Please can someone post them?StrmCkr wrote:they where published on a sub link... i dont see it either... werid..
#23
...8.21...6..4..5.1......72..59.67......8......13.48..25......1.1..3..9...34.1...
#24
6...8...5.4...128..8.....6...7..23.....5.8.....17......6.....4...43...2.3...9...6
#25
4...1...56..2.7..4......1...4.9...6...2.5.8...9...4.....7......8..5.1..31...6...8
#26
.26...9....5.6.4.....9.7...9..1....5.4....28.5....3..4...6.2.....9.5.7....1...85.
#27
.....1...4..9.8..5..2...6.8.3..5..71.8.....6..7..9..8.3.9...4..6..4.5..7...2.....
#28
..5...8...7.3...1.8..1.5..96......74...2.6...29......83....4..1.1...9.4...6...3..
#29
.....8.6.19.....7...5.2.4..93.....4....2.7....6.....89..3.7.8...5.....26.1.3.....
#30
.5.....6...4.2.3..9...4...5.96...5.....4.8.....5...13.7...6.2.3..2.1.9...3.....7.
#31
....5.....4.2.8.9...7.6.4.2.8.....7.7.6...2.5.5.....4.3.8.2.1...7.9.1.......3....
#32
9...1...3...4.7.....1.5.6...23...49.5.......8..8...72...6.4.5.....1.8...4...9...1
#33
.1.....5.7.8........26.83..9..3.5..7.........8..4.2..6..97.12....3...4...8.....9.
Michael Mepham wrote:
...8.21...6..4..5.1......72..59.67......8......13.48..25......1.1..3..9...34.1...
6...8...5.4...128..8.....6...7..23.....5.8.....17......6.....4...43...2.3...9...6
4...1...56..2.7..4......1...4.9...6...2.5.8...9...4.....7......8..5.1..31...6...8
.26...9....5.6.4.....9.7...9..1....5.4....28.5....3..4...6.2.....9.5.7....1...85.
.....1...4..9.8..5..2...6.8.3..5..71.8.....6..7..9..8.3.9...4..6..4.5..7...2.....
..5...8...7.3...1.8..1.5..96......74...2.6...29......83....4..1.1...9.4...6...3..
.....8.6.19.....7...5.2.4..93.....4....2.7....6.....89..3.7.8...5.....26.1.3.....
.5.....6...4.2.3..9...4...5.96...5.....4.8.....5...13.7...6.2.3..2.1.9...3.....7.
....5.....4.2.8.9...7.6.4.2.8.....7.7.6...2.5.5.....4.3.8.2.1...7.9.1.......3....
9...1...3...4.7.....1.5.6...23...49.5.......8..8...72...6.4.5.....1.8...4...9...1
.1.....5.7.8........26.83..9..3.5..7.........8..4.2..6..97.12....3...4...8.....9.
Applying this notation, a solution could be written asgurth wrote:When I use a forcing net, starting with a candidate x such as 5e4 and proceeding by SSTS to a contradiction, I am not going to list the SSTS steps, I am merely going to state " ? 5e4, (SSTS), ?? -5e4."
What is *not* customarily done (nor ever, as far as I have seen!) is to *eliminate* a candidate in some cell and then prove a contradiction, thus allowing *placement* of the eliminated candidate !!!
Why is it not customarily done? For no good reason. Simply because nobody has thought of doing it.
Gurth wrote:What is *not* customarily done (nor ever, as far as I have seen!) is to *eliminate* a candidate in some cell and then prove a contradiction, thus allowing *placement* of the eliminated candidate!!!
gurth wrote:I am well aware that in AIC, the majority of chains in fact start with a strong inference, i.e. the assumption of a false candidate.
gurth wrote:Quite clearly, I was referring to "customary" practices in FORCING NETS.
So it is beside the point to offer me examples of candidate elimination in the domains of AIC, Forcing Chains and Nice Loops.
