Tanngrisnir and Tanngnjóstr (SER 11.7, te3 ID 19252)

Post puzzles for others to solve here.

Tanngrisnir and Tanngnjóstr (SER 11.7, te3 ID 19252)

Postby mith » Fri Jul 01, 2022 8:45 pm

Code: Select all
+-------+-------+-------+
| . . . | . . . | . . 1 |
| . . . | . 2 3 | . 4 . |
| . 5 6 | . . . | 2 3 7 |
+-------+-------+-------+
| . . . | . 8 2 | . . . |
| . . 5 | 3 . 6 | . . . |
| . 8 . | 4 5 . | . . . |
+-------+-------+-------+
| . 4 3 | . . . | 6 . 2 |
| 2 6 . | . 3 4 | 8 . 5 |
| 5 . 8 | 2 6 . | . . . |
+-------+-------+-------+
........1....23.4..56...237....82.....53.6....8.45.....43...6.226..348.55.826....
mith
 
Posts: 996
Joined: 14 July 2020

Re: Tanngrisnir and Tanngnjóstr (SER 11.7, te3 ID 19252)

Postby denis_berthier » Sat Jul 02, 2022 6:39 am

.
Resolution state after Singles and whips[1]:
Code: Select all
   +----------------------+----------------------+----------------------+
   ! 34789  2379   2479   ! 56789  479    5789   ! 59     5689   1      !
   ! 1789   179    179    ! 156789 2      3      ! 59     4      689    !
   ! 1489   5      6      ! 189    149    189    ! 2      3      7      !
   +----------------------+----------------------+----------------------+
   ! 134679 1379   1479   ! 179    8      2      ! 134579 15679  3469   !
   ! 1479   1279   5      ! 3      179    6      ! 1479   12789  489    !
   ! 13679  8      1279   ! 4      5      179    ! 1379   12679  369    !
   +----------------------+----------------------+----------------------+
   ! 179    4      3      ! 15789  179    15789  ! 6      179    2      !
   ! 2      6      179    ! 179    3      4      ! 8      179    5      !
   ! 5      179    8      ! 2      6      179    ! 13479  179    349    !
   +----------------------+----------------------+----------------------+
189 candidates.

naked-pairs-in-a-column: c7{r1 r2}{n5 n9} ==> r9c7≠9, r6c7≠9, r5c7≠9, r4c7≠9, r4c7≠5
hidden-single-in-a-block ==> r4c8=5
whip[1]: c7n9{r2 .} ==> r1c8≠9, r2c9≠9
hidden-pairs-in-a-row: r9{n3 n4}{c7 c9} ==> r9c9≠9, r9c7≠7, r9c7≠1
whip[1]: b9n1{r9c8 .} ==> r5c8≠1, r6c8≠1
whip[1]: b9n7{r9c8 .} ==> r5c8≠7, r6c8≠7
whip[1]: c9n9{r6 .} ==> r5c8≠9, r6c8≠9
hidden-pairs-in-a-row: r7{n5 n8}{c4 c6} ==> r7c6≠9, r7c6≠7, r7c6≠1, r7c4≠9, r7c4≠7, r7c4≠1
Code: Select all
   +----------------------+----------------------+----------------------+
   ! 34789  2379   2479   ! 56789  479    5789   ! 59     68     1      !
   ! 1789   179    179    ! 156789 2      3      ! 59     4      68     !
   ! 1489   5      6      ! 189    149    189    ! 2      3      7      !
   +----------------------+----------------------+----------------------+
   ! 134679 1379   1479   ! 179    8      2      ! 1347   5      3469   !
   ! 1479   1279   5      ! 3      179    6      ! 147    28     489    !
   ! 13679  8      1279   ! 4      5      179    ! 137    26     369    !
   +----------------------+----------------------+----------------------+
   ! 179    4      3      ! 58     179    58     ! 6      179    2      !
   ! 2      6      179    ! 179    3      4      ! 8      179    5      !
   ! 5      179    8      ! 2      6      179    ! 34     179    34     !
   +----------------------+----------------------+----------------------+

See column c8 in block b9.
Code: Select all
(solve-sukaku-grid-by-eleven-replacement 1 7 9
7 8
8 8
9 8
   +----------------------+----------------------+----------------------+
   ! 34789  2379   2479   ! 56789  479    5789   ! 59     68     1      !
   ! 1789   179    179    ! 156789 2      3      ! 59     4      68     !
   ! 1489   5      6      ! 189    149    189    ! 2      3      7      !
   +----------------------+----------------------+----------------------+
   ! 134679 1379   1479   ! 179    8      2      ! 1347   5      3469   !
   ! 1479   1279   5      ! 3      179    6      ! 147    28     489    !
   ! 13679  8      1279   ! 4      5      179    ! 137    26     369    !
   +----------------------+----------------------+----------------------+
   ! 179    4      3      ! 58     179    58     ! 6      179    2      !
   ! 2      6      179    ! 179    3      4      ! 8      179    5      !
   ! 5      179    8      ! 2      6      179    ! 34     179    34     !
   +----------------------+----------------------+----------------------+
)


