#42040 int T&E(3) min-expands

Post puzzles for others to solve here.

#42040 int T&E(3) min-expands

Postby denis_berthier » Tue Oct 25, 2022 8:39 am

.
Code: Select all
+-------+-------+-------+
! . 2 3 ! 4 . . ! . . . !
! . . 7 ! . . . ! 2 . . !
! 6 9 . ! 2 7 . ! . . . !
+-------+-------+-------+
! . . . ! 7 9 . ! 1 . . !
! . . . ! 6 4 . ! 5 . 8 !
! . 6 . ! . . . ! 9 . 2 !
+-------+-------+-------+
! 3 4 . ! 9 6 . ! . 2 . !
! . 7 . ! . 2 4 ! . 9 . !
! . . . ! 3 . 7 ! . . . !
+-------+-------+-------+
.234.......7...2..69.27.......79.1.....64.5.8.6....9.234.96..2..7..24.9....3.7...;8818;283454
SER = 10.4

Code: Select all
Resolution state after Singles and whips[1]:
   +----------------------+----------------------+----------------------+
   ! 158    2      3      ! 4      158    15689  ! 678    1568   15679  !
   ! 1458   158    7      ! 158    1358   135689 ! 2      134568 134569 !
   ! 6      9      1458   ! 2      7      1358   ! 348    13458  1345   !
   +----------------------+----------------------+----------------------+
   ! 2458   358    2458   ! 7      9      2358   ! 1      346    346    !
   ! 1279   13     129    ! 6      4      123    ! 5      37     8      !
   ! 14578  6      1458   ! 158    1358   1358   ! 9      347    2      !
   +----------------------+----------------------+----------------------+
   ! 3      4      158    ! 9      6      158    ! 78     2      157    !
   ! 158    7      1568   ! 158    2      4      ! 368    9      1356   !
   ! 12589  158    125689 ! 3      158    7      ! 468    14568  1456   !
   +----------------------+----------------------+----------------------+
190 candidates.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: #42040 int T&E(3) min-expands

Postby DEFISE » Wed Oct 26, 2022 8:29 am

Here is my path in W11 + OR2-W10 + OR2-gB5.
(Simplest-first strategy before tridagon destruction and Few-steps strategy after).
N.B: I have the impression that general Ork-whips (which I haven't implemented) must be particularly effective here...

Hidden Text: Show
Box/Line: 7b6c8 => -7r1c8
Hidden pairs: 29r9c13 => -1r9c1 -5r9c1 -8r9c1 -1r9c3 -5r9c3 -6r9c3 -8r9c3
Single(s): 6r8c3
Hidden pairs: 69c6r12 => -1r1c6 -5r1c6 -8r1c6 -1r2c6 -3r2c6 -5r2c6 -8r2c6

Tridagon (1,5,8) in b1p159, b2p249, b7p348, b8p348
with 2 strong guardians: 4r3c3,3r3c6


