diagonals+centres

Post puzzles for others to solve here.

Re: diagonals+centres

Postby yzfwsf » Fri Oct 30, 2020 2:19 am

Hi Leren:Here is Tarek's fish puzzle.
Mutant.png
Mutant.png (26.51 KiB) Viewed 693 times
yzfwsf
 
Posts: 921
Joined: 16 April 2019

Re: diagonals+centres

Postby denis_berthier » Fri Oct 30, 2020 4:16 am

Leren wrote:While on the subject of Jellyfish here is a perfect one from Hodoku that has 17 eliminations. Is that a record ?
.............1.....123.456...........27...38..36.5.42...........682.715..74...83.


Great example also. And the 17 eliminations are still available after simper rules are applied.

Code: Select all
***********************************************************************************************
***  SudoRules 20.1.s based on CSP-Rules 2.1.s, config = S
***  Using CLIPS 6.32-r774
***********************************************************************************************
225 candidates, 1658 csp-links and 1658 links. Density = 6.58%
hidden-pairs-in-a-row: r4{n2 n3}{c5 c6} ==> r4c6 ≠ 9, r4c6 ≠ 8, r4c6 ≠ 6, r4c6 ≠ 1, r4c5 ≠ 9, r4c5 ≠ 8, r4c5 ≠ 7, r4c5 ≠ 6, r4c5 ≠ 4
whip[1]: b5n7{r6c4 .} ==> r1c4 ≠ 7, r2c4 ≠ 7
jellyfish-in-columns: n9{c2 c8 c3 c7}{r7 r4 r2 r1} ==> r7c9 ≠ 9, r7c6 ≠ 9, r7c5 ≠ 9, r7c4 ≠ 9, r7c1 ≠ 9, r4c9 ≠ 9, r4c4 ≠ 9, r4c1 ≠ 9, r2c9 ≠ 9, r2c6 ≠ 9, r2c4 ≠ 9, r2c1 ≠ 9, r1c9 ≠ 9, r1c6 ≠ 9, r1c5 ≠ 9, r1c4 ≠ 9, r1c1 ≠ 9
stte
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: diagonals+centres

Postby Leren » Fri Oct 30, 2020 4:52 am

Returning to the main topic, does anybody understand StrmCkr's move? A Rank 20 MSLS ? :?

Leren
Leren
 
Posts: 5124
Joined: 03 June 2012

Re: diagonals+centres

Postby StrmCkr » Fri Oct 30, 2020 6:30 am

does this help
the basic eliminations are included with my overkill pattern. so ill start by stripping that out

i know you all know this:
normal skloop
Code: Select all
+------------------------+------------------------+------------------------+
| 7       (159)   458-19 | 1239     1234   2459   | 248-3   (389)   6      |
| (469)   2       (149)  | 13679    8      679-4  | (347)   5       (479)  |
| 458-69  (569)   3      | 2679     2467   245679 | 1       (789)   248-79 |
+------------------------+------------------------+------------------------+
| 2689    1679    12789  | 5        267    3      | 4678    1679-8  14789  |
| 3568    4       1578   | 678      9      678    | 35678   2       1578   |
| 235689  3679-5  25789  | 4        267    1      | 35678   3679-8  5789   |
+------------------------+------------------------+------------------------+
| 245-3   (357)   6      | 12378    12347  2478   | 9       (178)   258-17 |
| (239)   8       (279)  | 13679-2  5      679-2  | (267)   4       (127)  |
| 1       (579)   245-79 | 26789    2467   246789 | 258-67  (678)   3      |
+------------------------+------------------------+------------------------+

    aals [21,246] 48 Candidates,
    16 Truths = {28N1 1379N2 28N3 28N7 1379N8 28N9}
    16 Links = {2r8 4r2 5c2 8c8 1b19 3b37 6b19 7b379 9b137}
    20 Eliminations --> r3c19<>9, r8c46<>2, r9c37<>7, r19c3<>9, r46c8<>8, r37c9<>7, r1c3<>1,
    r1c7<>3, r2c6<>4, r3c1<>6, r6c2<>5, r7c9<>1, r7c1<>3, r9c7<>6,