*------------------------------------------------------------------------------*
| 346 1 46 | 29 23479 3479 | 6789 5 2489 |
| 7 34569 8 | 1259 123459 349 | 169 1246 1249 |
| 45 459 2 | 6 14579 8 | 3 147 149 |
|-------------------------+------------------------+---------------------------|
| 9 246 146 | 3 168 5 | 18 1248 7 |
| 123456 234567 14567 | 189 16789 679 | 1589 12348 1234589 |
| 8 357 157 | 4 179 2 | 159 13 6 |
|-------------------------+------------------------+---------------------------|
| 456 456 9 | 7 34568 1 | 2 368 358 |
| 1256 2567 3 | 2589 25689 69 | 4 1678 158 |
| 12456 8 14567 | 25 23456 346 | 1567 9 135 |
*------------------------------------------------------------------------------*
Locked Column Line/Box: r46c1 => r78c1<>8
Locked Column Line/Box: r46c8 => r9c8<>5
Locked Column Line/Box: r46c9 => r8c9<>8
Locked Column Box/Box: r137c7|r238c9 => r5c7<>9,r456c9<>9
UR+2D/1SL (5,9): r46c28 => r6c2<>5
Column Finned Swordfish: r2379c3|r379c6|r79c7 => r3c1<>5
3-element Nice Loop: r6c8=5=r6c1-5-r4c2-9-r4c4=9=r6c6~9~r6c8 => r6c8<>9
5-element Strong Nice Loop: r4c2-9-r4c4=9=r6c6=3=r3c6=5=r23c5-5-r8c5=5=r8c12~5~ => r9c2<>5
A=2 cell ALS xz-rule: r1c34-9-r179c6 => r3c6<>4
A=2 cell ALS xz-rule: r56c5-1-r8c5|r79c6 => r6c6<>4
B=2 cell ALS xy-rule: r179c6-9-r13c4-2-r234568c5 => r7c5<>5
Overlap 4-element Grouped Nice Loop: r1c3-9-ALS:r179c6-5-r8c5=5=r8c12-5-ALS:r179c3~2~ => r3c3<>2
+----------------------+--------------------+------------------+
| 6 1279 29*d | 249 8 479*b | 1479 3 5 |
| 579 4 359 | 69 3567 1 | 2 8 79 |
| 1279 8 359-2 | 249 23457 3579 | 1479 6 1479 |
+----------------------+--------------------+------------------+
| 4589 59 7 | 1469 146 2 | 3 19 148 |
| 249 239 6 | 5 134 8 | 147 179 1247 |
| 2489 239 1 | 7 34 39 | 6 5 248 |
+----------------------+--------------------+------------------+
| 12579 6 2589*d | 128 127 57*b | 1579 4 3 |
| 1579*c 1579*c 4 | 3 157* 6 | 8 2 179 |
| 3 127 258*d | 1248 9 457*b | 157 17 6 |
+----------------------+--------------------+------------------+
4-element Grouped Nice Loop: ALS:r2c19-5-r23c3=5=r79c3-5-r8c12=5=r8c5-5-ALS:r179c6~9~ => r2c4<>9
+----------------------+--------------------+------------------+
| 6 1279 29 | 249 8 479*e | 1479 3 5 |
| 579* 4 359*b | 6-9 3567 1 | 2 8 79* |
| 1279 8 359*b | 249 23457 3579 | 1479 6 1479 |
+----------------------+--------------------+------------------+
| 4589 59 7 | 1469 146 2 | 3 19 148 |
| 249 239 6 | 5 134 8 | 147 179 1247 |
| 2489 239 1 | 7 34 39 | 6 5 248 |
+----------------------+--------------------+------------------+
| 12579 6 2589*c | 128 127 57*e | 1579 4 3 |
| 1579*d 1579*d 4 | 3 157* 6 | 8 2 179 |
| 3 127 258*c | 1248 9 457*e | 157 17 6 |
+----------------------+--------------------+------------------+
Endofin Mutant Swordfish (r28c3/c9b17): r2c139|r8c129|r137c3 => r3c1<>9,r1c2<>9
+---------------------+--------------------+------------------+
| 6 127-9 29* | 249 8 479 | 1479 3 5 |