whip[3]: r5c2{n1 n3}- r5c8{n3 n7}- r6n7{c8 .} => -1r6c1
Trid-OR2-whip[4]: r6n3{c6 c8}- r6n7{c8 c1}- r6n4{c1 c3}- OR2{all guardians |.} => -3r4c6
Trid-OR2-whip[4]: r6n3{c6 c8}- r6n7{c8 c1}- r6n4{c1 c3}- OR2{all guardians |.} => -3r5c6
Box/Line: 3b5r6 => -3r6c8
whip[4]: r2n9{c9 c6}- r1c6{n9 n6}- c7n6{r1 r9}- c7n4{r9 .} => -4r2c9
whip[2]: r2n4{c1 c8}- r6n4{c8 .} => -4r4c1
Trid-OR2-whip[4]: r5c8{n3 n7}- r6c8{n7 n4}- r2n4{c8 c1}- OR2{all guardians |.} => -3r3c8
whip[5]: r9c3{n2 n9}- r5n9{c3 c1}- r5n7{c1 c8}- r6c8{n7 n4}- r4n4{c8 .} => -2r4c3
Hidden pairs: 29c3r59 => -1r5c3
Trid-OR2-whip[6]: r2n9{c9 c6}- r2n6{c6 c8}- c7n6{r1 r9}- c7n4{r9 r3}- b3n3{r3c7 r3c9}- OR2{all guardians |.} => -1r2c9
Trid-OR2-whip[6]: r2n9{c9 c6}- r2n6{c6 c8}- c7n6{r1 r9}- c7n4{r9 r3}- b3n3{r3c7 r3c9}- OR2{all guardians |.} => -5r2c9
Trid-OR2-whip[7]: r1n7{c9 c7}- c7n6{r1 r9}- c7n4{r9 r3}- c7n3{r3 r8}- r8c9{n3 n5}- r3c9{n5 n3}- OR2{all guardians |.} => -1r1c9
Trid-OR2-whip[7]: r1n7{c9 c7}- c7n6{r1 r9}- c7n4{r9 r3}- c7n3{r3 r8}- r8c9{n3 n1}- r3c9{n1 n3}- OR2{all guardians |.} => -5r1c9
Trid-OR2-whip[9]: r4n6{c8 c9}- r2n6{c9 c6}- r2n9{c6 c9}- r1c9{n9 n7}- r1c7{n7 n8}- r8c7{n8 n3}- c9n3{r8 r3}- r3c7{n3 n4}-
OR2{all guardians |.} => -6r1c8
Naked triplets: 158r1c158 => -8r1c7
Trid-OR2-whip[10]: r6c8{n4 n7}- r5c8{n7 n3}- r4c8{n3 n6}- r4c9{n6 n4}- r9n4{c9 c7}- r9n6{c7 c9}- r2n6{c9 c6}- r2n9{c6 c9}-
r2n3{c9 c5}- OR2{all guardians |.} => -4r3c8
whip[11]: r2n4{c1 c8}- r6c8{n4 n7}- r5c8{n7 n3}- r5c2{n3 n1}- r2c2{n1 n8}- r2c4{n8 n1}- r2c5{n1 n3}- r6n3{c5 c6}- c6n1{r6 r7}- c3n1{r7 r3}- r1c1{n1 .} => -5r2c1
whip[11]: r2n4{c1 c8}- r6c8{n4 n7}- r5c8{n7 n3}- r5c2{n3 n1}- r2c2{n1 n5}- r2c4{n5 n1}- r2c5{n1 n3}- r6n3{c5 c6}- c6n1{r6 r7}- c3n1{r7 r3}- r1c1{n1 .} => -8r2c1
Trid-OR2-g-braid[5]: c7n4{r9 r3}- c8n1{r9 r123}- c8n5{r9 r123}- r3c9{n5 n3}- OR2{all guardians |.} => -4r9c8
Trid-OR2-whip[8]: r9n4{c9 c7}- c7n6{r9 r1}- r1n7{c7 c9}- r7c9{n7 n5}- r8c9{n5 n3}- c7n3{r8 r3}- r3c9{n3 n4}- OR2{all guardians |.} => -1r9c9
Trid-OR2-whip[8]: r9n4{c9 c7}- c7n6{r9 r1}- r1n7{c7 c9}- r7c9{n7 n1}- r8c9{n1 n3}- c7n3{r8 r3}- r3c9{n3 n4}- OR2{all guardians |.} => -5r9c9
Trid-OR2-whip[9]: r8c7{n8 n3}- r3c7{n3 n4}- r9n4{c7 c9}- r9n6{c9 c8}- r4n6{c8 c9}- r2n6{c9 c6}- r2n9{c6 c9}- c9n3{r2 r3}-
OR2{all guardians |.} => -8r9c7
Naked pairs: 46r9c79 => -6r9c8
Naked triplets: 158c8r139 => -1r2c8 -5r2c8 -8r2c8
Trid-OR2-whip[9]: b2n3{r3c6 r2c5}- r2n8{c5 c2}- r2n5{c2 c4}- r1c5{n5 n1}- r1c1{n1 n5}- r8n5{c1 c9}- r8n3{c9 c7}- r3c7{n3 n4}- OR2{all guardians |.} => -8r3c6
whip[9]: c5n3{r6 r2}- b2n8{r2c5 r2c4}- r2n5{c4 c2}- r2n1{c2 c1}- r1c1{n1 n8}- r8c1{n8 n5}- r4c1{n5 n2}- r4c6{n2 n5}- c4n5{r6 .}
=> -8r6c5
whip[6]: b2n3{r3c6 r2c5}- r2n5{c5 c2}- r1n5{c1 c8}- r9n5{c8 c5}- c5n8{r9 r1}- r2n8{c5 .} => -5r3c6
whip[5]: r6n3{c5 c6}- r3c6{n3 n1}- c3n1{r3 r7}- r9n1{c2 c8}- c9n1{r7 .} => -1r6c5
whip[5]: r3c6{n3 n1}- b5n1{r5c6 r6c4}- c3n1{r6 r7}- r8n1{c1 c9}- r8n3{c9 .} => -3r3c7
Single(s): 3r8c7
whip[7]: r3c6{n3 n1}- b5n1{r5c6 r6c4}- c3n1{r6 r7}- r8n1{c1 c9}- c9n5{r8 r7}- r7c6{n5 n8}- b5n8{r4c6 .} => -3r3c9
Single(s): 3r3c6, 3r6c5
Naked triplets: 158r2c245 => -1r2c1
Single(s): 4r2c1
Box/Line: 4c8b6 => -4r4c9

Trigagon is now destroyed and then the resolution is done in W7:

whip[7]: c7n8{r7 r3}- r3n4{c7 c9}- r9c9{n4 n6}- r4n6{c9 c8}- r4n4{c8 c3}- c3n8{r4 r6}- r4n8{c3 .} => -8r7c6
Box/Line: 8c6b5 => -8r6c4
whip[7]: r6c4{n1 n5}- c6n5{r6 r7}- r7c3{n5 n8}- r8n8{c1 c4}- r2c4{n8 n1}- c2n1{r2 r9}- r9c5{n1 .} => -1r6c3
Box/Line: 1r6b5 => -1r5c6
Single(s): 2r5c6, 9r5c3, 2r9c3, 9r9c1, 2r4c1
whip[6]: r7c6{n5 n1}- c3n1{r7 r3}- c9n1{r3 r8}- r8n5{c9 c1}- r1n5{c1 c8}- r3n5{c8 .} => -5r9c5
Box/Line: 5c5b2 => -5r2c4
whip[5]: c4n8{r8 r2}- b1n8{r2c2 r3c3}- r6n8{c3 c6}- c6n1{r6 r7}- c3n1{r7 .} => -8r8c1
STTE
DEFISE
 
Posts: 284
Joined: 16 April 2020
Location: France

Re: #42040 int T&E(3) min-expands

Postby marek stefanik » Wed Oct 26, 2022 9:35 am

Nice one.

Code: Select all
.------------------.-----------------.---------------------.
|#158    2    3    | 4   #158   69   | 678  1568    15679  |
| 1458  #158  7    |#158  1358  69   | 2    134568  134569 |
| 6      9   #1458 | 2    7   A#3–158| 348  13458   1345   |
:------------------+-----------------+---------------------:
| 2458   358  2458 | 7    9    *2358 | 1    346     346    |
| 1279   13   129  | 6    4    *123  | 5    37      8      |
| 14578  6   *1458 |*158 *1358 *1358 | 9    347     2      |
:------------------+-----------------+---------------------:
| 3      4  A#158  | 9    6   A#158  | 78   2       157    |
|#158    7    6    |#158  2     4    | 38   9       135    |
| 29    #158  29   | 3   #158   7    | 468  14568   1456   |
'------------------'-----------------'---------------------'
3r3c6 = [TH[11], RT 158A, 158b5A \ r6c36] – (1|5|8=4)r6c3 – 4r3c3 = [TH[11], 3r3c6] => 3r3c6

