------------------------+
| 3        (124)   256(1) | 9         58(1)   568(4)  | 7        2568     568   |
| 156      179     8      | 135       2       3567    | 69       4        3569  |
| 456(2)   479(2)  5679-2 | 358(4)    3578    35678-4 | 689(2)   35689-2  1     |
+-------------------------+---------------------------+-------------------------+
| -8(124)  5       279(1) | 6         789     2789    | 3        89(1)    89(4) |
| 168(2)   139(2)  369-12 | 358(2)    4       3589-2  | 1689     7        5689  |
| 468      3479    3679   | 358       35789   1       | 689(4)   5689     2     |
+-------------------------+---------------------------+-------------------------+

12 Truths = {1R1247 4R47 2C1247 4C47}
17 Links = {2r123468 1c358 7n1 4n2 26n4 1n7 2b7 4b59}
13 Eliminations --> r3c68<>2, r6c38<>2, r8c36<>2, r2c4<>38, r1c7<>6, r3c8<>1, r6c6<>4, r7c1<>8, r8c3<>1
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Re: Exotic patterns a resume

Postby champagne » Thu Jun 27, 2013 4:02 pm

ronk wrote:Using only digits <124> there exists a 0-rank row/col logic set requiring only 12 truths for the same exclusions. There may even be a smaller set of truths.


this is what found my solver (12 truths 12 links with either a row base or a column base), but I think the goal of leren was to see the corresponding cells base logic.
champagne
2017 Supporter
 
Posts: 7454
Joined: 02 August 2007
Location: France Brittany

Re: Exotic patterns a resume

Postby ronk » Thu Jun 27, 2013 8:36 pm

champagne wrote:
ronk wrote:Using only digits <124> there exists a 0-rank row/col logic set requiring only 12 truths for the same exclusions. There may even be a smaller set of truths.
this is what found my solver (12 truths 12 links with either a row base or a column base), but I think the goal of leren was to see the corresponding cells base logic.

OK, as a courtesy to Leren then, I'll wait a couple of days before posting any all cells logic sets.
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Re: Exotic patterns a resume

Postby Leren » Fri Jun 28, 2013 1:54 am

A question to Champagne, do you know of any other puzzles other than # 498 that have 3 digit, but no 4 or 5 digit Multifish ?

Your 04c multifish_rank 0.txt file indicated that # 983 and 984 had this property but they also have 4 digit Multifish.

For the academically minded in # 984 I found the following 20 MSLS patterns - the current record holder.

