Mike Barker wrote:I find a great way to compare different techniques is to be able to evaluate multiple solutions to the same puzzle. Here's an nrct-chain solution to U#26. It replaces the grouped and simple nice loops of my previous solution with nrct-chains. I've kept xy-chains and hxy-chains (x-cycles and advanced colouring) as these are part of nrct-chains. I hope others will post alternative solutions to the unsolvables, especially if they emphasize human solvability, some new technique, or some clever solution strategy.
I don't know if the following meets any of these criteria but here is a solution using only nrczt-chains and their specialisations (in addition to basic rules). The maximal length of all the chains involved is 6 (remember that length is the number of cells, i.e. half the number of linking candidates, and that the target is not included in the chain).
This may be considered an illustration of the fact that the z-extension allows shorter chains (it also allows the solution of puzzles that would not be solvable without it).
For chains, it is also an illustration of the general trade between the complexity of their types and their lengths.
The puzzle is UN26
***** SudoRules version 13 *****
026000900
005060400
000907000
900100005
040000280
500003004
000602000
009050700
001000850
hidden-singles ==> r2c2 = 9, r3c7 = 5, r7c2 = 5
column c7 interaction-with-block b6 ==> r6c8 <> 6, r5c9 <> 6, r4c8 <> 6
block b1 interaction-with-column c1 ==> r9c1 <> 7, r7c1 <> 7, r5c1 <> 7
nrc2-chain n1{r3c2 r6c2} - n1{r5c1 r5c9} ==> r3c9 <> 1
nrct4-chain {n8 n1}r2c6 - n1{r1c5 r7c5} - n7{r7c5 r7c3} - n8{r7c3 r7c1} ==> r2c1 <> 8
nrczt4-chain {n1 n8}r2c6 - {n8 n4}r8c6 - n4{r8c4 r1c4} - n5{r1c4 r1c6} ==> r1c6 <> 1
nrczt4-chain {n8 n1}r2c6 - {n1 n4}r8c6 - n4{r8c4 r1c4} - n5{r1c4 r1c6} ==> r1c6 <> 8
nrct5-chain n4{r3c3 r7c3} - n4{r7c8 r8c8} - n6{r8c8 r3c8} - n2{r3c8 r2c8} - n2{r2c4 r3c5} ==> r3c5 <> 4
row r3 interaction-with-block b1 ==> r1c1 <> 4
nrczt5-chain n4{r9c6 r9c1} - n2{r9c1 r8c1} - n6{r8c1 r5c1} - n6{r5c6 r4c6} - n4{r4c6 r4c5} ==> r7c5 <> 4
nrczt5-chain n7{r9c5 r9c4} - n7{r9c2 r6c2} - n6{r6c2 r6c7} - {n6 n3}r4c7 - {n3 n7}r4c8 ==> r4c5 <> 7
nrczt5-chain {n8 n1}r2c6 - n1{r1c5 r7c5} - n7{r7c5 r7c3} - n8{r7c3 r7c1} - n8{r3c1 r3c3} ==> r3c5 <> 8
nrczt6-chain {n3 n6}r4c7 - n6{r6c7 r6c2} - {n6 n8}r8c2 - n8{r8c6 r7c5} - n7{r7c5 r7c3} - {n7 n3}r9c2 ==> r4c2 <> 3
nrczt5-chain n7{r7c3 r7c5} - n8{r7c5 r7c1} - {n8 n6}r8c2 - n6{r9c1 r5c1} - n3{r5c1 r4c3} ==> r7c3 <> 3
nrczt6-chain {n8 n1}r2c6 - {n1 n4}r8c6 - n4{r9c4 r9c1} - n2{r9c1 r8c1} - n6{r8c1 r5c1} - n6{r5c6 r4c6} ==> r4c6 <> 8
hidden-pairs-in-a-column {n1 n8}{r2 r8}c6 ==> r8c6 <> 4
nrct6-chain {n9 n4}r9c6 - n4{r4c6 r4c5} - n2{r4c5 r4c3} - n8{r4c3 r4c2} - {n8 n7}r6c3 - n7{r7c3 r7c5} ==> r7c5 <> 9
row r7 interaction-with-block b9 ==> r9c9 <> 9
nrczt6-chain n6{r6c2 r6c7} - n1{r6c7 r6c8} - n9{r6c8 r5c9} - {n9 n7}r5c5 - n7{r7c5 r7c3} - n7{r6c3 r6c2} ==> r6c2 <> 8
