Leren wrote:For some reason in the second puzzle I found two Multifish in the same cells for a total of 27 eliminations. From the look of them I'll bet Phil's variant SK loop will apply. Leren
*--------------------------------------------------------------------------------*
| 1 359 245 | 349 236 2479 | 257 679 8 |
| 239 7 289 | 1368 5 138 | 129 4 269 |
| 245 589 6 | 1489 128 2479 | 3 179 257 |
|--------------------------+--------------------------+--------------------------|
| 2359 138 12589 | 7 1348 6 | 14589 138 3459 |
| 3567 4 1578 | 138 9 138 | 1578 2 3567 |
| 379 1368 1789 | 2 1348 5 | 14789 1368 3479 |
|--------------------------+--------------------------+--------------------------|
| 457 159 3 | 14589 128 249 | 6 789 247 |
| 469 2 149 | 1368 7 138 | 489 5 349 |
| 8 569 457 | 3459 236 249 | 247 379 1 |
*--------------------------------------------------------------------------------*
Leren wrote:
- Code: Select all
*--------------------------------------------------------------------------------*
| 1 359 245 | 349 236 2479 | 257 679 8 |
| 239 7 289 | 1368 5 138 | 129 4 269 |
| 245 589 6 | 1489 128 2479 | 3 179 257 |
|--------------------------+--------------------------+--------------------------|
| 2359 138 12589 | 7 1348 6 | 14589 138 3459 |
| 3567 4 1578 | 138 9 138 | 1578 2 3567 |
| 379 1368 1789 | 2 1348 5 | 14789 1368 3479 |
|--------------------------+--------------------------+--------------------------|
| 457 159 3 | 14589 128 249 | 6 789 247 |
| 469 2 149 | 1368 7 138 | 489 5 349 |
| 8 569 457 | 3459 236 249 | 247 379 1 |
*--------------------------------------------------------------------------------*
This is the PM after a preliminary Swordfish and the 27 eliminations. Putting this into Hodoku it's first 5 moves are Brute Force and 4 forcing chains.
Leren
(solve-sukaku-grid
*--------------------------------------------------------------------------------*
! 1 359 245 ! 349 236 2479 ! 257 679 8 !
! 239 7 289 ! 1368 5 138 ! 129 4 269 !
! 245 589 6 ! 1489 128 2479 ! 3 179 257 !
!--------------------------+--------------------------+--------------------------!
! 2359 138 12589 ! 7 1348 6 ! 14589 138 3459 !
! 3567 4 1578 ! 138 9 138 ! 1578 2 3567 !
! 379 1368 1789 ! 2 1348 5 ! 14789 1368 3479 !
!--------------------------+--------------------------+--------------------------!
! 457 159 3 ! 14589 128 249 ! 6 789 247 !
! 469 2 149 ! 1368 7 138 ! 489 5 349 !
! 8 569 457 ! 3459 236 249 ! 247 379 1 !
*--------------------------------------------------------------------------------*
)
denis_berthier wrote:I don't know what Brute Force means in Hodoku (probably some kind of T&E).
It may be the case that Hodoku doesn't have any grouped variant of forcing chains and that's why it has to use "Brute Force" at this point. But anyway, the second step should be a mere forcing chain.
The first step is a long g-whip[13], with a single right-linking g-candidate: n9r9c456, in the third csp-variable:
g-whip[13]: r1n6{c8 c5} - r9n6{c5 c2} - r9n9{c2 c456} - r7n9{c6 c2} - r8c1{n9 n4} - c3n4{r9 r1} - r1c4{n4 n3} - r1c2{n3 n5} - r3c1{n5 n2} - b2n2{r3c6 r1c6} - c6n7{r1 r3} - r3n9{c6 c4} - r3n4{c4 .} ==> r1c8 ≠ 9
denis_berthier wrote:Leren wrote:This has 7 fewer candidates than the previous one. Pasting this into Hodoku, it's first move is a (very tedious) forcing chain:
Forcing Chain Contradiction in c3 => r3c9=2r3c9<>2 r3c9=4 r2c79<>4 r2c13=4 r1c3<>4r3c9<>2 r8c9=2 r8c9<>1 r8c4=1 r2c4<>1 r2c3=1 r2c3<>4r3c9<>2 r3c9=4 r3c5<>4 r9c5=4 r9c3<>4
Is this supposed to be a single chain (of length 9)?
