Daj95376 wrote:# Maybe solvable without chains ... no promises. Difficulty varies.
Nice puzzles. For example, for Puzzle A71,
- Code: Select all
*----------------------------------------------------*
| 678 178 1678 | 9 4 5 | 2 3 17 |
| 29 5 123 | 38 7 6 | 189 89 4 |
| 79 379 4 | 38 1 2 | 6789 67 5 |
|------------------+---------------+-----------------|
| 679 2 367 | 4 5 1 | 3679 67 8 |
| 47 347 5 | 6 8 9 | 1347 2 137 |
| 1 489 68 | 2 3 7 | 469 5 69 |
|------------------+---------------+-----------------|
| 248 148 128 | 7 6 3 | 5 89 29 |
| 3 78 278 | 5 9 4 | 68 1 26 |
| 5 6 9 | 1 2 8 | 37 4 37 |
*----------------------------------------------------*
Consider the following sets:
A(1,2,3,8)=[r27c3]; B(3,8,9)=[r2c48]; C(8,9)=[r7c8]; D(2,7,8)=[r8c23].
As 2 is restricted common to A and D, 3 to A and B, 9 to B and C, 8 to A and C, and 8 to A and D, then r7c1<>8 which solves the puzzle.
For Puzzle A72:
- Code: Select all
*-------------------------------------------------------------*
| 28 36 1 | 258 4 258 | 67 9 37 |
| 289 5689 7 | 3 168 1289 | 156 4 168 |
| 4 35689 389 | 189 168 7 | 156 1368 2 |
|--------------------+--------------------+-------------------|
| 3 89 6 | 4 7 189 | 2 5 18 |
| 89 1 4 | 589 2 5689 | 3 7 68 |
| 7 2 5 | 18 3 168 | 4 168 9 |
|--------------------+--------------------+-------------------|
| 5 389 2389 | 6 18 4 | 179 123 37 |
| 16 7 289 | 128 5 3 | 169 126 4 |
| 16 4 23 | 7 9 12 | 8 1236 5 |
*-------------------------------------------------------------*
If r7c2~3 then:
[r5c1]-8-[r4c2]=8=[r7c2]-8-[r7c5]-1-[r9c6]-2-[r2c6]=2=[r2c1]-2-[r1c1]-8-[r5c1];
{ATILA(9): r2c1|r2c6|r4c6|r5c6|r4c2|r5c1}, => r5c6=9 => r5c1=8.
So, r7c2=3. After that, the same ATILA above solves the puzzle.
Carcul