expand the sk loop to being full aals x4 looped using Row x 2 and Col x 2

Code: Select all
+---------------------------+---------------------------+--------------------------+
| 7        (159)     458-19 | 29-13      1234   245-9   | 248-3   (39-8)    6      |
| (469)    2         (149)  | (13-679)   8      (679-4) | (37-4)  5         (479)  |
| 458-69   (569)     3      | 2679       2467   24579-6 | 1       (789)     248-79 |
+---------------------------+---------------------------+--------------------------+
| 2689     (1679)    2789-1 | 5          267    3       | 4678    (1679-8)  4789-1 |
| 3568     4         1578   | 678        9      78-6    | 35678   2         1578   |
| 25689-3  (3679-5)  25789  | 4          267    1       | 5678-3  (3679-8)  5789   |
+---------------------------+---------------------------+--------------------------+
| 245-3    (37-5)    6      | 278-13     12347  248-7   | 9       (178)     258-17 |
| (39-2)   8         (279)  | (13-2679)  5      (679-2) | (267)   4         (127)  |
| 1        (579)     245-79 | 26789      2467   24789-6 | 258-67  (678)     3      |
+---------------------------+---------------------------+--------------------------+


    aals [21,246] 86 Candidates,
    24 Truths = {28N1 134679N2 28N3 28N4 28N6 28N7 134679N8 28N9}
    45 Links = {9r1 134679r2 9r3 1r4 3r6 7r7 123679r8 7r9 1c4 3c4 5c2 6c268 7c2689 8c8 9c2368 1b19 3b37 6b19 7b379 9b137}
    43 Eliminations --> r8c4<>2679, r359c6<>6, r146c8<>8, r2c4<>679, r1c34<>1, r1c47<>3, r1c36<>9,
    r2c67<>4, r3c19<>9, r4c39<>1, r6c17<>3, r7c49<>1, r7c14<>3, r7c69<>7,
    r8c16<>2, r9c37<>7, r67c2<>5, r3c1<>6, r3c9<>7, r9c7<>6, r9c3<>9,


now from there to bring it into clarity:

lets turn off the useless crap and make it the real digits doing the work and focus on the hidden als.
13679: 5 digits 6 cells x 4

24 cells 20 digits each set sharing 1 digit ,{2 cells }locking the other 4 in a loop.
{the key being that 1 & 3 having exactly 2 locations in each set. }
Code: Select all
+---------------------------+----------------------------+--------------------------+
| 7        5(19)     458-19 | 29-13       1234   245-9   | 248-3   -8(39)    6      |
| 4(69)    2         4(19)  | (13-679)    8      -4(679) | -4(37)  5         4(79)  |
| 458-69   5(69)     3      | 2679        2467   24579-6 | 1       8(79)     248-79 |
+---------------------------+----------------------------+--------------------------+
| 2689     (1679)    2789-1 | 5           267    3       | 4678    -8(1679)  4789-1 |
| 3568     4         1578   | 678         9      78-6    | 35678   2         1578   |
| 25689-3  -5(3679)  25789  | 4           267    1       | 5678-3  -8(3679)  5789   |
+---------------------------+----------------------------+--------------------------+
| 245-3    -5(37)    6      | 278-13      12347  248-7   | 9       8(17)     258-17 |
| -2(39)   8         2(79)  | -2(13-679)  5      -2(679) | 2(67)   4         2(17)  |
| 1        5(79)     245-79 | 26789       2467   24789-6 | 258-67  8(67)     3      |
+---------------------------+----------------------------+--------------------------+