(4)r1c3 - r1c6 = r3c56 - (4=2)r3c9
||
(4-1)r2c3 = r2c4 - r8c4 = (1)r8c9
||
(4)r9c3 - r9c5 = r3c5 - (4=2)r3c9
=> -2 r8c9
If so, Hodoku is pretty bad at this point, as it misses a much shorter chain (length 5):
whip[5]: b9n1{r7c8 r8c9} - c4n1{r8 r2} - r2n3{c4 c7} - b3n7{r2c7 r2c9} - r5c9{n7 .} ==> r7c8 ≠ 7
Notice that, after the first whip[5], none of the patterns depends on the target(s) and almost all of them are very simple bivalue-chains (basics AICs).
biv (4) => -7 r79c8 (AIC)
biv (4) => -4 r2c1 (DNL)
biv (5) => -8 r13c8,r9c7 (AIC)
biv (3) => -8 r9c6 (W-Wing)
biv (6) => -9 r13c2,r8c3 (XY-Chain)
biv (6) => -6 r359c6 (XY-Chain)
biv (3) => -9 r1c6,r9c4 (XY-Wing)
biv (3) => -6 r6c2 (X-Chain)
biv (7) => -6 r3c2,r46c1 (XY-Chain); stte
Leren wrote:For some reason in the second puzzle I found two Multifish in the same cells for a total of 27 eliminations. From the look of them I'll bet Phil's variant SK loop will apply. Leren
\b1:38 \b7:16 \28n \28n \b3:16 \b9:38
*1368 *1368
.-------------------------.-------------------------.--------------------------.
| 1^ 359 2459 | 3469 236 23479 | 2579 679 8^ |
| 239 7 289 | \1368-9 5 \138-29 | 129 4 269 | *1368
| 2459 589 6^ | 1489 128 124789 | 3^ 179 2579 |
:-------------------------+-------------------------+--------------------------:
| 2359 \138-59 12589 | 7 1348 6^ | 14589 \138-9 3459 | \n28
| 3567 4 1578 | 138 9 138 | 1578 2 3567 |
| 3679 \1368-9 1789 | 2 1348 5 | 14789 \1368-79 34679 | \n28
:-------------------------+-------------------------+--------------------------:
| 4579 159 3^ | 14589 128 12489 | 6^ 789 2479 |
| 469 2 149 | \1368-49 7 \138-49 | 489 5 349 | *1368
| 8^ 569 4579 | 34569 236 2349 | 2479 379 1^ |
'-------------------------'-------------------------'--------------------------'
.----------------------.-------------------.----------------------.
| 1 359 245-9 | 349 236 2479 | 257-9 679 8 |
| *239 7 *289 | 1368 5 138 | *129 4 *269 |
| 245-9 589 6 | 1489 128 2479 | 3 179 257-9 |
:----------------------+-------------------+----------------------:
| *2359 138 *12589 | 7 1348 6 | *14589 138 *3459 |
| 3567 4 1578 | 138 9 138 | 1578 2 3567 |
| *379 1368 *1789 | 2 1348 5 | *14789 1368 *3479 |
:----------------------+-------------------+----------------------:
| 457-9 159 3 | 14589 128 249 | 6 789 247-9 |
| *469 2 *149 | 1368 7 138 | *489 5 *349 |
| 8 569 457-9 | 3459 236 249 | 247-9 379 1 |
'----------------------'-------------------'----------------------'
(9)r2468\c1379 => 8 elims
\b1:389 \b7:169 \b3:169 \b9:389
\5[9] \7[9]
.-------------------------.-----------------------.--------------------------.