Code: Select all
.-----------------.---------------.--------------.
|#158   2    3    | 4   #158  69  | 67  158  679 |
| 4    #158  7    |#158  158  69  | 2   36   369 |
| 6     9  A#158  | 2    7    3   | 48  158  145 |
:-----------------+---------------+--------------:
| 258   358  2458 | 7    9   *258 | 1   346  36  |
| 1279  13   129  | 6    4   *12  | 5   37   8   |
| 1578  6    4–158|*158  3   *158 | 9   47   2   |
:-----------------+---------------+--------------:
| 3     4  A#158  | 9    6  A#158 | 78  2    157 |
|#158   7    6    |#158  2    4   | 3   9    15  |
| 29   #158  29   | 3   #158  7   | 46  158  46  |
'-----------------'---------------'--------------'
TH[11] => RT 158A
158b5A \ r6c36 => –158r6c3

Code: Select all
.--------------.---------------.------------.
| 158  2   3   | 4   #58   6   | 7  158  9  |
| 4   #58  7   |#158 #158  9   | 2  6    3  |
| 6    9   158 | 2    7    3   | 4  158  15 |
:--------------+---------------+------------:
| 2    3   58  | 7    9    58  | 1  4    6  |
| 7    1   9   | 6    4    2   | 5  3    8  |
| 58   6   4   | 15   3    158 | 9  7    2  |
:--------------+---------------+------------:
| 3    4   15  | 9    6    15  | 8  2    7  |
| 158  7   6   | 158  2    4   | 3  9    15 |
| 9   #58  2   | 3    1–58 7   | 6  15   4  |
'--------------'---------------'------------'
58c2b2 \ r29c5 => –58r9c5, stte

Marek
marek stefanik
 
Posts: 360
Joined: 05 May 2021

Re: #42040 int T&E(3) min-expands

Postby totuan » Wed Oct 26, 2022 10:10 am

Code: Select all
 *-----------------------------------------------------------------------------*
 | 158     2       3       | 4       158     69      | 678     1568    15679   |
 | 1458    158     7       | 158     1358    69      | 2       134568  134569  |
 | 6       9       1458    | 2       7       1358    | 348     13458   1345    |
 |-------------------------+-------------------------+-------------------------|
 | 2458    358     2458    | 7       9       2358    | 1       346     346     |
 |#1279    13     #129     | 6       4      *123     | 5       37      8       |
 | 14578   6       1458    | 158     1358    1358    | 9       347     2       |
 |-------------------------+-------------------------+-------------------------|
 | 3       4       158     | 9       6       158     | 78      2       157     |
 | 158     7       6       | 158     2       4       | 38      9       135     |
 |#29      158    #29      | 3       158     7       | 468     14568   1456    |
 *-----------------------------------------------------------------------------*

My path for this one:
01: UR (29)r59c13 => r5c6=2
Code: Select all
 *-----------------------------------------------------------------------------*
 |*158     2       3       | 4      *158     69      | 678     1568    15679   |
 |#1458   *158     7       |*158    #1358    69      | 2       346-158 3469-15 |
 | 6       9      *1458    | 2       7      *1358    | 348     13458   1345    |
 |-------------------------+-------------------------+-------------------------|
 | 2458    358     2458    | 7       9       358     | 1       346     346     |
 | 179     13      19      | 6       4       2       | 5       37      8       |
 | 4578    6       458     | 158     1358    1358    | 9       347     2       |
 |-------------------------+-------------------------+-------------------------|
 | 3       4      *158     | 9       6      *158     | 78      2       157     |
 |*158     7       6       |*158     2       4       | 38      9       135     |
 | 29     *158     29      | 3      *158     7       | 468     14568   1456    |
 *-----------------------------------------------------------------------------*

Tridagon (158) => (4)r3c3=(3)r3c6
02: (158=4)r2c124-(4)r3c3==(3)r3c6-(3=158)r2c245 => r2c8<>158, r2c9<>15
Code: Select all
 *-----------------------------------------------------------*
 | 158   2     3     | 4     158   69    |c67    158  d679   |
 |*1458  158   7     | 158   1358  69    | 2    *346  e369-4 |
 | 6     9     1458  | 2     7     1358  |a348   158   1345  |
 |-------------------+-------------------+-------------------|
 | 258-4 358   2458  | 7     9     358   | 1     346   346   |
 | 179   13    19    | 6     4     2     | 5     37    8     |
 |#4578  6    #458   | 158   1358  1358  | 9    #347   2     |
 |-------------------+-------------------+-------------------|
 | 3     4     158   | 9     6     158   | 78    2     157   |
 | 158   7     6     | 158   2     4     | 38    9     135   |
 | 29    158   29    | 3     158   7     |b46    158   46    |
 *-----------------------------------------------------------*

03: (4)r3c7=(4-6)r9c7=(6-7)r1c7=(7-9)r1c9=r2c9 => r2c9<>4
04: (4)r6c13=r6c8-r2c8=r2c1 => r4c1<>4
Code: Select all
 *-----------------------------------------------------------*
 | 158   2     3     | 4     158   69    | 67    158   679   |
 |e1458  158   7     | 158  b1358  69    | 2     346   369   |
 | 6     9    d1458  | 2     7    c1358  | 348   158   1345  |
 |-------------------+-------------------+-------------------|
 | 258   358   2458  | 7     9     358   | 1     346   346   |
 | 179   13    19    | 6     4     2     | 5     37    8     |
 |f4578  6     458   | 158  a1358  1358  | 9    g47-3  2     |
 |-------------------+-------------------+-------------------|
 | 3     4     158   | 9     6     158   | 78    2     157   |
 | 158   7     6     | 158   2     4     | 38    9     135   |
 | 29    158   29    | 3     158   7     | 46    158   46    |
 *-----------------------------------------------------------*