    aals [21,246] 64 Candidates,
    20 Truths = {13679R2 13679R8 13679C2 13679C8}
    47 Links = {1r4 3r6 7r79 9r13 9c3 13c4 679c6 7c9 28n1 134679n2 8n3 28n4 28n6 28n7 134679n8 2n9 1b19 3b37 6b19 7b379 9b137}
    43 Eliminations --> r8c4<>2679, r359c6<>6, r146c8<>8, r2c4<>679, r1c34<>1, r1c47<>3, r1c36<>9,
    r2c67<>4, r3c19<>9, r4c39<>1, r6c17<>3, r7c49<>1, r7c14<>3, r7c69<>7,
    r8c16<>2, r9c37<>7, r67c2<>5, r3c1<>6, r3c9<>7, r9c7<>6, r9c3<>9,


this ones pretty interesting as well
Code: Select all
+--------------------------+--------------------------+-------------------------+
| 7        59(1)    4589-1 | 29-13      1234   2459   | 248-3   89(3)    6      |
| 469      2        49(1)  | -679(13)   8      4679   | 47(3)   5        479    |
| 45689    569      3      | 2679       2467   245679 | 1       789      24789  |
+--------------------------+--------------------------+-------------------------+
| 2689     679(1)   2789-1 | 5          267    3      | 4678    6789(1)  4789-1 |
| 3568     4        1578   | 678        9      678    | 35678   2        1578   |
| 25689-3  5679(3)  25789  | 4          267    1      | 5678-3  6789(3)  5789   |
+--------------------------+--------------------------+-------------------------+
| 245-3    57(3)    6      | 278-13     12347  2478   | 9       78(1)    2578-1 |
| 29(3)    8        279    | -2679(13)  5      2679   | 267     4        27(1)  |
| 1        579      24579  | 26789      2467   246789 | 25678   678      3      |
+--------------------------+--------------------------+-------------------------+

    aals [21,246] 16 Candidates,
    8 Truths = {1R28 3R28 1C28 3C28}
    10 Links = {1r4 3r6 13c4 28n4 1b19 3b37}
    19 Eliminations --> r8c4<>2679, r2c4<>679, r1c34<>1, r1c47<>3, r4c39<>1, r6c17<>3, r7c49<>1,
    r7c14<>3,

which is 2 fish patterns integrated
Code: Select all
+------------------------+-------------------------+------------------------+
| 7       59(1)   4589-1 | 239-1     1234   2459   | 2348   389      6      |
| 469     2       49(1)  | 3679(1)   8      4679   | 347    5        479    |
| 45689   569     3      | 2679      2467   245679 | 1      789      24789  |
+------------------------+-------------------------+------------------------+
| 2689    679(1)  2789-1 | 5         267    3      | 4678   6789(1)  4789-1 |
| 3568    4       1578   | 678       9      678    | 35678  2        1578   |
| 235689  35679   25789  | 4         267    1      | 35678  36789    5789   |
+------------------------+-------------------------+------------------------+
| 2345    357     6      | 2378-1    12347  2478   | 9      78(1)    2578-1 |
| 239     8       279    | 23679(1)  5      2679   | 267    4        27(1)  |
| 1       579     24579  | 26789     2467   246789 | 25678  678      3      |
+------------------------+-------------------------+------------------------+


Code: Select all
+-------------------------+-------------------------+------------------------+
| 7        159      14589 | 129-3     1234   2459   | 248-3   89(3)    6     |
| 469      2        149   | 1679(3)   8      4679   | 47(3)   5        479   |
| 45689    569      3     | 2679      2467   245679 | 1       789      24789 |
+-------------------------+-------------------------+------------------------+
| 2689     1679     12789 | 5         267    3      | 4678    16789    14789 |
| 3568     4        1578  | 678       9      678    | 35678   2        1578  |
| 25689-3  5679(3)  25789 | 4         267    1      | 5678-3  6789(3)  5789  |
+-------------------------+-------------------------+------------------------+
| 245-3    57(3)    6     | 1278-3    12347  2478   | 9       178      12578 |
| 29(3)    8        279   | 12679(3)  5      2679   | 267     4        127   |
| 1        579      24579 | 26789     2467   246789 | 25678   678      3     |
+-------------------------+-------------------------+------------------------+
Some do, some teach, the rest look it up.
stormdoku
User avatar
StrmCkr
 
