Hi Leren:Here is Tarek's fish puzzle.
Leren wrote:While on the subject of Jellyfish here is a perfect one from Hodoku that has 17 eliminations. Is that a record ?
.............1.....123.456...........27...38..36.5.42...........682.715..74...83.
***********************************************************************************************
*** SudoRules 20.1.s based on CSP-Rules 2.1.s, config = S
*** Using CLIPS 6.32-r774
***********************************************************************************************
225 candidates, 1658 csp-links and 1658 links. Density = 6.58%
hidden-pairs-in-a-row: r4{n2 n3}{c5 c6} ==> r4c6 ≠ 9, r4c6 ≠ 8, r4c6 ≠ 6, r4c6 ≠ 1, r4c5 ≠ 9, r4c5 ≠ 8, r4c5 ≠ 7, r4c5 ≠ 6, r4c5 ≠ 4
whip[1]: b5n7{r6c4 .} ==> r1c4 ≠ 7, r2c4 ≠ 7
jellyfish-in-columns: n9{c2 c8 c3 c7}{r7 r4 r2 r1} ==> r7c9 ≠ 9, r7c6 ≠ 9, r7c5 ≠ 9, r7c4 ≠ 9, r7c1 ≠ 9, r4c9 ≠ 9, r4c4 ≠ 9, r4c1 ≠ 9, r2c9 ≠ 9, r2c6 ≠ 9, r2c4 ≠ 9, r2c1 ≠ 9, r1c9 ≠ 9, r1c6 ≠ 9, r1c5 ≠ 9, r1c4 ≠ 9, r1c1 ≠ 9
stte
+------------------------+------------------------+------------------------+
| 7 (159) 458-19 | 1239 1234 2459 | 248-3 (389) 6 |
| (469) 2 (149) | 13679 8 679-4 | (347) 5 (479) |
| 458-69 (569) 3 | 2679 2467 245679 | 1 (789) 248-79 |
+------------------------+------------------------+------------------------+
| 2689 1679 12789 | 5 267 3 | 4678 1679-8 14789 |
| 3568 4 1578 | 678 9 678 | 35678 2 1578 |
| 235689 3679-5 25789 | 4 267 1 | 35678 3679-8 5789 |
+------------------------+------------------------+------------------------+
| 245-3 (357) 6 | 12378 12347 2478 | 9 (178) 258-17 |
| (239) 8 (279) | 13679-2 5 679-2 | (267) 4 (127) |
| 1 (579) 245-79 | 26789 2467 246789 | 258-67 (678) 3 |
+------------------------+------------------------+------------------------+
+---------------------------+---------------------------+--------------------------+
| 7 (159) 458-19 | 29-13 1234 245-9 | 248-3 (39-8) 6 |
| (469) 2 (149) | (13-679) 8 (679-4) | (37-4) 5 (479) |
| 458-69 (569) 3 | 2679 2467 24579-6 | 1 (789) 248-79 |
+---------------------------+---------------------------+--------------------------+
| 2689 (1679) 2789-1 | 5 267 3 | 4678 (1679-8) 4789-1 |
| 3568 4 1578 | 678 9 78-6 | 35678 2 1578 |
| 25689-3 (3679-5) 25789 | 4 267 1 | 5678-3 (3679-8) 5789 |
+---------------------------+---------------------------+--------------------------+
| 245-3 (37-5) 6 | 278-13 12347 248-7 | 9 (178) 258-17 |
| (39-2) 8 (279) | (13-2679) 5 (679-2) | (267) 4 (127) |
| 1 (579) 245-79 | 26789 2467 24789-6 | 258-67 (678) 3 |
+---------------------------+---------------------------+--------------------------+
+---------------------------+----------------------------+--------------------------+
| 7 5(19) 458-19 | 29-13 1234 245-9 | 248-3 -8(39) 6 |
| 4(69) 2 4(19) | (13-679) 8 -4(679) | -4(37) 5 4(79) |
| 458-69 5(69) 3 | 2679 2467 24579-6 | 1 8(79) 248-79 |
+---------------------------+----------------------------+--------------------------+
| 2689 (1679) 2789-1 | 5 267 3 | 4678 -8(1679) 4789-1 |
| 3568 4 1578 | 678 9 78-6 | 35678 2 1578 |
| 25689-3 -5(3679) 25789 | 4 267 1 | 5678-3 -8(3679) 5789 |
+---------------------------+----------------------------+--------------------------+
| 245-3 -5(37) 6 | 278-13 12347 248-7 | 9 8(17) 258-17 |
| -2(39) 8 2(79) | -2(13-679) 5 -2(679) | 2(67) 4 2(17) |
| 1 5(79) 245-79 | 26789 2467 24789-6 | 258-67 8(67) 3 |
+---------------------------+----------------------------+--------------------------+
