Puzzle A317:
- Code: Select all
*------------------------------------------------------------*
| 2 1467 134 | 8 39 69 | 46 467 5 |
| 56 9 58 | 67 4 1 | 2 3 678 |
| 46 4678 348 | 367 5 2 | 1 46789 46789 |
|-------------------+------------------+---------------------|
| 1456 1456 2 | 9 16 8 | 7 46 3 |
| 3 468 48 | 2 7 5 | 4689 4689 1 |
| 9 168 7 | 4 16 3 | 5 2 68 |
|-------------------+------------------+---------------------|
| 147 3 6 | 5 2 49 | 489 14789 4789 |
| 47 2 9 | 1 8 46 | 3 5 467 |
| 8 145 145 | 36 39 7 | 469 1469 2 |
*------------------------------------------------------------*
Because of the ALS's A(3,4,6,7,8)=[r3c1234] and B(5,6,8)=[r2c13] we must have r3c1=1 or r3c2=4 or r3c3=4. So, r1c23/r3c89<>4.
After that: A(4,5,8)=[r29c3], B(4,6,8,9)=[r5c378], C(6,8)=[r6c9], => r2c9<>8.
Puzzle A324:
- Code: Select all
*----------------------------------------------------*
| 2 1 4 | 56 7 8 | 9 3 56 |
| 6 9 58 | 4 235 235 | 12 128 7 |
| 57 3 578 | 1 2569 259 | 24 248 56 |
|-----------------+-----------------+----------------|
| 1 4 57 | 259 259 6 | 3 27 8 |
| 3 8 2 | 7 1 4 | 6 5 9 |
| 57 6 9 | 3 8 25 | 127 127 4 |
|-----------------+-----------------+----------------|
| 8 5 1 | 69 369 39 | 47 47 2 |
| 4 7 6 | 25 25 1 | 8 9 3 |
| 9 2 3 | 8 4 7 | 5 6 1 |
*----------------------------------------------------*
Note how the AUR in cells [r26c78] functions as an ALS. So, we have A(5,7,8)=[r2c3|r3c1], B(1,2,7,8)=AUR, x=8, z=7, => r6c1<>7.
Carcul