Posts: 1433
Joined: 05 September 2006

Re: diagonals+centres

Postby yzfwsf » Sat Oct 31, 2020 5:52 pm

denis_berthier wrote:The first step is a long g-whip[13], with a single right-linking g-candidate: n9r9c456, in the third csp-variable:
g-whip[13]: r1n6{c8 c5} - r9n6{c5 c2} - r9n9{c2 c456} - r7n9{c6 c2} - r8c1{n9 n4} - c3n4{r9 r1} - r1c4{n4 n3} - r1c2{n3 n5} - r3c1{n5 n2} - b2n2{r3c6 r1c6} - c6n7{r1 r3} - r3n9{c6 c4} - r3n4{c4 .} ==> r1c8 ≠ 9

chain.png
chain.png (52.01 KiB) Viewed 646 times

RTA0 [21,206] 45 Candidates,
14 Truths = {3R2 4R3 6R19 9R2379 4C3 7C6 8N1 1N4 2B12}
21 Links = {49r1 2r3 6c5 9c28 1n3568 2n13 3n46 3b2 4b17 6b7 9b378}
1 Elimination --> (1n8*9b3*9c8*9r1) => r1c8<>9
yzfwsf
 
Posts: 921
Joined: 16 April 2019

Re: diagonals+centres

Postby denis_berthier » Sat Oct 31, 2020 6:11 pm

yzfwsf wrote:
denis_berthier wrote:The first step is a long g-whip[13], with a single right-linking g-candidate: n9r9c456, in the third csp-variable:
g-whip[13]: r1n6{c8 c5} - r9n6{c5 c2} - r9n9{c2 c456} - r7n9{c6 c2} - r8c1{n9 n4} - c3n4{r9 r1} - r1c4{n4 n3} - r1c2{n3 n5} - r3c1{n5 n2} - b2n2{r3c6 r1c6} - c6n7{r1 r3} - r3n9{c6 c4} - r3n4{c4 .} ==> r1c8 ≠ 9

chain.png

RTA0 [21,206] 45 Candidates,
14 Truths = {3R2 4R3 6R19 9R2379 4C3 7C6 8N1 1N4 2B12}
21 Links = {49r1 2r3 6c5 9c28 1n3568 2n13 3n46 3b2 4b17 6b7 9b378}
1 Elimination --> (1n8*9b3*9c8*9r1) => r1c8<>9


Hi yzfwsf,
What's your point?
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: diagonals+centres

Postby yzfwsf » Sat Oct 31, 2020 7:25 pm

Hi denis
You said you can’t run Xsudo. I’ll give you the chain automatically found by Xsudo for comparison. Is it very similar to yours?
Please take a look at the lower part of the screenshot.
yzfwsf
 
Posts: 921
Joined: 16 April 2019

Re: diagonals+centres

Postby Leren » Sat Oct 31, 2020 7:50 pm

Strmckr wrote : lets turn off the useless #### and make it the real digits doing the work and focus on the hidden als. 13679: 5 digits 6 cells x 4; 24 cells 20 digits each set sharing 1 digit ,{2 cells }locking the other 4 in a loop.

HI StrmCkr. I think I can see what you are getting at but I can't quite see how you are making a Rank 0 pattern with 24 Truths and links (if that is what you are doing). Perhaps you could explain that part in more detail. Leren
Leren
 
Posts: 5124
Joined: 03 June 2012

Re: diagonals+centres

Postby pjb » Sat Oct 31, 2020 11:29 pm

Leren wrote:
For some reason in the second puzzle I found two Multifish in the same cells for a total of 27 eliminations. From the look of them I'll bet Phil's variant SK loop will apply. Leren