+--------------------------+--------------------------+-------------------------+
| 7 59(1) 4589-1 | 29-13 1234 2459 | 248-3 89(3) 6 |
| 469 2 49(1) | -679(13) 8 4679 | 47(3) 5 479 |
| 45689 569 3 | 2679 2467 245679 | 1 789 24789 |
+--------------------------+--------------------------+-------------------------+
| 2689 679(1) 2789-1 | 5 267 3 | 4678 6789(1) 4789-1 |
| 3568 4 1578 | 678 9 678 | 35678 2 1578 |
| 25689-3 5679(3) 25789 | 4 267 1 | 5678-3 6789(3) 5789 |
+--------------------------+--------------------------+-------------------------+
| 245-3 57(3) 6 | 278-13 12347 2478 | 9 78(1) 2578-1 |
| 29(3) 8 279 | -2679(13) 5 2679 | 267 4 27(1) |
| 1 579 24579 | 26789 2467 246789 | 25678 678 3 |
+--------------------------+--------------------------+-------------------------+
+------------------------+-------------------------+------------------------+
| 7 59(1) 4589-1 | 239-1 1234 2459 | 2348 389 6 |
| 469 2 49(1) | 3679(1) 8 4679 | 347 5 479 |
| 45689 569 3 | 2679 2467 245679 | 1 789 24789 |
+------------------------+-------------------------+------------------------+
| 2689 679(1) 2789-1 | 5 267 3 | 4678 6789(1) 4789-1 |
| 3568 4 1578 | 678 9 678 | 35678 2 1578 |
| 235689 35679 25789 | 4 267 1 | 35678 36789 5789 |
+------------------------+-------------------------+------------------------+
| 2345 357 6 | 2378-1 12347 2478 | 9 78(1) 2578-1 |
| 239 8 279 | 23679(1) 5 2679 | 267 4 27(1) |
| 1 579 24579 | 26789 2467 246789 | 25678 678 3 |
+------------------------+-------------------------+------------------------+
+-------------------------+-------------------------+------------------------+
| 7 159 14589 | 129-3 1234 2459 | 248-3 89(3) 6 |
| 469 2 149 | 1679(3) 8 4679 | 47(3) 5 479 |
| 45689 569 3 | 2679 2467 245679 | 1 789 24789 |
+-------------------------+-------------------------+------------------------+
| 2689 1679 12789 | 5 267 3 | 4678 16789 14789 |
| 3568 4 1578 | 678 9 678 | 35678 2 1578 |
| 25689-3 5679(3) 25789 | 4 267 1 | 5678-3 6789(3) 5789 |
+-------------------------+-------------------------+------------------------+
| 245-3 57(3) 6 | 1278-3 12347 2478 | 9 178 12578 |
| 29(3) 8 279 | 12679(3) 5 2679 | 267 4 127 |
| 1 579 24579 | 26789 2467 246789 | 25678 678 3 |
+-------------------------+-------------------------+------------------------+
denis_berthier wrote:The first step is a long g-whip[13], with a single right-linking g-candidate: n9r9c456, in the third csp-variable:
g-whip[13]: r1n6{c8 c5} - r9n6{c5 c2} - r9n9{c2 c456} - r7n9{c6 c2} - r8c1{n9 n4} - c3n4{r9 r1} - r1c4{n4 n3} - r1c2{n3 n5} - r3c1{n5 n2} - b2n2{r3c6 r1c6} - c6n7{r1 r3} - r3n9{c6 c4} - r3n4{c4 .} ==> r1c8 ≠ 9
yzfwsf wrote:denis_berthier wrote:The first step is a long g-whip[13], with a single right-linking g-candidate: n9r9c456, in the third csp-variable:
g-whip[13]: r1n6{c8 c5} - r9n6{c5 c2} - r9n9{c2 c456} - r7n9{c6 c2} - r8c1{n9 n4} - c3n4{r9 r1} - r1c4{n4 n3} - r1c2{n3 n5} - r3c1{n5 n2} - b2n2{r3c6 r1c6} - c6n7{r1 r3} - r3n9{c6 c4} - r3n4{c4 .} ==> r1c8 ≠ 9
RTA0 [21,206] 45 Candidates,
14 Truths = {3R2 4R3 6R19 9R2379 4C3 7C6 8N1 1N4 2B12}
21 Links = {49r1 2r3 6c5 9c28 1n3568 2n13 3n46 3b2 4b17 6b7 9b378}
1 Elimination --> (1n8*9b3*9c8*9r1) => r1c8<>9
Strmckr wrote : lets turn off the useless #### and make it the real digits doing the work and focus on the hidden als. 13679: 5 digits 6 cells x 4; 24 cells 20 digits each set sharing 1 digit ,{2 cells }locking the other 4 in a loop.
