Hi StrmCkr,
StrmCkr wrote:remove the basics gives this grid
- Code: Select all
.----------------------.---------------------.---------------------.
| 7 159 14589 | 1239 13 2459 | 2348 389 6 |
| 469 2 149 | 13679 8 4679 | 347 5 479 |
| 45689 569 3 | 2679 467 245679 | 1 789 24789 |
:----------------------+---------------------+---------------------:
| 2689 1679 12789 | 5 267 3 | 4678 16789 14789 |
| 356 4 157 | 678 9 678 | 3567 2 157 |
| 235689 35679 25789 | 4 267 1 | 35678 36789 5789 |
:----------------------+---------------------+---------------------:
| 2345 357 6 | 12378 13 2478 | 9 178 12578 |
| 239 8 279 | 123679 5 2679 | 267 4 127 |
| 1 579 24579 | 26789 467 246789 | 25678 678 3 |
'----------------------'---------------------'---------------------'
next remove the 1-3 aic loop eliminations {MF 1 & 3} {2 digit sword fish}
- Code: Select all
+--------------------------+------------------------+-------------------------+
| 7 59(1) 4589-1 | 29-13 13 2459 | 248-3 89(3) 6 |
| 469 2 49(1) | -679(13) 8 4679 | 47(3) 5 479 |
| 45689 569 3 | 2679 467 245679 | 1 789 24789 |
+--------------------------+------------------------+-------------------------+
| 2689 679(1) 2789-1 | 5 267 3 | 4678 6789(1) 4789-1 |
| 356 4 157 | 678 9 678 | 3567 2 157 |
| 25689-3 5679(3) 25789 | 4 267 1 | 5678-3 6789(3) 5789 |
+--------------------------+------------------------+-------------------------+
| 245-3 57(3) 6 | 278-13 13 2478 | 9 78(1) 2578-1 |
| 29(3) 8 279 | -2679(13) 5 2679 | 267 4 27(1) |
| 1 579 24579 | 26789 467 246789 | 25678 678 3 |
+--------------------------+------------------------+-------------------------+
aals [21,235] 16 Candidates,
8 Truths = {1R28 3R28 1C28 3C28}
10 Links = {1r4 3r6 13c4 28n4 1b19 3b37}
19 Eliminations --> r8c4<>2679, r2c4<>679, r1c34<>1, r1c47<>3, r4c39<>1, r6c17<>3, r7c49<>1,
r7c14<>3,
Here we see the problem I suspected before. 8 Truths and 10 Links would make it a Rank 2 pattern. Obviously it isn't, or those eliminations wouldn't be possible. It's a Siamese pattern with 8 truths and two different linksets with 8 links each. Thus, both of them are Rank 0 patterns separately, and it should be made clear. Listing them like above is extremely confusing and should be avoided like the plague. Here's how I do it:
8x8 {13R28 13C28 \ 1r4 3r6 [13c4|28n4] 1b19 3b37} => 19 elims
That shows clearly (or as clearly as possible) that the two partial linksets 13c4 and 28n4 are alternates (because either one can cover the same candidates) and thus count only as two links, not four. It means that we have a nice 8x8 Rank 0 pattern, or actually two of them. Not Rank 2. Another way to do it is to count the truths and the other links twice to get:
16x16 {13R2288 13C2288 \ 1r44 3r66 13c4 28n4 11b19 33b37} => 19 elims
Obviously that's not valid as Allan Barker's notation, because it doesn't allow duplicate sets. It is valid Obi-Wahn's notation, though. Generally I prefer the latter anyway, because it makes rank calculations easier. However, in siamese cases, like this one, I prefer the previous notation with the alternate sets, because doubling the size of the pattern makes little sense.
hidden sk
incomprehensible move: Show - Code: Select all
+--------------------------+---------------------+--------------------------+
| 7 5(19) 458-9 | 29 13 245-9 | 248 -8(39) 6 |
| 4(69) 2 4(19) | (13) 8 -4(679) | -4(37) 5 4(79) |
| 458-69 5(69) 3 | 2679 467 24579-6 | 1 8(79) 248-79 |
+--------------------------+---------------------+--------------------------+
| 2689 (1679) 2789 | 5 267 3 | 4678 -8(1679) 4789 |
| 356 4 157 | 678 9 78-6 | 3567 2 157 |
| 25689 -5(3679) 25789 | 4 267 1 | 5678 -8(3679) 5789 |
+--------------------------+---------------------+--------------------------+
| 245 -5(37) 6 | 278 13 248-7 | 9 8(17) 258-7 |
| -2(39) 8 2(79) | (13) 5 -2(679) | 2(67) 4 2(17) |
| 1 5(79) 245-79 | 26789 467 24789-6 | 258-67 8(67) 3 |
+--------------------------+---------------------+--------------------------+
- Code: Select all
aals [21,216] 58 Candidates,
20 Truths = {13679R2 13679R8 13679C2 13679C8}
45 Links = {1r4 3r6 7r79 9r13 9c3 679c6 7c9 28n1 134679n2 8n3 28n4 28n6 28n7 134679n8 2n9 1b19 3b37 6b19 7b379 9b137}
24 Eliminations --> (9r1*9c3*9b1) => r1c3<>9, (9r1*9c6) => r1c6<>9, (1n8) => r1c8<>8, (2n6) => r2c6<>4, (2n7) => r2c7<>4, (6b1) =>
r3c1<>6, (9r3*9b1) => r3c1<>9, (6c6) => r3c6<>6, (7c9*7b3) => r3c9<>7, (9r3*9b3) => r3c9<>9, (4n8) => r4c8<>8, (6c6) =>
r5c6<>6, (6n2) => r6c2<>5, (6n8) => r6c8<>8, (7n2) => r7c2<>5, (7r7*7c6) => r7c6<>7, (7r7*7c9*7b9) => r7c9<>7, (8n1) =>
r8c1<>2, (8n6) => r8c6<>2, (7r9*7b7) => r9c3<>7, (9c3*9b7) => r9c3<>9, (6c6) => r9c6<>6, (6b9) => r9c7<>6, (7r9*7b9) =>
r9c7<>7
That's just way too complicated, probably partly due to the same confusing link count. I don't even try to understand it.