| 1^ *359 245-9 | 349 236 23479 | 257-9 *679 8^ |
| *239 7 *289 | 1368-9 5 138-29 | *129 4 *269 | \2[9]
| 245-9 *589 6^ | 1489 128 124789 | 3^ *179 257-9 |
:-------------------------+-----------------------+--------------------------:
| 2359 138-59 12589 | 7 1348 6^ | 14589 138-9 3459 |
| 3567 4 1578 | 138 9 138 | 1578 2 3567 |
| 379 1368-9 1789 | 2 1348 5 | 14789 1368-79 3479 |
:-------------------------+-----------------------+--------------------------:
| 457-9 *159 3^ | 14589 128 12489 | 6^ *789 247-9 |
| *469 2 *149 | 1368-49 7 138-49 | *489 5 *349 | \4[9]
| 8^ *569 457-9 | 3459 236 2349 | 247-9 *379 1^ |
'-------------------------'-----------------------'--------------------------'
+---------------------------+------------------------------+--------------------------+
| 7 (159) 458-19 | 29-13 (13-24) 245-9 | 248-3 (39-8) 6 |
| (469) 2 (149) | (13-679) 8 (679-4) | (37-4) 5 (479) |
| 458-69 (569) 3 | 2679 (467-2) 24579-6 | 1 (789) 248-79 |
+---------------------------+------------------------------+--------------------------+
| 2689 (1679) 2789-1 | 5 (267) 3 | 4678 (1679-8) 4789-1 |
| 356-8 4 157-8 | (678) 9 (78-6) | 3567-8 2 157-8 |
| 25689-3 (3679-5) 25789 | 4 (267) 1 | 5678-3 (3679-8) 5789 |
+---------------------------+------------------------------+--------------------------+
| 245-3 (37-5) 6 | 278-13 (13-247) 248-7 | 9 (178) 258-17 |
| (39-2) 8 (279) | (13-2679) 5 (679-2) | (267) 4 (127) |
| 1 (579) 245-79 | 26789 (467-2) 24789-6 | 258-67 (678) 3 |
+---------------------------+------------------------------+--------------------------+
+----------------------+---------------------+----------------------+
| 7 (159) 458 | 29 (13) 245 | 248 (39) 6 |
| (469) 2 (149) | (13) 8 (679) | (37) 5 (479) |
| 458 (569) 3 | 2679 (467) 24579 | 1 (789) 248 |
+----------------------+---------------------+----------------------+
| 2689 (1679) 2789 | 5 (267) 3 | 4678 (1679) 4789 |
| 356 4 157 | (678) 9 (78) | 3567 2 157 |
| 25689 (3679) 25789 | 4 (267) 1 | 5678 (3679) 5789 |
+----------------------+---------------------+----------------------+
| 245 (37) 6 | 278 (13) 248 | 9 (178) 258 |
| (39) 8 (279) | (13) 5 (679) | (267) 4 (127) |
| 1 (579) 245 | 26789 (467) 24789 | 258 (678) 3 |
+----------------------+---------------------+----------------------+
+--------------------+------------------------+--------------------+
| 7 159 458 | (29) 13 245 | 248 (39) 6 |
| 469 2 149 | 13 8 (679) | (37) 5 (479) |
| (458) 569 3 | (2679) (467) (24579) | 1 (789) 28-4 |
+--------------------+------------------------+--------------------+
| 2689 1679 2789 | 5 267 3 | 4678 1679 4789 |
| 356 4 157 | 678 9 78 | 3567 2 157 |
| 25689 3679 25789 | 4 267 1 | 5678 3679 5789 |
+--------------------+------------------------+--------------------+
| 245 37 6 | 278 13 248 | 9 178 258 |
| 39 8 279 | 13 5 679 | 267 4 127 |
| 1 579 245 | 26789 467 24789 | 258 678 3 |
+--------------------+------------------------+--------------------+
Ajò Dimonios wrote:Using contradiction chains it is possible to solve the puzzle in 4 steps.