Tridagon (158) => (4)r3c3=(3)r3c6
05: (3)r6c5=r2c5-(3)r3c6==(4)r3c3-r2c1=(4-7)r6c1=r6c8 => r6c8<>3
Code: Select all
 *-----------------------------------------------------------*
 | 158   2     3     | 4     158   69    | 67    158   679   |
 | 1458  158   7     | 158   1358  69    | 2     346   369   |
 | 6     9     1458  | 2     7     1358  | 348   158   1345  |
 |-------------------+-------------------+-------------------|
 |e2-58 a358   2458  | 7     9    a58    | 1     346   346   |
 | 179  b13   b19    | 6     4     2     | 5     37    8     |
 | 4578  6     458   | 158   1358  1358  | 9     47    2     |
 |-------------------+-------------------+-------------------|
 | 3     4     158   | 9     6     158   | 78    2     157   |
 | 158   7     6     | 158   2     4     | 38    9     135   |
 |d29    158  c29    | 3     158   7     | 46    158   46    |
 *-----------------------------------------------------------*

06: (58=3)r4c26-(13=9)r5c23-r9c3=(9-2)r9c1=r4c1 => r4c1<>58, some singles
Code: Select all
 *-----------------------------------------------------------*
 |@158   2     3     | 4    @158   69    | 67   %158   679   |
 | 1458  158   7     |$158   1358  69    | 2     346   369   |
 | 6     9    #1458  | 2     7    #358-1 | 348  *158  *1345  |
 |-------------------+-------------------+-------------------|
 | 2     358   458   | 7     9     58    | 1     346   346   |
 | 17    13    9     | 6     4     2     | 5     37    8     |
 | 4578  6     458   | 58-1  1358 &1358  | 9     47    2     |
 |-------------------+-------------------+-------------------|
 | 3     4    #158   | 9     6    #58-1  | 78    2    *157   |
 |@158   7     6     |@158   2     4     | 38    9    %135   |
 | 9     158   2     | 3    $158   7     | 46    158   46    |
 *-----------------------------------------------------------*

Look at: if r1c15 & r8c14<>1 => Remote Pair (58)r1c15/r8c14 => r2c4 & r9c5<>58
07: (1)r6c6=(X-wing: 1’s r37c36)-(1)r3c89/r7c9=(1)r1c8/r8c9-[(1)=RP (58)r1c15/r8c14]-(58=1)r2c4/r9c5 => r37c6<>1, r6c4<>1, some singles
Code: Select all
 *--------------------------------------------------*
 | 158  2    3    | 4   *158  69   | 67   158  679  |
 | 4   %158  7    |*158 *158  69   | 2    36   369  |
 | 6    9    158  | 2    7    3    | 48   158  145  |
 |----------------+----------------+----------------|
 | 2   #358  458  | 7    9   #58   | 1    346  36   |
 | 17   13   9    | 6    4    2    | 5    37   8    |
 | 578  6    458  | 58   3    1    | 9    47   2    |
 |----------------+----------------+----------------|
 | 3    4    158  | 9    6   #58   | 78   2    157  |
 | 158  7    6    | 158  2    4    | 3    9    15   |
 | 9   #158  2    | 3    1-58 7    | 46   158  46   |
 *--------------------------------------------------*

08: (5|8)r12c5=r2c4-r2c2=[(5|8)r7c6=r4c6-r4c2=r9c2] => r9c5<>58, stte

Thanks for the puzzle!
totuan
totuan
 
Posts: 249
Joined: 25 May 2010
Location: vietnam

Re: #42040 int T&E(3) min-expands

Postby denis_berthier » Wed Oct 26, 2022 10:40 am

DEFISE wrote:Here is my path in W11 + OR2-W10 + OR2-gB5.
(Simplest-first strategy before tridagon destruction and Few-steps strategy after).
N.B: I have the impression that general Ork-whips (which I haven't implemented) must be particularly effective here...

To avoid confusion with full ORk-whips, it'd be better to write W11 + OR2CW10 + OR2-gCB5.

Yes, the full power of ORk-whips is necessary to avoid using ORk-chains of length > 8. Indeed, the puzzle can't be solved in W12+OR2FW12+OR2CW12 alone; I didn't try with longer chains.

I'll wait a little more before giving my solution, in case other players want to give it a try.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: #42040 int T&E(3) min-expands

Postby Cenoman » Thu Oct 27, 2022 9:22 pm

My solution is the same as Marek's.
As I had noticed early the similarity of this puzzle with some already posted by mith (Loki and Tanngrisnir and Tanngnjóstr), I have tried to dig the sub-pattern "Remote Triple" in some TH-Tridagon patterns. So, the above solution below is nothing but my own learning of this, in a puzzle notably significant for that purpose.

Code: Select all
 +----------------------+----------------------+-------------------------+
 |  158*   2     3      |  4     158*   69     |  678   1568     15679   |
 | b1458   158*  7      |  158* d1358  c69     |  2    c134568  c13569   |
 |  6      9   Aa1458*  |  2     7    Be1358*  |  348   13458    1345    |
 +----------------------+----------------------+-------------------------+
 |  2458   358   2458   |  7     9      2358   |  1     346      346     |
 |  1279   13    129    |  6     4      123    |  5     37       8       |
 |  4578   6     1458   |  158   1358   1358   |  9     347      2       |
 +----------------------+----------------------+-------------------------+
 |  3      4   BA158*   |  9     6    BA158*   |  78    2        157     |
 |  158*   7     6      |  158*  2      4      |  38    9        135     |
 |  29     158*  29     |  3     158*   7      |  468   14568    1456    |
 +----------------------+----------------------+-------------------------+

1. TH(158)b1278 having two guardians, 4r3c3, 3r3c6
- First observation: these two guardians are in a derive weak link:
(4)r3c3 - r2c1 = (469-3)r2c689 = r2c5 - (3)r3c6 => only one can be true.
- Second observation: whichever guardian is true, the TH is left with remote triples (158) at cells r37c3, r7c6 (A) or cells r37c6, r7c3 (B) resp.