Hidden Text: Show
MSLS 1 : Base 389; r24568 c1379: 20 Links; 89r2 8r5 389r6 39r8 ; 67c1 12c3 12c7 67c9 ; 4b4 5b4 4b6 5b6 ;
MSLS 2 : Base 389; r24568 c13679: 24 Links; 89r2 8r5 389r6 39r8 ; 67c1 12c3 1267c6 12c7 67c9 ; 4b4 5b4 4b6 5b6 ;
MSLS 3 : Base 489; c24568 r1379: 20 Links; 48c2 9c4 489c6 89c8 ; 67r1 12r3 12r7 67r9 ; 3b2 5b2 3b8 5b8 ;
MSLS 4 : Base 489; c24568 r13679: 24 Links; 48c2 9c4 489c6 89c8 ; 67r1 12r3 1267r6 12r7 67r9 ; 3b2 5b2 3b8 5b8 ;
MSLS 5 : Base 1267; r1379 c2458: 16 Links; 67r1 12r3 12r7 67r9 ; 48c2 39c4 35c5 89c8 ;
MSLS 6 : Base 1267; c1379 r2458: 16 Links; 67c1 12c3 12c7 67c9 ; 89r2 45r4 58r5 39r8 ;
MSLS 7 : Base 1267; r1379 c24568: 20 Links; 67r1 12r3 12r7 67r9 ; 48c2 39c4 35c5 4589c6 89c8 ;
MSLS 8 : Base 1267; c1379 r24568: 20 Links; 67c1 12c3 12c7 67c9 ; 89r2 45r4 58r5 3489r6 39r8 ;
MSLS 9 : Base 1267; r13679 c24568: 24 Links; 67r1 12r3 1267r6 12r7 67r9 ; 48c2 39c4 35c5 4589c6 89c8 ;
MSLS 10 : Base 1267; c13679 r24568: 24 Links; 67c1 12c3 1267c6 12c7 67c9 ; 89r2 45r4 58r5 3489r6 39r8 ;
MSLS 11 : Base 3489; r2458 c1379: 16 Links; 89r2 4r4 8r5 39r8 ; 67c1 12c3 12c7 67c9 ; 5b4 5b6 ;
MSLS 12 : Base 3489; r24568 c1379: 20 Links; 89r2 4r4 8r5 3489r6 39r8 ; 67c1 12c3 12c7 67c9 ; 5b4 5b6 ;
MSLS 13 : Base 3489; c24568 r1379: 20 Links; 48c2 39c4 3c5 489c6 89c8 ; 67r1 12r3 12r7 67r9 ; 5b2 5b8 ;
MSLS 14 : Base 3489; r24568 c13679: 24 Links; 89r2 4r4 8r5 3489r6 39r8 ; 67c1 12c3 1267c6 12c7 67c9 ; 5b4 5b6 ;
MSLS 15 : Base 3489; c24568 r13679: 24 Links; 48c2 39c4 3c5 489c6 89c8 ; 67r1 12r3 1267r6 12r7 67r9 ; 5b2 5b8 ;
MSLS 16 : Base 3589; r24568 c1379: 20 Links; 89r2 5r4 58r5 389r6 39r8 ; 67c1 12c3 12c7 67c9 ; 4b4 4b6 ;
MSLS 17 : Base 3589; r24568 c13679: 24 Links; 89r2 5r4 58r5 389r6 39r8 ; 67c1 12c3 1267c6 12c7 67c9 ; 4b4 4b6 ;
MSLS 18 : Base 4589; c2458 r1379: 16 Links; 48c2 9c4 5c5 89c8 ; 67r1 12r3 12r7 67r9 ; 3b2 3b8 ;
MSLS 19 : Base 4589; c24568 r1379: 20 Links; 48c2 9c4 5c5 4589c6 89c8 ; 67r1 12r3 12r7 67r9 ; 3b2 3b8 ;
MSLS 20 : Base 4589; c24568 r13679: 24 Links; 48c2 9c4 5c5 4589c6 89c8 ; 67r1 12r3 1267r6 12r7 67r9 ; 3b2 3b8 ;

Now that I've included 3 digit MSLS patterns they show up in other puzzles - they appear to be subsets of 4 digit patterns and make the same eliminations
as the 4 digit patterns, when follow-on basics are taken into account. What I'm looking for is other puzzles where a 3 digit pattern actually makes a difference.

Leren
Leren
 
Posts: 5116
Joined: 03 June 2012

Re: Exotic patterns a resume

Postby champagne » Fri Jun 28, 2013 5:54 am

Leren wrote:A question to Champagne, do you know of any other puzzles other than # 498 that have 3 digit, but no 4 or 5 digit Multifish ?

Leren


I don't have that in direct access in the potential hardest file, but I have, I think, some corresponding puzzles in my ongoing search in the file with ratings below the potential hardest.

here a sample of such puzzles all should have a row base rank 0 logic using the floors shown at the end of each line