naked sk
- Code: Select all
+------------------------+--------------------+------------------------+
| 7 (159) 458-9 | 29 13 2459 | 248 (389) 6 |
| (469) 2 (149) | 13 8 679-4 | (347) 5 (479) |
| 458-69 (569) 3 | 2679 467 245679 | 1 (789) 248-79 |
+------------------------+--------------------+------------------------+
| 2689 1679 2789 | 5 267 3 | 4678 1679-8 4789 |
| 356 4 157 | 678 9 678 | 3567 2 157 |
| 25689 3679-5 25789 | 4 267 1 | 5678 3679-8 5789 |
+------------------------+--------------------+------------------------+
| 245 (357) 6 | 278 13 2478 | 9 (178) 258-7 |
| (239) 8 (279) | 13 5 679-2 | (267) 4 (127) |
| 1 (579) 245-79 | 26789 467 246789 | 258-67 (678) 3 |
+------------------------+--------------------+------------------------+
aals [21,216] 48 Candidates,
16 Truths = {28N1 1379N2 28N3 28N7 1379N8 28N9}
16 Links = {2r8 4r2 5c2 8c8 1b19 3b37 6b19 7b379 9b137}
15 Eliminations --> (9b1) => r1c3<>9, (4r2) => r2c6<>4, (6b1) => r3c1<>6, (9b1) => r3c1<>9, (7b3) => r3c9<>7, (9b3) =>
r3c9<>9, (8c8) => r4c8<>8, (5c2) => r6c2<>5, (8c8) => r6c8<>8, (7b9) => r7c9<>7, (2r8) => r8c6<>2, (7b7) =>
r9c3<>7, (9b7) => r9c3<>9, (6b9) => r9c7<>6, (7b9) => r9c7<>7
Nothing weird about that. It's exactly the same MSLS I gave in my first post (with 5 fewer eliminations because of overlap with the previous move). So, move one (8x8) and this (16x16) produce 34 Rank-0 eliminations (19+15, or 20+14 in reverse order) together. I think we all can understand them. The other nine are the question marks. For example, explanations like this don't help much:
the extra elms on col 6 for digit 6 {for break down}
- Code: Select all
+------------------------+---------------------+------------------------+
| 7 59(1) 4589 | 29 13 2459 | 248 89(3) 6 |
| 49(6) 2 49(1) | (13) 8 479(6) | 47(3) 5 479 |
| 4589-6 59(6) 3 | 2679 467 24579-6 | 1 789 24789 |
+------------------------+---------------------+------------------------+
| 2689 79(16) 2789 | 5 267 3 | 4678 789(16) 4789 |
| 356 4 157 | 678 9 78-6 | 3567 2 157 |
| 25689 579(36) 25789 | 4 267 1 | 5678 789(36) 5789 |
+------------------------+---------------------+------------------------+
| 245 57(3) 6 | 278 13 2478 | 9 78(1) 2578 |
| 29(3) 8 279 | (13) 5 279(6) | 27(6) 4 27(1) |
| 1 579 24579 | 26789 467 24789-6 | 2578-6 78(6) 3 |
+------------------------+---------------------+------------------------+
I have no idea how that should be interpreted. What are the truths and what are the links? What I see is this Rank 1 pattern:
12x13 {136R28 136C28 \ 1r4 1b19 13c4 3r6 3b37 6r46 6c6 6b19} => no elims
That can't eliminate anything. There should be one fewer link or one more truth or overlapping links, but I don't see how to get any of those. Thus, I don't think that pattern works in isolation like that. If it works at all, it must be part of the bigger monster pattern. Or so it seems to me.
--
Added. Either one of these "Alien Obi-fishes" should get the 34 Rank-0 eliminations at once:
32x32 {13R2288 13C2288 28N1379 1379N28 \ 1r44 2r8 3r66 4r2 13c4 5c2 8c8 11169b1 33379b3 33379b7 11167b9 28n4} => 34 elims
36x36 {13R222888 13C222888 679R28 679C28 \ 1r44 3r66 13c4 11169b1 33379b3 33379b7 11167b9 46n28 28n446} => 34 elims
The first one includes the naked SK-Loop and the second has the hidden one. Both are superimposed with the 16x16 Obifish I showed above. To convert into Allan Barker's notation, just remove the duplicates. However, then the counts of truths and links won't match, so it's impossible to see that it's Rank 0.