In the following, x is whichever digit in {1,5,8}
If 4r3c3 is the true guardian, then RT(158)r37c6, r7c3 => (x)r7c3 = r37c6 - r456c6 = r6c456 => -x r6c3; -158 r6c3, +4r6c3, contradiction.
Therefore, 3r3c6 is the single true guardian of TH(158)b1278 => +3 r3c6; lcls, 4 placements

Code: Select all
 +----------------------+--------------------+-------------------+
 |  158    2     3      |  4     158   69    |  67   158   679   |
 |  4      158   7      |  158   158   69    |  2    36    369   |
 |  6      9    A158    |  2     7     3     |  48   158   145   |
 +----------------------+--------------------+-------------------+
 |  258    358   2458   |  7     9    C258   |  1    346   36    |
 |  1279   13    129    |  6     4    C12    |  5    37    8     |
 |  578    6     4-158  | D158   3    C158   |  9    47    2     |
 +----------------------+--------------------+-------------------+
 |  3      4    A158    |  9     6    B158   |  78   2     157   |
 |  158    7     6      |  158   2     4     |  3    9     15    |
 |  29     158   29     |  3     158   7     |  46   158   46    |
 +----------------------+--------------------+-------------------+

2. TH(158)b1278 => RT(158)r37c3, r7c6 => (x)r37c3 = r7c6 - r456c6 = r6c4 => -x r6c3; -158 r6c3; 23 placements

Code: Select all
 +-------------------+--------------------+------------------+
 |  158   2    3     |  4     158*  6     |  7    158   9    |
 |  4     58*  7     |  158* 158*   9     |  2    6     3    |
 |  6     9    158   |  2     7     3     |  4    158   15   |
 +-------------------+--------------------+------------------+
 |  2     3    58    |  7     9     58    |  1    4     6    |
 |  7     1    9     |  6     4     2     |  5    3     8    |
 |  58    6    4     |  158   3     158   |  9    7     2    |
 +-------------------+--------------------+------------------+
 |  3     4    15    |  9     6     15    |  8    2     7    |
 |  158   7    6     |  158   2     4     |  3    9     15   |
 |  9     58*  2     |  3     1-58  7     |  6    15    4    |
 +-------------------+--------------------+------------------+

3. Remote pair (58): r12c5 = r2c4 - r2c2 = rc2 => -58 r9c5; ste
Last edited by Cenoman on Sat Oct 29, 2022 4:00 pm, edited 3 times in total.
Cenoman
Cenoman
 
Posts: 2997
Joined: 21 November 2016
Location: France

Re: #42040 int T&E(3) min-expands

Postby denis_berthier » Fri Oct 28, 2022 6:34 am

.
Thanks for your answers.
Here's SudoRules simplest-first solution.

Code: Select all
hidden-pairs-in-a-row: r9{n2 n9}{c1 c3} ==> r9c3≠8, r9c3≠6, r9c3≠5, r9c3≠1, r9c1≠8, r9c1≠5, r9c1≠1
hidden-single-in-a-block ==> r8c3=6
hidden-pairs-in-a-column: c6{n6 n9}{r1 r2} ==> r2c6≠8, r2c6≠5, r2c6≠3, r2c6≠1, r1c6≠8, r1c6≠5, r1c6≠1
   +----------------------+----------------------+----------------------+
   ! 158    2      3      ! 4      158    69     ! 678    1568   15679  !
   ! 1458   158    7      ! 158    1358   69     ! 2      134568 134569 !
   ! 6      9      1458   ! 2      7      1358   ! 348    13458  1345   !
   +----------------------+----------------------+----------------------+
   ! 2458   358    2458   ! 7      9      2358   ! 1      346    346    !
   ! 1279   13     129    ! 6      4      123    ! 5      37     8      !
   ! 14578  6      1458   ! 158    1358   1358   ! 9      347    2      !
   +----------------------+----------------------+----------------------+
   ! 3      4      158    ! 9      6      158    ! 78     2      157    !
   ! 158    7      6      ! 158    2      4      ! 38     9      135    !
   ! 29     158    29     ! 3      158    7      ! 468    14568  1456   !
   +----------------------+----------------------+----------------------+

OR2-anti-tridagon[12] for digits 1, 5 and 8 in blocks:
        b1, with cells: r1c1, r2c2, r3c3
        b2, with cells: r1c5, r2c4, r3c6
        b7, with cells: r8c1, r9c2, r7c3
        b8, with cells: r8c4, r9c5, r7c6
with 2 guardians: n4r3c3 n3r3c6


Here's now the main part, with OR2-whips intermingled with regular patterns, with increasingly long ones, up to length 8:

biv-chain[3]: r5c2{n1 n3} - r5c8{n3 n7} - b4n7{r5c1 r6c1} ==> r6c1≠1
biv-chain[4]: r2n9{c9 c6} - b2n6{r2c6 r1c6} - c7n6{r1 r9} - c7n4{r9 r3} ==> r2c9≠4
finned-x-wing-in-rows: n4{r2 r6}{c8 c1} ==> r4c1≠4
Trid-OR2-whip[4]: OR2{{n3r3c6 | n4r3c3}} - r2n4{c1 c8} - r4n4{c8 c9} - b6n3{r4c9 .} ==> r3c8≠3
Trid-OR2-whip[4]: OR2{{n3r3c6 | n4r3c3}} - c1n4{r2 r6} - r6n7{c1 c8} - r6n3{c8 .} ==> r4c6≠3
Trid-OR2-whip[4]: b5n3{r6c6 r5c6} - OR2{{n3r3c6 | n4r3c3}} - b4n4{r4c3 r6c1} - r6n7{c1 .} ==> r6c8≠3

whip[1]: r6n3{c6 .} ==> r5c6≠3
t-whip[5]: c1n2{r5 r9} - c1n9{r9 r5} - c1n7{r5 r6} - r6c8{n7 n4} - r4n4{c9 .} ==> r4c3≠2
hidden-pairs-in-a-column: c3{n2 n9}{r5 r9} ==> r5c3≠1
Trid-OR2-whip[5]: r2n4{c8 c1} - OR2{{n4r3c3 | n3r3c6}} - r2n3{c5 c9} - r2n6{c9 c6} - r2n9{c6 .} ==> r2c8≠8
Trid-OR2-whip[5]: r2n4{c8 c1} - OR2{{n4r3c3 | n3r3c6}} - r2n3{c5 c9} - r2n6{c9 c6} - r2n9{c6 .} ==> r2c8≠5
Trid-OR2-whip[5]: r2n4{c8 c1} - OR2{{n4r3c3 | n3r3c6}} - r2n3{c5 c9} - r2n6{c9 c6} - r2n9{c6 .} ==> r2c8≠1