Quite correct: Two SK loops, first normal, and second (using same cells) variant.
(29=38)r2c13 - (38=59)r13c2 - (59=16)r79c2 - (16=49)r8c13 - (49=38)r8c79 - (38=79)r79c8 - (79=16)r13c8 - (16=29)r2c79 - loop
13 Eliminations (green cells): r2c4 <> 9, r2c6 <> 2, r2c6 <> 9, r8c4 <> 4, r8c4 <> 9, r8c6 <> 4, r8c6 <> 9, r4c2 <> 5, r4c2 <> 9, r6c2 <> 9, r4c8 <> 9, r6c8 <> 7, r6c8 <> 9
(naked triple:138 at r258c6 => -1 r37c6, -3 r19c6, -8 r37c6)
(2=389)r2c13 - (389=5)r13c2 - (5=169)r79c2 - (169=4)r8c13 - (4=389)r8c79 - (389=7)r79c8 - (7=169)r13c8 - (169=2)r2c79 - loop
8 Eliminations (green cells): r1c3 <> 9, r3c1 <> 9, r1c7 <> 9, r3c9 <> 9, r7c1 <> 9, r9c3 <> 9, r7c9 <> 9, r9c7 <> 9
27 eliminations, same as Leren

First of Denis's puzzles not so friendly. My solver finds an "Almost +1 SK loop".

Phil
pjb
2014 Supporter
 
Posts: 2673
Joined: 11 September 2011
Location: Sydney, Australia

Re: diagonals+centres

Postby denis_berthier » Sun Nov 01, 2020 2:19 am

yzfwsf wrote:Hi denis
You said you can’t run Xsudo. I’ll give you the chain automatically found by Xsudo for comparison. Is it very similar to yours?
Please take a look at the lower part of the screenshot.

I see. Thanks.
I've seen lots of graphics of this kind years ago, when Allan was on this forum.
But I'm surprised by the last line: I've never seen xsudo output a chain; I've only seen Allan doing it manually.
Anyway, there are several questions:
- is this the first thing xsudo outputs when you give it the puzzle?
- otherwise, what input did you give it?

Anyway, what this mainly shows is the gap between the Truths-Links found by xsudo and the g-whip.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: diagonals+centres

Postby StrmCkr » Sun Nov 01, 2020 2:24 am

HI StrmCkr. I think I can see what you are getting at but I can't quite see how you are making a Rank 0 pattern with 24 Truths and links (if that is what you are doing). Perhaps you could explain that part in more detail. Leren


ill attempt it ... ive used this same move before in the past on Easter monster/mine by flipping the markers from naked set to hidden for an sk loop.{ that used to use the R/C not just the box}.

Code: Select all
+----------------------+-----------------------+---------------------+
| 7       159    14589 | 1239    1234   2459   | 2348   389    6     |
| 469     2      149   | 13679   8      4679   | 347    5      479   |    x
| 45689   569    3     | 2679    2467   245679 | 1      789    24789 |
+----------------------+-----------------------+---------------------+
| 2689    1679   12789 | 5       267    3      | 4678   16789  14789 |
| 3568    4      1578  | 678     9      678    | 35678  2      1578  |
| 235689  35679  25789 | 4       267    1      | 35678  36789  5789  |
+----------------------+-----------------------+---------------------+
| 2345    357    6     | 12378   12347  2478   | 9      178    12578 |
| 239     8      279   | 123679  5      2679   | 267    4      127   |    x 
| 1       579    24579 | 26789   2467   246789 | 25678  678    3     |
           x                                             x 
+----------------------+-----------------------+---------------------+


all the x's have 2549 as givens when combined as a naked set { 4 sets via RRCC}
that leaves
13679 in 6 cells for 4 sets {RRCC}
each of the sets has 2 cells {digits 1 & 3} shared between R/C x 4

20 digits in 24 cells with
2 sets of shares in 4 covered {16 cells } {8 independent}
2 digits shared twice over 4 intersections.
4*2 / 2 = 4.
Attachments
15.PNG
15.PNG (218.19 KiB) Viewed 621 times
Some do, some teach, the rest look it up.
stormdoku
User avatar
StrmCkr
 