1)27 eliminations by crossing the conjugate tracks T (1r4c8) and T (1r7c8) see post by Mauriès Robert
2) T (1r7c8) .T (8r1c3) => contracdiction
3) T (1r7c8) .T (8r1c7) => contracdiction => - 1r7c8
4) T (7r7c8) => contracdiction => - 7r7c8; stte.
ttte
denis_berthier wrote:Ajò Dimonios wrote:Using contradiction chains it is possible to solve the puzzle in 4 steps.
1)27 eliminations by crossing the conjugate tracks T (1r4c8) and T (1r7c8) see post by Mauriès Robert
2) T (1r7c8) .T (8r1c3) => contracdiction
3) T (1r7c8) .T (8r1c7) => contracdiction => - 1r7c8
4) T (7r7c8) => contracdiction => - 7r7c8; stte.
I think you can make it still shorter:
- Code: Select all
ttte
ttte = tracks to the end
Mauriès Robert wrote:Hi Denis,denis_berthier wrote:Ajò Dimonios wrote:Using contradiction chains it is possible to solve the puzzle in 4 steps.
1)27 eliminations by crossing the conjugate tracks T (1r4c8) and T (1r7c8) see post by Mauriès Robert
2) T (1r7c8) .T (8r1c3) => contracdiction
3) T (1r7c8) .T (8r1c7) => contracdiction => - 1r7c8
4) T (7r7c8) => contracdiction => - 7r7c8; stte.
I think you can make it still shorter:
- Code: Select all
ttte
ttte = tracks to the end
Questionable humour!
I know that on this site the technique (TDP) that I defend, which Paolo is a user, is not well seen by many participants. I hope that you are not one of them.
Certainly, Paolo could have detailed it a little, but I understand his reluctance to waste time, because I see that on the remark we made on this thread of 27 eliminations by crossing two tracks, there was no intervention, neither from you nor from anyone else. However, I have given the details.
Robert
+--------------------+-------------------+-------------------+
| 7 159 14589 | 1239 13 2459 | 2348 389 6 |
| 469 2 149 | 13679 8 4679 | 347 5 479 |
| 45689 569 3 | 2679 467 245679 | 1 789 24789 |
+--------------------+-------------------+-------------------+
| 2689 1679 12789 | 5 267 3 | 4678 16789 14789 |
| 356 4 157 | 678 9 678 | 3567 2 157 |
| 235689 35679 25789 | 4 267 1 | 35678 36789 5789 |
+--------------------+-------------------+-------------------+
| 2345 357 6 | 12378 13 2478 | 9 178 12578 |
| 239 8 279 | 123679 5 2679 | 267 4 127 |
| 1 579 24579 | 26789 467 246789 | 25678 678 3 |
+--------------------+-------------------+-------------------+
+---------------+-----------------+----------------+
| 7 59 4589 | 29 1* 2459 | 248 3* 6 |
| 49 2 1* | 3* 8 6* | 47 5 479 |
| 4589 6* 3 | 279 47 24579 | 1 89 2489 |
+---------------+-----------------+----------------+
| 2689 1* 2789 | 5 267 3 | 478 6789 4789 |
| 56 4 57 | 678 9 78 | 3* 2 1* |
| 2689 3* 2789 | 4 267 1 | 578 6789 5789 |
+---------------+-----------------+----------------+
| 245 57 6 | 278 3* 2478 | 9 1* 2578 |
| 3* 8 29 | 1* 5 279 | 6* 4 27 |
| 1 579 2459 | 26789 467 24789 | 2578 78 3 |