For some reason in the second puzzle I found two Multifish in the same cells for a total of 27 eliminations. From the look of them I'll bet Phil's variant SK loop will apply. Leren
yzfwsf wrote:Hi denis
You said you can’t run Xsudo. I’ll give you the chain automatically found by Xsudo for comparison. Is it very similar to yours?
Please take a look at the lower part of the screenshot.
HI StrmCkr. I think I can see what you are getting at but I can't quite see how you are making a Rank 0 pattern with 24 Truths and links (if that is what you are doing). Perhaps you could explain that part in more detail. Leren
+----------------------+-----------------------+---------------------+
| 7 159 14589 | 1239 1234 2459 | 2348 389 6 |
| 469 2 149 | 13679 8 4679 | 347 5 479 | x
| 45689 569 3 | 2679 2467 245679 | 1 789 24789 |
+----------------------+-----------------------+---------------------+
| 2689 1679 12789 | 5 267 3 | 4678 16789 14789 |
| 3568 4 1578 | 678 9 678 | 35678 2 1578 |
| 235689 35679 25789 | 4 267 1 | 35678 36789 5789 |
+----------------------+-----------------------+---------------------+
| 2345 357 6 | 12378 12347 2478 | 9 178 12578 |
| 239 8 279 | 123679 5 2679 | 267 4 127 | x
| 1 579 24579 | 26789 2467 246789 | 25678 678 3 |
x x
+----------------------+-----------------------+---------------------+
+-------------------------+--------------------------+-------------------------+
| 5 17(3) 1467 | 23468 234678 378 | 1246 46(8) 9 |
| 46(3) 2 46(9) | 1 -46(389) (3589) | 46(5) 7 46(8) |
| 1467 17(9) 8 | 24569 24679 579 | 3 46(5) 1246 |
+-------------------------+--------------------------+-------------------------+
| 13678 4 15679 | 389 1389 2 | 5679 -6(3589) 3678 |
| 123678 -17(389) 12679 | 3489 5 1389 | 24679 -46(389) 234678 |
| 238 (3589) 259 | 7 3489 6 | 2459 1 2348 |
+-------------------------+--------------------------+-------------------------+
| 1247 17(5) 3 | 2569 12679 1579 | 8 46(9) 1467 |
| 17(8) 6 17(5) | (3589) -17(389) 4 | 17(9) 2 17(3) |
| 9 17(8) 1247 | 2368 123678 1378 | 1467 46(3) 5 |
+-------------------------+--------------------------+-------------------------+
+-----------------------+---------------------+-----------------------+
| 5 (137) 1467 | 23468 234678 378 | 12-46 (468) 9 |
| (346) 2 (469) | 1 389-46 3589 | (456) 7 (468) |
| 1467 (179) 8 | 24569 24679 579 | 3 (456) 12-46 |
+-----------------------+---------------------+-----------------------+
| 13678 4 15679 | 389 1389 2 | 5679 3589-6 3678 |
| 123678 389-17 12679 | 3489 5 1389 | 24679 389-46 234678 |
| 238 3589 259 | 7 3489 6 | 2459 1 2348 |
+-----------------------+---------------------+-----------------------+
| 24-17 (157) 3 | 2569 12679 1579 | 8 (469) 1467 |
| (178) 6 (157) | 3589 389-17 4 | (179) 2 (137) |
| 9 (178) 24-17 | 2368 123678 1378 | 1467 (346) 5 |
+-----------------------+---------------------+-----------------------+
Have we been missing something all these years, or is this a property of the variant SK loop ?