nrczt6-chain {n3 n7}r4c8 - {n7 n1}r1c8 - {n1 n2}r2c8 - n2{r3c9 r3c5} - n1{r3c5 r7c5} - {n1 n3}r7c7 ==> r7c8 <> 3, r8c8 <> 3
nrczt6-chain n6{r4c2 r5c1} - n1{r5c1 r6c2} - n6{r6c2 r6c7} - {n6 n3}r4c7 - {n3 n7}r4c8 - n7{r4c2 r9c2} ==> r9c2 <> 6
hidden-pairs-in-a-row {n2 n6}r9{c1 c9} ==> r9c9 <> 3, r9c1 <> 4
row r9 interaction-with-block b8 ==> r8c4 <> 4
hidden-pairs-in-a-row {n2 n6}r9{c1 c9} ==> r9c1 <> 3
nrc3-chain n4{r8c8 r8c1} - n2{r8c1 r9c1} - {n2 n6}r9c9 ==> r8c8 <> 6
hidden-single-in-a-column ==> r3c8 = 6
nrct5-chain n4{r8c8 r8c1} - n2{r8c1 r9c1} - n6{r9c1 r5c1} - n1{r5c1 r5c9} - n1{r6c7 r7c7} ==> r8c8 <> 1
nrczt3-chain n1{r8c9 r8c6} - n1{r2c6 r2c1} - n1{r5c1 r5c9} ==> r1c9 <> 1
nrct5-chain {n1 n8}r8c6 - {n8 n3}r8c4 - {n3 n6}r8c2 - n6{r4c2 r5c1} - n1{r5c1 r5c9} ==> r8c9 <> 1
naked and hidden singles ==> r8c6 = 1, r2c6 = 8
nrc4-chain n4{r8c1 r8c8} - n2{r8c8 r2c8} - {n2 n3}r2c4 - {n3 n8}r8c4 ==> r8c1 <> 8
nrct4-chain {n3 n2}r2c4 - n2{r3c5 r3c9} - {n2 n6}r9c9 - {n6 n3}r8c9 ==> r8c4 <> 3
naked-single ==> r8c4 = 8
nrc3-chain {n3 n7}r7c5 - {n7 n9}r5c5 - n9{r5c9 r7c9} ==> r7c9 <> 3
nrc3-chain {n6 n3}r8c2 - n3{r8c9 r7c7} - {n3 n6}r4c7 ==> r4c2 <> 6
hidden-pairs-in-a-block {n1 n6}{r5c1 r6c2} ==> r6c2 <> 7
naked-pairs-in-a-row {n1 n6}r6{c2 c7} ==> r6c8 <> 1
hidden-pairs-in-a-block {n1 n6}{r5c1 r6c2} ==> r5c1 <> 3
block b4 interaction-with-column c3 ==> r3c3 <> 3
xy4-chain {n9 n1}r7c9 - {n1 n3}r7c7 - {n3 n7}r7c5 - {n7 n9}r5c5 ==> r5c9 <> 9
hidden-single-in-a-block ==> r6c8 = 9, r7c9 = 9
nrczt2-chain n7{r6c4 r6c3} - n7{r7c3 r7c5} ==> r5c5 <> 7
naked and hidden singles ==> r5c5 = 9, r9c6 = 9
nrc3-chain n1{r2c9 r5c9} - n1{r6c7 r7c7} - n3{r7c7 r8c9} ==> r2c9 <> 3
nrc4-chain n1{r3c2 r6c2} - n1{r6c7 r5c9} - n7{r5c9 r4c8} - {n7 n8}r4c2 ==> r3c2 <> 8
hidden singles ==> r4c2 = 8, r6c5 = 8, r9c2 = 7, r7c5 = 7
nrc4-chain n3{r8c2 r3c2} - n1{r3c2 r6c2} - n1{r6c7 r7c7} - n3{r7c7 r7c1} ==> r8c1 <> 3
nrct4-chain n2{r3c5 r3c9} - {n2 n6}r9c9 - {n6 n3}r8c9 - n3{r8c2 r3c2} ==> r3c5 <> 3
xy3-chain {n3 n2}r2c4 - {n2 n1}r3c5 - {n1 n3}r3c2 ==> r2c1 <> 3
nrc3-chain {n7 n1}r2c1 - n1{r2c9 r5c9} - n7{r5c9 r4c8} ==> r2c8 <> 7
nrc4-chain n7{r5c4 r6c4} - n2{r6c4 r2c4} - n3{r2c4 r2c8} - {n3 n7}r4c8 ==> r5c9 <> 7
hidden-single-in-a-block ==> r4c8 = 7
column c8 interaction-with-block b3 ==> r3c9 <> 3
row r3 interaction-with-block b1 ==> r1c1 <> 3
column c8 interaction-with-block b3 ==> r1c9 <> 3
hidden-pairs-in-a-row {n7 n8}r1{c1 c9} ==> r1c1 <> 1
nrc3-chain n4{r3c3 r3c1} - n3{r3c1 r7c1} - n8{r7c1 r7c3} ==> r7c3 <> 4
naked-singles ==> r7c3 = 8, r3c3 = 4
nrc4-chain n2{r3c9 r3c5} - n2{r4c5 r4c3} - n3{r4c3 r4c7} - n3{r7c7 r8c9} ==> r8c9 <> 2
naked-pairs-in-a-row {n3 n6}r8{c2 c9} ==> r8c1 <> 6
hxy-rn5-chain {c1 c9}r3n8 - {c9 c5}r3n2 - {c5 c3}r4n2 - {c3 c7}r4n3 - {c7 c1}r7n3 ==> r3c1 <> 3
hidden-single-in-a-block ==> r3c2 = 3
...(naked singles)...
826514937
795368412
134927568
982146375
643795281
517283694
358672149
469851723
271439856