Hidden Text: Show
98.7.....76....5....4.8....3..6..8......4..2......1..9.5.3..6......2..4......9..1;1;3;10.2;10.2;10.2;124
98.7.....76....5....4.8....3..5..8......2..1......4..6.7.3..9......1...4.....6.2.;1;3;10.2;10.2;10.2;124
98.7.....76....5....4.8....3..5..8......2..1......4..6.9.3..7......1..4......6..2;1;3;10.2;10.2;9.9;124
98.7.....76....8....5......4..3..7....9.2..6......5..1.3.9..4......1...5.....6.2.;1;3;10.2;10.2;9.8;125
98.7.....76....5....4.9....3..6..9......8..2......4..1.5.3..7......2..8......1..4;1;3;10.2;10.2;9.8;124
98.7.....76....5....4.6....3..8..6......2..9......1..4.7.5..3......4...1.....9.2.;1;3;10.2;10.2;9.8;124
98.7.....76....5....4.6....3..5..9......8..2......4..1.9.3..6......1..8......2..4;1;3;10.2;10.2;9.8;124
98.7.....76....9....5......4..6..3....9.8..2......5..1.9.4..7......1..5......2..8;1;3;10.2;10.2;9.7;125
98.7.....76....9....5......4..6..3......8..2......1..5.9.4..7....6.5...1.....2.8.;1;3;10.2;10.2;9.7;125
98.7.....76....9....5......4..6..3......2..8......1..5.7.3..4....9.5...2.....8.1.;1;3;10.2;10.2;9.7;125
98.7.....76....5....4.9....6..3..7......2..4......8..1.3.5..9......4...8.....1.2.;1;3;10.2;10.2;9.7;124
98.7.....76....5....4.9....3..9..8......2..6......1..4.5.3..7......6..2......4..1;1;3;10.2;10.2;9.7;124
98.7.....76....5....4.8....3..9..8......2..6......4..1.3.5..7......6..2......1..4;1;3;10.2;10.2;9.7;124
98.7.....76....5....4....7.6..8..3......9..2......1..4.5.6..8......2...1.....4.9.;1;3;10.2;10.2;9.7;124
98.7.....76....5....4....7.5..3..8......4..6......2..1.3.8..9......6...4.....1.2.;1;3;10.2;10.2;9.7;124
98.7.....76....5....4....7.3..5..9......2..6......1..4.7.3..8......6...1.....4.2.;1;3;10.2;10.2;9.7;124
98.7.....76....5....4......5..3..7....8.4..2......1..9.3.8..6......9..4......2..1;1;3;10.2;10.2;9.7;124
98.7.....76....5....4......5..3..7....8.4..2......1..9.3.8..6......2..4......9..1;1;3;10.2;10.2;9.7;124
98.7.....76....5....4......5..3..7......6..2......1..4.3.9..8....9.2..6......4..1;1;3;10.2;10.2;9.7;124
98.7.....76....5....4......3..9..7....8.6..2......1..4.5.8..3......2..6......4..1;1;3;10.2;10.2;9.7;124
98.7.....76....5....4......3..8..9......4..2......1..6.3.5..8......28.4......6..1;1;3;10.2;10.2;9.7;124
98.7.....76....5....4......3..8..6......9..2......4..1.5.3..7....8.2..9......1..4;1;3;10.2;10.2;9.7;124
98.7.....76....5....4......3..6..7....8.2..9......4..1.5.8..6......9...4.....1.2.;1;3;10.2;10.2;9.7;124
98.7.....76....5....4......3..5..7......4..2......1..6.3.8..9....7..2.4.....6...1;1;3;10.2;10.2;9.7;124
98.7.....76....9....5......8..4..3....9.6..2......5..1.3.8..7......1...6.....2.5.;1;3;10.2;10.2;9.6;125