hidden-triplets-in-a-column: c8{n1 n5 n8}{r1 r3 r9} ==> r9c8≠6, r9c8≠4, r3c8≠4, r1c8≠6
hidden-pairs-in-a-block: b9{n4 n6}{r9c7 r9c9} ==> r9c9≠5, r9c9≠1, r9c7≠8
naked-triplets-in-a-row: r1{c1 c5 c8}{n1 n5 n8} ==> r1c9≠5, r1c9≠1, r1c7≠8
Trid-OR2-whip[5]: r2n9{c9 c6} - r2n6{c6 c8} - r2n4{c8 c1} - OR2{{n4r3c3 | n3r3c6}} - b3n3{r3c7 .} ==> r2c9≠5
Trid-OR2-whip[5]: r2n9{c9 c6} - r2n6{c6 c8} - r2n4{c8 c1} - OR2{{n4r3c3 | n3r3c6}} - b3n3{r3c7 .} ==> r2c9≠1
Trid-OR2-whip[6]: b5n3{r6c5 r6c6} - OR2{{n3r3c6 | n4r3c3}} - c3n1{r3 r7} - b8n1{r7c6 r8c4} - c9n1{r8 r3} - c6n1{r3 .} ==> r6c5≠1
Trid-OR2-whip[8]: c6n3{r3 r6} - OR2{{n3r3c6 | n4r3c3}} - b3n4{r3c7 r2c8} - c8n6{r2 r4} - c8n3{r4 r5} - r5c2{n3 n1} - c6n1{r5 r7} - c3n1{r7 .} ==> r3c6≠8
Trid-OR2-whip[8]: c6n3{r3 r6} - OR2{{n3r3c6 | n4r3c3}} - b3n4{r3c7 r2c8} - c8n6{r2 r4} - c8n3{r4 r5} - r5c2{n3 n1} - c6n1{r5 r7} - c3n1{r7 .} ==> r3c6≠5


The end is in W7 (easy for a puzzle in T&E(3)):
Hidden Text: Show
t-whip[5]: r3c6{n3 n1} - b5n1{r6c6 r6c4} - c3n1{r6 r7} - c9n1{r7 r8} - r8n3{c9 .} ==> r3c7≠3
hidden-single-in-a-column ==> r8c7=3
t-whip[4]: b2n8{r2c5 r2c4} - r8n8{c4 c1} - r1n8{c1 c8} - r9n8{c8 .} ==> r6c5≠8
whip[7]: c1n4{r2 r6} - r6n7{c1 c8} - r5c8{n7 n3} - r5c2{n3 n1} - r2c2{n1 n5} - b2n5{r2c5 r1c5} - b2n8{r1c5 .} ==> r2c1≠8
whip[7]: r3c6{n3 n1} - b5n1{r5c6 r6c4} - c3n1{r6 r7} - c9n1{r7 r8} - c9n5{r8 r7} - r7c6{n5 n8} - b5n8{r4c6 .} ==> r3c9≠3
singles ==> r3c6=3, r6c5=3
naked-triplets-in-a-row: r2{c2 c4 c5}{n1 n5 n8} ==> r2c1≠5, r2c1≠1
naked-single ==> r2c1=4
whip[1]: c8n4{r6 .} ==> r4c9≠4
t-whip[7]: c6n8{r6 r7} - c7n8{r7 r3} - c7n4{r3 r9} - r9n6{c7 c9} - r4n6{c9 c8} - r4n4{c8 c3} - c3n8{r4 .} ==> r6c4≠8
whip[1]: b5n8{r6c6 .} ==> r7c6≠8
t-whip[6]: r6c4{n5 n1} - c6n1{r6 r7} - c3n1{r7 r3} - c9n1{r3 r8} - c1n1{r8 r5} - c1n7{r5 .} ==> r6c1≠5
biv-chain[3]: r6c1{n8 n7} - r6c8{n7 n4} - b4n4{r6c3 r4c3} ==> r4c3≠8
whip[6]: r6c4{n5 n1} - r2c4{n1 n8} - r8n8{c4 c1} - b1n8{r1c1 r3c3} - c3n1{r3 r7} - r7c6{n1 .} ==> r8c4≠5
z-chain[3]: c4n5{r6 r2} - c2n5{r2 r9} - b8n5{r9c5 .} ==> r4c6≠5
whip[1]: b5n5{r6c6 .} ==> r6c3≠5
t-whip[5]: r7c6{n5 n1} - b5n1{r6c6 r6c4} - c3n1{r6 r3} - c9n1{r3 r8} - r8n5{c9 .} ==> r7c3≠5
whip[5]: r7c3{n1 n8} - r8n8{c1 c4} - c4n1{r8 r2} - c5n1{r1 r9} - c2n1{r9 .} ==> r6c3≠1
whip[1]: r6n1{c6 .} ==> r5c6≠1
singles ==> r5c6=2, r4c6=8, r5c3=9, r9c3=2, r9c1=9, r4c1=2
finned-x-wing-in-columns: n8{c2 c4}{r2 r9} ==> r9c5≠8
hidden-single-in-a-block ==> r8c4=8
biv-chain[2]: r8n1{c9 c1} - c3n1{r7 r3} ==> r3c9≠1
whip[1]: c9n1{r8 .} ==> r9c8≠1
finned-x-wing-in-rows: n1{r9 r2}{c2 c5} ==> r1c5≠1
whip[1]: b2n1{r2c5 .} ==> r2c2≠1
biv-chain[3]: b4n8{r6c1 r6c3} - r7c3{n8 n1} - b1n1{r3c3 r1c1} ==> r1c1≠8
stte
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: #42040 int T&E(3) min-expands

Postby DEFISE » Fri Oct 28, 2022 5:34 pm

Cenoman wrote:In the following, x is whichever digit in {1,5,8}
If 4r3c3 is the true guardian, then RT(158)r37c6, r7c3 => (x)r7c3 = r37c6 - r456c6 = r6c456 => -x r6c3; -158 r6c3, ...


