champagne wrote:I am impressed by your use of AUR patterns.
eleven wrote:If (second diagram) the typo is, that (6)r6c56 should be (6)r5c46, i still cant see, how the case
(1)r1c5, (1)r6c8, (3)r9c8, (1)r7c1, (1)r4c2 is handled.
Sorry, i have no practice with these diagrams, i'm just guessing what it means.
1-If r46c5=1 => pair (36)r5c46 => r5c238<>6
2-If r1c5=1 => r1c8<>1, consider 1’s on col.8 =>
a/If r5c8=1 => pair (36)r5c46 => r5c238<>6
b/If r6c8=1 => r6c8<>3 => r9c3=3 => r9c5 & r7c7<>3 => r4c2<>1 and to avoid UR(13)r57c46 => either r5c46=6 => r5c238<>6 or r7c1=1 => r9c2<>1, consider 1’s on col.2 => r5c2=1 => pair (36)r5c46 => r5c238<>6
3-If r9c5=1 => r4c2 & r9c2<>1, r5c2=1 => pair (36)r5c46 => r5c238<>6
Glyn wrote:I have no problem except the weak link between (1)r9c5-(6)r8c5. Maybe ttt can clear that one up.
r9c2<>1 does not imply r5c2=1 in this grid, because there is a 1 in r4c2 either.ttt wrote:b/If r6c8=1 => r6c8<>3 => r9c3=3 => r9c5 & r7c7<>3 => r4c2<>1 and to avoid UR(13)r57c46 => either r5c46=6 => r5c238<>6 or r7c1=1 => r9c2<>1, consider 1’s on col.2 => r5c2=1 => pair (36)r5c46 => r5c238<>6
eleven wrote:This is the case i meant:r9c2<>1 does not imply r5c2=1 in this grid, because there is a 1 in r4c2 either.ttt wrote:b/If r6c8=1 => r6c8<>3 => r9c3=3 => r9c5 & r7c7<>3 => r4c2<>1 and to avoid UR(13)r57c46 => either r5c46=6 => r5c238<>6 or r7c1=1 => r9c2<>1, consider 1’s on col.2 => r5c2=1 => pair (36)r5c46 => r5c238<>6
[Added:] But i saw now, that r4c2=1 implies r5c46<>3 via the finned x-wing for 3 in c25, so it also works in this case.
b/If r6c8=1
=>r6c8<>3 =>r9c8=3 =>r7c7<>3 and to avoid UR(13)r57c46 =>r5c46=6 or r7c1=1 =>r9c2<>1(*)
=>r9c5<>3 =>r2c5=3 =>r2c2<>3 =>r4c2=3 =>r4c2<>1(**)
(*)&(**) => on column2: r5c2=1
+ ..6+ ..6+ | 1.6+ 1.6+ 1.6+ | ...+ 1..+ -
.3.+ .3.+ - | .3.+ .3.+ - | - + +
.3.+ - ..6+ | 136+ - 136+ | + - 1..+
------------------------------------------------
1.3+ 136+ ..6+ | 136+ 136+ - | .3.+ - 1.6+
- 136+ ..6+ | 136 - 136 | .3.+ 136+ -
13.+ - ..6+ | - 136+ - | .3.+ 136 1.6+
------------------------------------------------
1..+ - + | 136+ - 136+ | .3.+ - ..6+
+ + - | - ..6+ ..6+ | - ..6+ ..6+
- 1..+ + | 13.+ 13.+ 13.+ | .3.+ .3.+ +
1)r1c5-(1)r1c8
|| | ||
|| | (1)r5c8- X
|| | ||
|| | (1)r6c8-(6)r6c8
|| | ||
|| \ (6)r5c8- X
|| \ ||
|| \ ||
|| \_ (6)r8c8 --(6)r8c5
|| \ ||
(1)r46c5-X \__________ (6)r46c5- X
|| \ ||
|| (6)r1c2-(6)r1c5
|| ||
|| (6)r5c2- X
|| ||
|| (1)r4c2-(6)r4c2
|| ||
|| (1)r5c2-X
|| ||
(1)r9c5---(1)r9c2
ttt wrote:champagne wrote:I added one missing weak link 1r1c5 - 6r1c5, but it is not yet enough..