98.7.....76....8....5......8..4..6....7.5..3......2..9.4.6..1......3...5.....9.2.;1;3;10.2;10.2;9.6;235
98.7.....76....8....5......4..9..3......6..2......5..1.4.8..9....7..2.5.....1...6;1;3;10.2;10.2;9.6;125
98.7.....76....8....5......4..9..3......6..2......5..1.4.8..9....7..1..5....2..6.;1;3;10.2;10.2;9.6;125
98.7.....76....8....5......4..8..3......6..2......1..5.4.3..9....9.2...6.....5.1.;1;3;10.2;10.2;9.6;125
98.7.....76....5....4.9....3..6..9......2..1......4..8.5.3..7......1..2......8..4;1;3;10.2;10.2;9.6;124
98.7.....76....5....4.8....5..3..6......2..1......9..4.3.6..8......1...9.....4.2.;1;3;10.2;10.2;9.6;124
98.7.....76....5....4......6..8..3......4..2......1..9.3.6..8......89..1....2..4.;1;3;10.2;10.2;9.6;124
98.7.....76....5....4......3..8..9......2..6......1..4.3.5..8....9.4...2.....6.1.;1;3;10.2;10.2;9.6;124
98.7.....76....5....4......3..8..9......2..6......1..4.3.5..8......84..1....6..2.;1;3;10.2;10.2;9.6;124
98.7.....76....5....4......3..6..9......8..4......2..1.5.3..6....7..4..2....1..8.;1;3;10.2;10.2;9.6;124
98.7.....76....5....4......3..6..8....7.9..2......1..4.3.8..6......2...1.....4.9.;1;3;10.2;10.2;9.6;124
98.7.....76....5....4......3..5..9....8.2..6......1..4.3.9..8......6..1......4..2;1;3;10.2;10.2;9.6;124
98.7.....76....5....4......3..5..6....7.9..4......2..1.3.6..8......4..2......1..9;1;3;10.2;10.2;9.6;124
98.7.....76....9....5......4..9..3......8..2......5..1.4.3..6....7.1...8.....2.5.;1;3;10.2;10.2;9.5;125
98.7.....76....9....5......4..9..3......6..2......5..1.4.3..8....7..2.5.....1...6;1;3;10.2;10.2;9.5;125
98.7.....76....8....5.8....6..8..4......3..2......9..5.1.4..7......2..3......5..9;1;3;10.2;10.2;9.4;235
98.7.....76....8....5......8..4..3....9.2..5......1..6.3.9..7......6..1......5..2;1;3;10.2;10.2;9.4;125
98.7.....76....8....5......4..8..3....9.2..5......6..1.4.3..9......5..6......1..2;1;3;10.2;10.2;9.4;125
98.7.....76....5....4.8....8..3..7......2..1......9..4.3.5..6......1...2.....4.9.;1;3;10.2;10.2;9.4;124
98.7.....76....5....4.6....5..3..9......8..2......1..4.3.9..6......4...1.....2.8.;1;3;10.2;10.2;9.4;124
98.7.....76....5....4....7.3..5..8......6...4.....2.1..9.8..7......4...6.....1.2.;1;3;10.2;10.2;9.4;124
98.7.....76....5....4....7.3..5..6......9...4.....2.1..7.3..8......4..2......1..9;1;3;10.2;10.2;9.4;124
98.7.....76....5....4......3..8..6......4..9......2..1.5.3..7....8.9..2......1..4;1;3;10.2;10.2;9.4;124
98.7.....76....5....4......3..8..6......4..2......1..9.5.3..7....8..9..4....2..1.;1;3;10.2;10.2;9.4;124
98.7.....76....5....4......3..6..8......4..2......1..9.5.3..7....6.9..4......2..1;1;3;10.2;10.2;9.4;124
champagne
2017 Supporter
 