| 579* 4 359# | 6 357 1 | 2 8 79* |
| 127-9 8 359* | 249 23457 3579 | 1479 6 1479 |
+---------------------+--------------------+------------------+
| 4589 59 7 | 149 6 2 | 3 19 148 |
| 249 239 6 | 5 134 8 | 147 179 1247 |
| 2489 239 1 | 7 34 39 | 6 5 248 |
+---------------------+--------------------+------------------+
| 12579 6 2589* | 128 127 57 | 1579 4 3 |
| 1579* 1579* 4 | 3 157 6 | 8 2 179* |
| 3 127 258 | 1248 9 457 | 157 17 6 |
+---------------------+--------------------+------------------+
3-element Grouped Nice Loop: ALS:r4c48-4-r56c5=4=r3c5-4-ALS:r238c9~1~ => r4c9<>1
+--------------------+--------------------+-------------------+
| 6 127 29 | 249 8 479 | 1479 3 5 |
| 579 4 359 | 6 357 1 | 2 8 79*c |
| 127 8 359 | 249 23457* 3579 | 1479 6 1479*c |
+--------------------+--------------------+-------------------+
| 4589 59 7 | 149* 6 2 | 3 19* 48-1 |
| 249 239 6 | 5 134*b 8 | 147 179 1247 |
| 2489 239 1 | 7 34*b 39 | 6 5 248 |
+--------------------+--------------------+-------------------+
| 12579 6 2589 | 128 127 57 | 1579 4 3 |
| 1579 1579 4 | 3 157 6 | 8 2 179*c |
| 3 127 258 | 1248 9 457 | 157 17 6 |
+--------------------+--------------------+-------------------+
UR+3C/2SL (4,8): r46c19 => r6c1<>4
UR+4X/2SL (8,2): r79c34, r9c2678 => r7c3<>2
4-valued/2-element Kraken Row (r1c2=1=r1c7-1-, r1c6-7-r7c6-5-r7c7|r9c8|r8c9-1-, r1c7-7-r2c9-9-r9c8|r8c9-1-): r1c267=7 => r9c7<>1
+-------------------+--------------------+-------------------+
| 6 127*b 29 | 249 8 479* | 1479*b 3 5 |
| 579 4 359 | 6 357 1 | 2 8 79d |
| 127 8 359 | 249 23457 3579 | 1479 6 1479 |
+-------------------+--------------------+-------------------+
| 4589 59 7 | 149 6 2 | 3 19 48 |
| 249 239 6 | 5 134 8 | 147 179 1247 |
| 289 239 1 | 7 34 39 | 6 5 248 |
+-------------------+--------------------+-------------------+
| 12579 6 589 | 128 127 57c | 1579c 4 3 |
| 1579 1579 4 | 3 157 6 | 8 2 179cd |
| 3 127 258 | 1248 9 457 | 57-1 17cd 6 |
+-------------------+--------------------+-------------------+
UR+2D/1SL (5,7): r79c67 => r9c6<>5
6-element Advanced Colouring: r9c7=5=r7c7-5-r7c6=5=r3c6=3=r6c6=9=r4c4-9-r4c8=9=r5c8=7=r9c8~7~r9c7 => r9c7<>7
4-valued/2-element Kraken Row (r7c1-7-r23c1=7=r1c2-7-r13c4|r1c6-9-, r7c5=2=r3c5-2-r13c4-9-, r7c6-7-r19c6-9-, r7c7-7-r49c8-9-r4c4=9=r6c6-9-): r7c1567=7 => r3c6<>9
+-------------------+---------------------+------------------+
| 6 127b 29 | 249bc 8 479bd | 1479 3 5 |
| 579b 4 359 | 6 357 1 | 2 8 79 |
| 127b 8 359 | 249bc 23457c 357-9 | 1479 6 1479 |
+-------------------+---------------------+------------------+
| 4589 59 7 | 149e 6 2 | 3 19e 48 |
| 249 239 6 | 5 134 8 | 147 179 1247 |
| 289 239 1 | 7 34 39e | 6 5 248 |
+-------------------+---------------------+------------------+
| 12579* 6 589 | 128 127*c 57* | 179* 4 3 |
| 1579 1579 4 | 3 157 6 | 8 2 179 |
| 3 127 28 | 1248 9 47d | 5 17e 6 |
+-------------------+---------------------+------------------+