Yes, I think that the using UR is short way to conclude r5c278<>3
ttt
(1)r46c5-X
||
|| (1)r6c8-(6)r6c8
|| || ||
|| X-(1)r5c8 (6)r5c8- X
|| || ||
|| (1)r1c8 || <=>(1)r1c8
|| | (6)r8c8 --(6)r8c5 |
|| | || 1r1c456
|| / (6)r46c5- X ||
|| / || 1r3c46
(1)r1c5 -------- (6)r1c5 UR16 r35c4
|| / |
|| (6)r1c2 -- 6r1c456 = 6r3c46
|| ||
|| (6)r5c2- X
|| ||
|| (1)r4c2-(6)r4c2
|| ||
|| (1)r5c2-X
|| ||
(1)r9c5---(1)r9c2
*-----------*
|...|...|..6|
|..5|..1|8..|
|.9.|..8|.7.|
|---+---+---|
|...|8.2|...|
|..3|.1.|2..|
|4..|5.3|...|
|---+---+---|
|.6.|...|.9.|
|..8|3..|1..|
|7..|...|..4|
*-----------*
*-----------------------------------------------------------------------------*
| 1238 123478 124(7) | 2479 234579 4579 | 345(9) 12345 6 |
| 23(6) 234(7) 5 | 24(679) 234(679)1 | 8 234 23(9) |
| 1236 9 124(6) | 246 23456 8 | 345 7 1235 |
|-------------------------+-------------------------+-------------------------|
| 1569 157 1(679) | 8 4679 2 | 345(679)13456 13579 |
| 5689 578 3 | 4679 1 4679 | 2 4568 5789 |
| 4 1278 12(679) | 5 679 3 | (679) 168 1789 |
|-------------------------+-------------------------+-------------------------|
| 1235 6 124 | 1247 24578 457 | 35(7) 9 23578 |
| 25(9) 245 8 | 3 245(679)45(679) | 1 25(6) 25(7) |
| 7 1235 12(9) | 1269 25689 569 | 35(6) 23568 4 |
*-----------------------------------------------------------------------------*
1238 123478 1247 |2479 234579 4579 |3459 12345 6
236 2347 5 |24679 234679 1 |8 234 239
1236 9 1246 |246 23456 8 |345 7 1235
---------------------------------------------------------
1569 157 1679 |8 4679 2 |345679 13456 13579
5689 578 3 |4679 1 4679 |2 4568 5789
4 1278 12679 |5 679 3 |679 168 1789
---------------------------------------------------------
1235 6 124 |1247 24578 457 |357 9 23578
259 245 8 |3 245679 45679 |1 256 257
7 1235 129 |1269 25689 569 |356 23568 4
champagne wrote:One possible clue: whatever is the couple used in r5c46 (4&6 4&7 4&9 6&7 6&9 7&9), r2c4 and r8c6 have one of the values 4679.
champagne wrote:No evidence of symmetry effects, but let's Merlin talk about it.
ttt wrote:Hi champagne,
Thanks for your informations!champagne wrote:One possible clue: whatever is the couple used in r5c46 (4&6 4&7 4&9 6&7 6&9 7&9), r2c4 and r8c6 have one of the values 4679.
Yes, I was thinking this but it look quite complex to present as diagram then I changed to others path. I’ll try again…
Champagne wrote:I am convinced this will be the easiest way for Allan, but wait and see.
+-----------------------------------------------------------------------------+
| 1238 123478 124(7) | 2479 234579 4579 | 3459 12345 6 |
| 23(6) 23(47) 5 | 2(4679) 23(4679 1 | 8 23(4) 23(9) |
| 1236 9 1246 | 246 23456 8 | 345 7 1235 |
+-----------------------------------------------------------------------------+
| 159(6) 157 1(679) | 8 (4679) 2 | 345(679 13456 135(79) |
| 589(6) 578 3 | 679(4) 1 679(4) | 2 568(4) 58(79) |
| 4 1278 12(679) | 5 (679) 3 | (679) 168 18(79) |
+-----------------------------------------------------------------------------+
| 1235 6 124 | 1247 24578 457 | 357 9 23578 |
| 25(9) 25(4) 8 | 3 25(4679 5(4679) | 1 25(6) 25(7) |
| 7 1235 12(9) | 1269 25689 569 | 35(6) 23568 4 |
+-----------------------------------------------------------------------------+
RABX 58 Nodes, Raw Rank = 5 (linksets - sets)
17 Sets = {4679r2 4r5 4679r8 79c3 6c7 46n5 6b4 79b6}
22 Links = {679r4 679r6 6c1 4c2 4679c5 4c8 79c9 2n4 8n6 7b1 4b5 39b7 6b9}
--> (2n4) => r2c4<>2, (8n6) => r8c6<>5
1238 123478 1247 |2479 234579 4579 |3459 12345 6
236 2347 5 |24679 234679 1 |8 234 239
1236 9 1246 |246 23456 8 |345 7 1235
---------------------------------------------------------
1569 157 1679 |8 4679 2 |345679 13456 13579
5689 578 3 |4679 1 4679 |2 4568 5789
4 1278 12679 |5 679 3 |679 168 1789
---------------------------------------------------------
1235 6 124 |1247 24578 457 |357 9 23578
259 245 8 |3 245679 45679 |1 256 257
7 1235 129 |1269 25689 569 |356 23568 4
N:...............................X.................X.X.............................
R:...........................X.XX..X.............XX.X..XX..X.XX...........X..X....X
C:.............................XX.XX.............XX.XX....XX.XX.............XX.XX..
B:...............................X.................X........X......................
1 2 3 4 5 6 7 8 9
=37 sets and likely some of theese used as well
NV.xxxxxx...x.xx......xxx....x.x.x.xxxx..x.x.xx..x.x.x.x...xxx.......xx......xxx...
1 2 3 4 5 6 7 8 9
N45 445A 445A 645B 645B 745C 745C 945D 945D
N65 665b 665b 765c 765c 965d 965d
| | |
4c7 447 417 437 | | |
4c3 413 433 473 | | |
4c6 486 456 416 436 | | |
4c4 424 454 414 434 474 | | |
| | |
6c4 624 654 634 | |
6c6 686 656 696 | |
6c3 643 663 633 | |
6c7 647 667 697 | |
| |
7c4 724 745 714 774 |
7c6 786 756 716 776 |
7c3 743 763 713 |
7c7 746 766 |
|
9c4 924 954 914 994
9c6 986 956 916 996
9c3 943 963 993
9c7 947 967 917