Posts: 7454
Joined: 02 August 2007
Location: France Brittany

Re: Exotic patterns a resume

Postby JC Van Hay » Fri Jun 28, 2013 2:15 pm

champagne wrote:
JC Van Hay wrote:Hi David,
Try the following, if you want to, in the last Champagne's list : do find if it is possible to extract 16 unsolved cells containing a maximum of 4 candidates at the intersection of 4 rows and 4 columns and check if it gives rise to a Rank 0 Logic! This is a topological problem relatively easy to solve and a' little' more general than your MSLS approach.
Best Regards, JC.


a question to JC Van Hay

looking at examples given by leren I see some crossing with 5 candidates in a 5x5 matrix.

what is exactly the rule for the crossing if any.
If I consider Leren's lay out I got through pm, I see no constraint on the crossing (except that they must be there with a limit of one given, but this seems more a practical limit to speed up the process).
I will suppose that by crossing you mean overlapping cover sets (OCS). As with the case of overlapping base sets (OBS), as long as the number of OBS is equal to the number of OCS, the Rank 0 Logic applies. So no rules, great Rank 0 Logic ;).

I looked more closely at puzzles #12, 13, 14 and 17. You certainly have noticed, and Leren as well, that in these puzzles, each Rank 0 array of 24 cells is equivalent to a Rank 0 sub-array of 20 cells [making eliminations in one of its rows (cannibalism -> an assignment could follow as in # 14 and 17). However, to someone who doesn't notice that, the cannibalism will not be seen directly, but only after basics follow-on.] Therefore , shortly said, adding 4 cells to get a Rank 0 of cells from another one only requires 4 more overlaping or not cover sets.
JC Van Hay
 
Posts: 719
Joined: 22 May 2010

Re: Exotic patterns a resume

Postby champagne » Fri Jun 28, 2013 3:58 pm

JC Van Hay wrote: do find if it is possible to extract 16 unsolved cells containing a maximum of 4 candidates at the intersection of 4 rows and 4 columns
...
I will suppose that by crossing you mean overlapping cover sets (OCS). ...


Hi,

thanks for the answer (BTW, I doubled the question through pm)

The post shows that I was not clear enough.

I refer strictly to your following wording 16 unsolved cells containing a maximum of 4 candidates at the intersection of 4 rows and 4 columns


I understand here that in a 4x4 cells matrix having a chance to produce a rank 0 SLG, the cells must not contain more than 4 candidates. If this is correct, it can speed up the search substantially, but I don't see what is the logic behind.

sorry to come back with the same question
champagne
2017 Supporter
 
Posts: 7454
Joined: 02 August 2007
Location: France Brittany

Re: Exotic patterns a resume

Postby Leren » Sat Jun 29, 2013 12:48 am

Code: Select all
Champagne wrote: I refer strictly to your following wording 16 unsolved cells containing a maximum of 4 candidates at the intersection of 4 rows and 4 columns


Hi Champagne, I'm not sure what this statement means either, I'll just explain how I've implemented the MSLS search process.

Pick any 4 digits. Call these the Row digits (in practice they are the Floor or Base digits of the corresponding Multifish). Call the remaining 5 digits the Column digits (these are the non-base or Roof digits of the Multifish).

Pick a 4 x 4 grid of unsolved cells. These cells must hold exactly 16 truths.

The idea behind a 4 x 4 MSLS is to (1) eliminate the Row digits in the 4 rows but not in the 4 columns of the grid and (2) eliminate the 5 Column digits in the 4 columns but not in the 4 rows of the grid. (Take a good look at any Multifish solution - that's what actually happens - the base digits get eliminated in 4 or 5 rows but not in 4 or 5 columns and the non-base digits get eliminated in 4 or 5 columns but avoid 4 or 5 rows. Sometimes this pattern is hard to see but it's always there if you look hard enough.)

For these eliminations to be valid the counts of the 4 row digits in the 4 rows of the grid plus the count of the column digits in the 4 columns of the grid must be exactly 16.

Now it looks like this search process may take a long time unless you "know'' beforehand what the likely grid locations and base digits are. In practice this simply isn't true. The base digits and grid cells almost "magically" pick themselves quite quickly.

Why is that ? Good question - glad you asked :)

Well, look first at the grid cells. In practice there aren't all that many 4 x grids of unsolved cells. What I do is pick any row as the first row, any column as the first column, any other row as the second row etc etc. As you add each row and column to build up the grid look at the newly created intersections. If any of them are solved or given then the potential grid is already invalid. So in practice you don't end up building most grids very far before they are proved invalid.

Now for the choice of row and column (Floor and Roof) digits. When you have built a valid grid then if you make bad choice of row and column digits the total link count will be about twice the required value, so you can move on to a new choice of digits without much processing. If the Link count is 16 you are lucky and you've got yourself a basic (or vanilla ) Rank 0 MSLS - again without much processing required.