+---------------+-----------------+----------------+
+--------------+----------------+---------------+
| 7 59 8 | 29 1* 259 | 4* 3 6 |
| 4* 2 1* | 3* 8 6 * | 7 5 79 |
| 59 6* 3 | 79 4* 579 | 1 8* 2* |
+--------------+----------------+---------------+
| 2689 1* 279 | 5 267 3 | 78 679 4789 |
| 56 4 57 | 678 9 78 | 3* 2 1* |
| 2689 3* 279 | 4 267 1 | 578 679 5789 |
+--------------+----------------+---------------+
| 25 57 6 | 278 3* 4* | 9 1 578 |
| 3* 8 29 | 1* 5 279 | 6* 4 7 |
| 1 579 4* | 26789 67 2789 | 2578 7 3 |
+--------------+----------------+---------------+
+----------+--------+--------+
| 7 5 4 | 9 1 2 | 8 3 6 |
| 9 2 1 | 3 8 6 | 7 5 4 |
| 8 6 3 | 7 4 5 | 1 9 2 |
+----------+--------+--------+
| 2 1 789 | 5 2 3 | 4 6 89 |
| 5 4 . | 8 9 7 | 3 2 1 |
| 26 3 789 | 4 26 1 | 5 7 89 |
+----------+--------+--------+
| 4 7 6 | 2 3 8 | 9 1 5 |
| 3 8 2 | 1 5 9 | 6 4 7 |
| 1 9 5 | 6 7 4 | 2 8 3 |
+----------+--------+--------+
+------------+----------------+----------+
| 7 1* 589 | 29 3* 259 | 4* 89 6 |
| 6* 2 49 | 1* 8 49 | 3* 5 7*|
| 48 59 3 | 679 467 4579 | 1 89 2*|
+------------+----------------+----------+
| 28 679 289 | 5 267 3 | 678 1* 4*|
| 3* 4 1* | 678 9 78 | 67 2 5*|
| 28 567 258 | 4 267 1 | 678 3* 9*|
+------------+----------------+----------+
| 5* 3* 6 | 2 1* 24 | 9 7* 8*|
| 9* 8 7* | 3* 5 6* | 2* 4 1*|
| 1 . 24 | 2789 47 24789 | 5* 6* 3 |
+------------+----------------+----------+
SpAce wrote:It also results in a perfect Jellyfish, which is kind of cool. (How rare are those, btw?)
*---------------------------------------------------------*
| 1 359 245-9 | 349 236 2479 | 257-9 679 8 |
|*239 7 *289 | 1368 5 138 |*129 4 *269 |
| 245-9 589 6 | 1489 128 2479 | 3 179 257-9 |
|-------------------+-----------------+-------------------|
|*2359 138 *12589 | 7 1348 6 |*14589 138 *3459 |
| 3567 4 1578 | 138 9 138 | 1578 2 3567 |
|*379 1368 *1789 | 2 1348 5 |*14789 1368 *3479 |
|-------------------+-----------------+-------------------|
| 457-9 159 3 | 14589 128 249 | 6 789 247-9 |
|*469 2 *149 | 1368 7 138 |*489 5 *349 |
| 8 569 457-9 | 3459 236 249 | 247-9 379 1 |
*---------------------------------------------------------*
*---------------------------------------------------------------------*
| 345678-9 *4589 *359 | 568-9 2678-9 2568-9 |*279 *1479 123478-9 |
| 345678-9 *4589 *359 | 568-9 1 2568-9 |*279 *479 23478-9 |
| 789 1 2 | 3 789 4 | 5 6 789 |
|----------------------+------------------------+---------------------|
| 1458-9 *4589 *159 | 14678-9 23 23 |*679 *179 1567-9 |
| 1459 2 7 | 1469 469 169 | 3 8 1569 |
| 189 3 6 | 1789 5 189 | 4 2 179 |
|----------------------+------------------------+---------------------|
| 1235-9 *59 *1359 | 14568-9 3468-9 13568-9 |*2679 *479 2467-9 |
| 39 6 8 | 2 349 7 | 1 5 49 |
| 1259 7 4 | 1569 69 1569 | 8 3 269 |
*---------------------------------------------------------------------*