3-valued/2-element Kraken Blossom (r9c4-1-r9c28-2-r6c26-9-, r9c4-2-r13c4-9-r4c4=9=r6c6-9-, r9c4-4-r13c4-9-r4c4=9=r6c6-9-, r9c4-8-r19c3-9-r1c6=9=r6c6-9-): r9c4=1248 => r6c1<>9
+-------------------+---------------------+------------------+
| 6 127 29e | 249cd 8 479e | 1479 3 5 |
| 579 4 359 | 6 357 1 | 2 8 79 |
| 127 8 359 | 249cd 23457 357 | 1479 6 1479 |
+-------------------+---------------------+------------------+
| 4589 59 7 | 149cd 6 2 | 3 19 48 |
| 249 239 6 | 5 134 8 | 147 179 1247 |
| 28-9 239b 1 | 7 34 39bcde | 6 5 248 |
+-------------------+---------------------+------------------+
| 12579 6 589 | 128 127 57 | 179 4 3 |
| 1579 1579 4 | 3 157 6 | 8 2 179 |
| 3 127b 28e | 1248* 9 47 | 5 17b 6 |
+-------------------+---------------------+------------------+
Advanced 2-line BUG Lite (XY:r6c1|r4c9-8-r6c9, SL:r4c1=4=r5c1, SL:r6c9=2=r5c9): r456c19 => r4c1<>8,r6c9<>8
4-valued/2-element Kraken Row (r9c2-1-r1c2=1=r1c7=4=r1c46-4-, r9c4-1-r9c28-2-r6c256-4-, r9c8-1-r4c8=1=r4c4=4=r56c5-4-): r9c248=1 => r3c5<>4
+-------------------+--------------------+------------------+
| 6 127b 29 | 249b 8 479b | 1479b 3 5 |
| 579 4 359 | 6 357 1 | 2 8 79 |
| 127 8 359 | 249 2357-4 357 | 1479 6 1479 |
+-------------------+--------------------+------------------+
| 459 59 7 | 149d 6 2 | 3 19d 8 |
| 249 239 6 | 5 134d 8 | 147 179 1247 |
| 8 239c 1 | 7 34cd 39c | 6 5 24 |
+-------------------+--------------------+------------------+
| 12579 6 589 | 128 127 57 | 179 4 3 |
| 1579 1579 4 | 3 157 6 | 8 2 179 |
| 3 127*c 28 | 1248* 9 47 | 5 17*c 6 |
+-------------------+--------------------+------------------+
Locked Column Box/Box: r139c4|r19c6 => r4c4<>4
5-element Nice Loop: r7c4=8=r9c4-8-r9c3-2-r1c3-9-r1c6=9=r6c6-9-r4c4~1~r7c4 => r7c4<>1
3-element Nice Loop: r7c4-8-r7c3=8=r9c3=2=r1c3~2~ => r1c4<>2
Locked Row Line/Box: r3c45 => r3c1<>2
4-valued/2-element Kraken Blossom (r7c1-1-r3c1=1=r1c2-1-r1c467-9-, r7c1-2-r7c4-8-r237c3-9-, r7c1-5-r7c6-7-r1c46-9-, r7c1-7-r23c1=7=r1c2-7-r1c46-9-, r7c1-9-r7c7=9=r8c9-9-r2c9=9=r2c13-9-): r7c1=12579 => r1c3<>9
+--------------------+--------------------+------------------+
| 6 127be 2-9 | 49bde 8 479bde | 1479b 3 5 |
| 579e 4 359ce | 6 357 1 | 2 8 79e |
| 17be 8 359c | 249 2357 357 | 1479 6 1479 |
+--------------------+--------------------+------------------+
| 4 5 7 | 19 6 2 | 3 19 8 |
| 29 239 6 | 5 134 8 | 147 179 1247 |
| 8 239 1 | 7 34 39 | 6 5 24 |
+--------------------+--------------------+------------------+
| 12579* 6 589c | 28c 127 57d | 179e 4 3 |
| 1579 179 4 | 3 157 6 | 8 2 179e |
| 3 127 28 | 1248 9 47 | 5 17 6 |
+--------------------+--------------------+------------------+
Naked Block Pair: r3c1|r1c2 => r2c1<>7
4-element Nice Loop: r7c3-5-r7c6=5=r3c6=3=r6c6=9=r6c2~9~ => r8c2<>9
Locked Column Box/Box: r278c1|r237c3 => r5c1<>9
Locked Row Line/Box: r1c46 => r1c7<>4
Locked Row Line/Box: r1c46 => r1c7<>9
Naked Row Pair: r1c27 => r1c6<>7
Row Finned X-Wing: r3c179|r7c17 => r1c7<>1