If the Link count is slightly more than 16 you can reduce it by substituting box covers for row or column covers, where there are 2 or 3 rows in the same Tier or columns in the same Stack and one or more boxes in those rows or columns don't contain the digit of interest in any of the grid cells. I think this is where most of the processing effort takes place, there are a lot of cases to consider, so in practice I limit the initial Link count to <= the number of grid cells + 5. Above that I don't think there is much chance of achieving a Truth/Link balance.

One other trick is to allow for up to 1 cell in the grid to be given or solved. This reduces the Truth requirement to 15 but increases the number of valid grids but does catch a few extra MSLSs. if you allow the number of solved/given cells to be > 1 then the processing time will go up a lot and I doubt that you will catch many more valid cases.

Of course in everything I've said above you can interchange row/columns and you can have 4 x 5, 5 x 4 or even 5 x 5 grids. You can also have 3 row digits and 6 column digits. This is how I found the MSLS for puzzle 498.

Take a look at the MSLS survey results for the following puzzle:

1.......2..94...5..6....7.....89..4....3.6.....8.4.....2....1..7.......6..5.8..3.;12;tax;gsf-2007-05-24-003 64879;3;1267;R;C;X; ;;

MSLS 1 : Base 1267; r1378 c3458: 16 Links; 67r1 12r3 67r7 12r8 ; 34c3 59c4 35c5 89c8 ;
MSLS 2 : Base 1267; r1378 c34568: 20 Links; 67r1 12r3 67r7 12r8 ; 34c3 9c4 3c5 3489c6 89c8 ; 5b2 5b8 ;
MSLS 3 : Base 1267; c1279 r24569: 20 Links; 26c1 17c2 26c7 17c9 ; 38r2 3r4 489r5 39r6 49r9 ; 5b4 5b6 ;
MSLS 4 : Base 1267; r13578 c3458: 19 Links; 67r1 12r3 127r5 67r7 12r8 ; 34c3 59c4 35c5 89c8 ;
MSLS 5 : Base 1267; c12679 r2469: 20 Links; 26c1 17c2 127c6 26c7 17c9 ; 38r2 35r4 359r6 49r9 ;
MSLS 6 : Base 1267; c12679 r24569: 24 Links; 26c1 17c2 127c6 26c7 17c9 ; 38r2 35r4 4589r5 359r6 49r9 ;
MSLS 7 : Base 3489; c3458 r1378: 16 Links; 34c3 9c4 3c5 89c8 ; 67r1 12r3 67r7 12r8 ; 5b2 5b8 ;
MSLS 8 : Base 3489; r24569 c1279: 20 Links; 38r2 3r4 489r5 39r6 49r9 ; 26c1 17c2 26c7 17c9 ; 5b4 5b6 ;
MSLS 9 : Base 3489; c34568 r1378: 20 Links; 34c3 9c4 3c5 3489c6 89c8 ; 67r1 12r3 67r7 12r8 ; 5b2 5b8 ;
MSLS 10 : Base 3489; r24569 c12679: 24 Links; 38r2 3r4 489r5 39r6 49r9 ; 26c1 17c2 1257c6 26c7 17c9 ; 5b4 5b6 ;

MSLS 1 - vanilla 4 x 4 grid case (no box link substitutions)
MSLS 2 - 4 x 5 grid with 2 box substitutions
MSLS 3 - similar to 2 with - rows/columns interchanged
MSLS 4 - vanilla 5 x 4 grid with one given/solved cell
MSLS 5 - vanilla 5 x 4 grid - rows/columns interchanged
MSLS 6 - vanilla 5 x 5 grid - 1 one given/solved cell - rows/columns interchanged
MSLS 7 - 4 x 4 grid - box link substitutions - rows/columns interchanged
MSLS 8 - 5 x 4 grid - box link substitutions
MSLS 9 - similar to MSLS 8 rows/columns interchanged
MSLS 10 - 5 x 5 grid - 1 one given/solved cell - box link substitutions

Thus endeth the lesson !!

Leren
Leren
 
Posts: 5116
Joined: 03 June 2012

PreviousNext

Return to Advanced solving techniques