Hi Cenoman,
Thanks for your explanations, which I found clearer than Marek's, but I still have some problems.
I couldn't find the definition of a remote triple (RT) anywhere.
I guess it is a set of 3 cells C1,C2,C3 each containing exactly the same triplet {a,b,c}
such that C1 and C2 are in the same house, C2 and C3 also, but not C3 and C1.
The case that concerns us is RT {1,5,8} in r3c6, r7c6, r7c3.
I also guess that a RT has the property that the solution numbers of the 3 cells are all different, otherwise you could not have written this start of the chain: (x)r7c3 = r37c6

First problem: I can't prove this property. Why, for example, could we not have:
r3c6=5, r7c6=8, r7c3=5 or: r3c6=8, r7c6=5, r7c3=8 ?

Second problem: assuming you have proven that:
(1r7c3 false => 1r6c3 false) & (5r7c3 false => 5r6c3 false) & (8r7c3 false => 8r6c3 false)
I don't understand how you deduced that: 1r6c3 & 5r6c3 & 8r6c3 are false.

Friendly.
DEFISE
 
Posts: 284
Joined: 16 April 2020
Location: France

Re: #42040 int T&E(3) min-expands

Postby Cenoman » Fri Oct 28, 2022 8:51 pm

@François,
Thank you for your interest for this kind of solution.
DEFISE wrote:I couldn't find the definition of a remote triple (RT) anywhere.

I was in the same questioning a few weeks ago.
I guess it is a set of 3 cells C1,C2,C3 each containing exactly the same triplet {a,b,c} such that C1 and C2 are in the same house, C2 and C3 also, but not C3 and C1.

This definition is a bit restrictive, if "containing exactly" is meant as "containing no extra digit" to the triplet {a,b,c}. It is also restrictive to require that C1, C2, C3 be in two houses only. shye's Graffiti puzzle is a nice example of a remote triple in which C1, C2, C3 are in three houses and in which one cell contains an extra digit !
So my definition would be a set of 3 cells C1,C2,C3 each containing the same triplet {a,b,c}, and having each a different solution within the triplet {a,b,c} .
The case that concerns us is RT {1,5,8} in r3c6, r7c6, r7c3.
I also guess that a RT has the property that the solution numbers of the 3 cells are all different, otherwise you could not have written this start of the chain: (x)r7c3 = r37c6

Right
Why, for example, could we not have:
r3c6=5, r7c6=8, r7c3=5 or: r3c6=8, r7c6=5, r7c3=8 ?

Such a solution is not in accordance with the requirement: "the solution numbers of the 3 cells are all different" Above, you are considering a case where two cells have the same solution digit.
The remote triple leads to assert: 1 is present in one of the 3 cells r3c6, r7c3, r7c6 & 5 is present in one of the 3 cells & 8 is present in one of the 3 cells.
Hence the three RT-derived strong links: (1)r7c3 = r37c6, (5)r7c3 = r37c6, (8)r7c3 = r37c6, but also other three (1)r7c36 = r3c6, (5)r7c36 = r3c6, (8)r7c36 = r3c6, if these would have been useful.
These derived strong links chained with the Empty rectangle in box 5 form three chains demonstrating, digit per digit, its elimination from r6c3. (e.g. 1r6c3 is eliminated by (1)r7c3 = ... = (1)r6c456, and so on for 5, 8)
...assuming you have proven that:
(1r7c3 false => 1r6c3 false) & (5r7c3 false => 5r6c3 false) & (8r7c3 false => 8r6c3 false)
I don't understand how you deduced that: 1r6c3 & 5r6c3 & 8r6c3 are false.

My chains above can be written in current language:
Whether 1r7c3 is True OR 1r7c3 is False, 1r6c3 is False. No need to have 1r7c3 False & 5r7c3 False & 8 r7c3 False, to have 158r6c3 False.
Three chains => three eliminations. I can't catch your concern with this logic.
The main point in these Remote Triple is to catch their derived strong links. The subsequent inferences are just "business as usual"
Regards.
Cenoman
Cenoman
 
Posts: 2997
Joined: 21 November 2016
Location: France

Re: #42040 int T&E(3) min-expands

Postby eleven » Fri Oct 28, 2022 11:43 pm

DEFISE wrote:I also guess that a RT has the property that the solution numbers of the 3 cells are all different, otherwise you could not have written this start of the chain: (x)r7c3 = r37c6

First problem: I can't prove this property.

If in a TH pattern one of the rectangle cells is solved, the other 3 always are a remote triple. I haven't seen a proof here, so this is one:
Code: Select all
---------------------------
 123 .   .   | 123 .   .
 .   X   .   | .  *123 .
 .   .   123 | .   .   123
---------------------------
 123 .   .   | .   .   123
 .  *123 .   | .  *123 .
 .   .   123 |123  .   .
---------------------------

Replace 123 by variables ABC in box 2:
Code: Select all
---------------------------
 BC  .   .   | A   .   .
 .   X   .   | .  *B   .
 .   .   AB  | .   .   C
---------------------------
 ABC .   .   | .   .   AB
 .  *ABC .   | .  *AC .
 .   .   ABC |BC  .   .
---------------------------

[Edit: oops, my first line was both wrong and superfluous]
r4c1=A => r4c6=B,r6c4=C => r6c3=B
r4c1=C => r1c1=B,r3c3=A => r6c3=B
So either r4c1=B or r6c3=B and in the 3 cells you must have 3 different digits.
Last edited by eleven on Sat Oct 29, 2022 8:44 am, edited 2 times in total.
eleven
 
Posts: 3173
Joined: 10 February 2008

Re: #42040 int T&E(3) min-expands

Postby totuan » Sat Oct 29, 2022 5:48 am

eleven wrote: If in a TH pattern one of the rectangle cells is solved, the other 3 always are a remote triple. I haven't seen a proof here, so this is one:
Code: Select all
---------------------------
 123 .   .   | 123 .   .
 .   X   .   | .  *123 .
 .   .   123 | .   .   123
---------------------------
 123 .   .   | .   .   123
 .  *123 .   | .  *123 .
 .   .   123 |123  .   .
---------------------------

Replace 123 by variables ABC in box 2:
Code: Select all
---------------------------
 BC  .   .   | A   .   .
 .   X   .   | .  *B   .
 .   .   AB  | .   .   C
---------------------------
 ABC .   .   | .   .   AB
 .  *ABC .   | .  *AC .
 .   .   ABC |BC  .   .
---------------------------

r4c1 cannot be B: => r1c1=C,r3c3=A and r4c6=A,r5c5=C,r6c4=C => r6c3=B
r4c1=A => r4c6=B,r6c4=C => r6c3=B
r4c1=C => r1c1=B,r3c3=A => r6c3=B
So r6c3=B and in the 3 cells you must have 3 different digits.