Posts: 1433
Joined: 05 September 2006

Re: diagonals+centres

Postby StrmCkr » Sun Nov 01, 2020 3:22 am

like this in mine puzzle from years back
12467 naked set given in the rrcc
3589 hidden set
Code: Select all
+-------------------------+--------------------------+-------------------------+
| 5       17(3)     1467  | 23468   234678    378    | 1246   46(8)     9      |
| 46(3)   2         46(9) | 1       -46(389)  (3589) | 46(5)  7         46(8)  |
| 1467    17(9)     8     | 24569   24679     579    | 3      46(5)     1246   |
+-------------------------+--------------------------+-------------------------+
| 13678   4         15679 | 389     1389      2      | 5679   -6(3589)  3678   |
| 123678  -17(389)  12679 | 3489    5         1389   | 24679  -46(389)  234678 |
| 238     (3589)    259   | 7       3489      6      | 2459   1         2348   |
+-------------------------+--------------------------+-------------------------+
| 1247    17(5)     3     | 2569    12679     1579   | 8      46(9)     1467   |
| 17(8)   6         17(5) | (3589)  -17(389)  4      | 17(9)  2         17(3)  |
| 9       17(8)     1247  | 2368    123678    1378   | 1467   46(3)     5      |
+-------------------------+--------------------------+-------------------------+


normal sk.
Code: Select all
+-----------------------+---------------------+-----------------------+
| 5       (137)   1467  | 23468  234678  378  | 12-46  (468)   9      |
| (346)   2       (469) | 1      389-46  3589 | (456)  7       (468)  |
| 1467    (179)   8     | 24569  24679   579  | 3      (456)   12-46  |
+-----------------------+---------------------+-----------------------+
| 13678   4       15679 | 389    1389    2    | 5679   3589-6  3678   |
| 123678  389-17  12679 | 3489   5       1389 | 24679  389-46  234678 |
| 238     3589    259   | 7      3489    6    | 2459   1       2348   |
+-----------------------+---------------------+-----------------------+
| 24-17   (157)   3     | 2569   12679   1579 | 8      (469)   1467   |
| (178)   6       (157) | 3589   389-17  4    | (179)  2       (137)  |
| 9       (178)   24-17 | 2368   123678  1378 | 1467   (346)   5      |
+-----------------------+---------------------+-----------------------+
Some do, some teach, the rest look it up.
stormdoku
User avatar
StrmCkr
 
Posts: 1433
Joined: 05 September 2006

Re: diagonals+centres

Postby Leren » Sun Nov 01, 2020 6:14 am

Withdrawn.
Last edited by Leren on Mon Nov 02, 2020 2:00 am, edited 3 times in total.
Leren
 
Posts: 5124
Joined: 03 June 2012

Re: diagonals+centres

Postby StrmCkr » Sun Nov 01, 2020 7:03 am

Have we been missing something all these years, or is this a property of the variant SK loop ?

Probably an oversight since sk's usually only focus on the naked set in the box

which is usually 5 digits locked to 16 cells because of the 4 digit hidden set that loops on the outside of it as shown in my example from 11.7 strmckr puzzle the eliminations are identical to the original which is was probably why we overlooked it then

naked and hidden sets are always in a balance :) if the hidden set is the larger set then the hidden set eliminations can go haywire as the hidden set locks to its self for internal looping digits lock to them selves {1/3} if they overlap
then we have peer eliminations
among other things.

:)
Some do, some teach, the rest look it up.
stormdoku
User avatar
StrmCkr
 
Posts: 1433
Joined: 05 September 2006

Re: diagonals+centres

Postby Leren » Sun Nov 01, 2020 7:45 am

Withdrawn.
Last edited by Leren on Mon Nov 02, 2020 2:01 am, edited 1 time in total.
Leren
 
Posts: 5124
Joined: 03 June 2012

PreviousNext

Return to Puzzles