Nice find!
Code: Select all
---------------------------
 123 .   .   | 123 .   .
 .   X   .   | .  *123A.
 .   .   123 | .   .   123
---------------------------
 123D.   .   | .   .   123
 .  *123C.   | .  *123B.
 .   .   123 |123  .   .
---------------------------

I see it as not pairs, that mean, (*) ABC can’t (12) or (13) or (23)
For example, if (*) ABC= (12) and let A=1 => B=2, C=1 then:
Code: Select all
---------------------------
 123 .   .   | 23  .   .
 .   X   .   | .  *1A  .
 .   .   123 | .   .   23
---------------------------
 23D .   .   | .   .   13
 .  *1C  .   | .  *2B  .
 .   .   23  |13   .   .
---------------------------

Let D=2 => two 1’s on box 1
Code: Select all
---------------------------
 1   .   .   | 3   .   .
 .   X   .   | .  *1A  .
 .   .   1   | .   .   2
---------------------------
 2D  .   .   | .   .   3
 .  *1C  .   | .  *2B  .
 .   .   3   |1    .   .
---------------------------

The same result for other cases => (*) cells must contain 3 different value.

totuan
totuan
 
Posts: 249
Joined: 25 May 2010
Location: vietnam

Re: #42040 int T&E(3) min-expands

Postby totuan » Sat Oct 29, 2022 7:05 am

For this puzzle, in case r3c6<>3.
If r3c6/r7c36 is not remote triple, for example r3c6=r7c36=15 then let r3c6=1 => r7c6=5, r7c3=1
Code: Select all
 *-----------------------------------------------------------------------------*
 |*158      2      3       | 4      *58      69      | 678     1568    15679   |
 | 1458   *158     7       |*58      358     69      | 2       134568  134569  |
 | 6       9      *458     | 2       7      #1       | 348     3458    345     |
 |-------------------------+-------------------------+-------------------------|
 | 2458    358     2458    | 7       9       238     | 1       346     346     |
 | 1279    13      29      | 6       4       23      | 5       37      8       |
 | 14578   6       458     | 158     1358    38      | 9       347     2       |
 |-------------------------+-------------------------+-------------------------|
 | 3       4      #1       | 9       6      #5       | 78      2       7       |
 |*58      7       6       |*18      2       4       | 38      9       135     |
 | 29     *58      29      | 3      *18      7       | 468     14568   1456    |
 *-----------------------------------------------------------------------------*

Let r8c1=5 => two 1’s on box 1
Code: Select all
 *-----------------------------------------------------------------------------*
 |*1-58    2       3       | 4      *8       69      | 678     1568    15679   |
 | 1458   *1-58    7       |*5       358     69      | 2       134568  134569  |
 | 6       9      *458     | 2       7      #1       | 348     3458    345     |
 |-------------------------+-------------------------+-------------------------|
 | 2458    358     2458    | 7       9       238     | 1       346     346     |
 | 1279    13      29      | 6       4       23      | 5       37      8       |
 | 14578   6       458     | 158     1358    38      | 9       347     2       |
 |-------------------------+-------------------------+-------------------------|
 | 3       4      #1       | 9       6      #5       | 78      2       7       |
 |*5       7       6       |*8       2       4       | 38      9       135     |
 | 29     *8      29       | 3      *1       7       | 468     14568   1456    |
 *-----------------------------------------------------------------------------*

The same result for other cases => In case r3c6<>3 then remote triple at r3c6/r7c36 or they must contain 3 different value

totuan
totuan
 
Posts: 249
Joined: 25 May 2010
Location: vietnam

Re: #42040 int T&E(3) min-expands

Postby eleven » Sat Oct 29, 2022 8:41 am

Corrected my proof above, sorry for any confusion.
eleven
 
Posts: 3173
Joined: 10 February 2008

Re: #42040 int T&E(3) min-expands

Postby DEFISE » Sat Oct 29, 2022 11:19 am

@Cenoman

For my 2nd problem, ok it's obvious. Sorry, I was in the clouds because AICs regularly use this logic.
But you didn't answer my first problem:
how to prove that the set {r3c6, r7c36} is an RT if we assume that 3r3c6 is false ?
(i:e the solutions of its 3 cells are distinct).
I understood your chains perfectly, but on condition that this proof is done.
There is certainly a proof in depth 3, which is not very glorious but not so surprising since this grid is in T&E(3). (see demonstration of totuan but which did not convince me, after a study perhaps too rapid).
N.B: Sorry I forgot to see the resolutions of Loki and Tanngrisnir and Tanngnjóstr

@eleven
Thanks, interesting result (that I did not check), but that does not answer my problem directly.

@totuan
Thanks, but I don’t understand your proof for the moment…
DEFISE
 
Posts: 284
Joined: 16 April 2020
Location: France

Re: #42040 int T&E(3) min-expands

Postby eleven » Sat Oct 29, 2022 12:00 pm

DEFISE wrote: how to prove that the set {r3c6, r7c36} is an RT if we assume that 3r3c6 is false ?

? that's the same proof. If 3r3c6 is false, 4r3c3 must be true (TH), which resolves a cell of the TH rectangle - so the other 3 have to be a RT.
eleven
 
Posts: 3173
Joined: 10 February 2008

Next

Return to Puzzles