Code: Select all
AFTER APPLYING ELEVEN''S REPLACEMENT METHOD to digits 1, 7 and 9 in cells r7c8, r8c8 and r9c8,
the resolution state is:
   +----------------------+----------------------+----------------------+
   ! 341798 23179  24179  ! 561798 4179   51798  ! 5179   68     179    !
   ! 1798   179    179    ! 179568 2      3      ! 5179   4      68     !
   ! 17948  5      6      ! 1798   1794   1798   ! 2      3      179    !
   +----------------------+----------------------+----------------------+
   ! 179346 1793   1794   ! 179    8      2      ! 17934  5      346179 !
   ! 1794   1792   5      ! 3      179    6      ! 1794   28     48179  !
   ! 17936  8      1792   ! 4      5      179    ! 1793   26     36179  !
   +----------------------+----------------------+----------------------+
   ! 179    4      3      ! 58     179    58     ! 6      1      2      !
   ! 2      6      179    ! 179    3      4      ! 8      7      5      !
   ! 5      179    8      ! 2      6      179    ! 34     9      34     !
   +----------------------+----------------------+----------------------+
THIS IS THE PUZZLE THAT WILL NOW BE SOLVED.
DON''T FORGET TO DO THE RELEVANT DIGIT REPLACEMENTS AT THE END, based on the original givens.

Code: Select all
biv-chain[4]: r4n6{c1 c9} - r6c8{n6 n2} - c3n2{r6 r1} - c3n4{r1 r4} ==> r4c1≠4
whip[6]: c2n2{r1 r5} - r5c8{n2 n8} - r1c8{n8 n6} - r2n6{c9 c4} - r2n5{c4 c7} - r2n7{c7 .} ==> r1c2≠7
whip[6]: c2n2{r1 r5} - r5c8{n2 n8} - r1c8{n8 n6} - r2n6{c9 c4} - r2n5{c4 c7} - r2n9{c7 .} ==> r1c2≠9
whip[6]: c2n2{r1 r5} - r5c8{n2 n8} - r1c8{n8 n6} - r2n6{c9 c4} - r2n1{c4 c7} - r2n5{c7 .} ==> r1c2≠1
t-whip[5]: c1n6{r4 r6} - r6c8{n6 n2} - r5n2{c8 c2} - r1c2{n2 n3} - b4n3{r4c2 .} ==> r4c1≠1, r4c1≠7, r4c1≠9
whip[7]: r1n3{c1 c2} - c2n2{r1 r5} - r5c8{n2 n8} - r1c8{n8 n6} - r2n6{c9 c4} - r2n5{c4 c7} - r2n7{c7 .} ==> r1c1≠7
whip[7]: r1n3{c1 c2} - c2n2{r1 r5} - r5c8{n2 n8} - r1c8{n8 n6} - r2n6{c9 c4} - r2n5{c4 c7} - r2n9{c7 .} ==> r1c1≠9
whip[7]: r1n3{c1 c2} - c2n2{r1 r5} - r5c8{n2 n8} - r1c8{n8 n6} - r2n6{c9 c4} - r2n1{c4 c7} - r2n5{c7 .} ==> r1c1≠1
whip[8]: c2n9{r5 r2} - c1n9{r3 r7} - b8n9{r7c5 r8c4} - b8n1{r8c4 r9c6} - r6c6{n1 n7} - r4c4{n7 n1} - c2n1{r4 r5} - b4n2{r5c2 .} ==> r6c3≠9
whip[6]: r9c2{n1 n7} - r2c2{n7 n9} - r5c2{n9 n2} - r6c3{n2 n7} - r2c3{n7 n1} - b7n1{r8c3 .} ==> r4c2≠1
z-chain[3]: c5n1{r3 r5} - c2n1{r5 r9} - b8n1{r9c6 .} ==> r2c4≠1
whip[6]: r7n7{c1 c5} - r9c6{n7 n1} - r6c6{n1 n9} - r5c5{n9 n1} - c2n1{r5 r2} - c1n1{r2 .} ==> r6c1≠7
whip[6]: c2n9{r5 r2} - c1n9{r3 r7} - r8c3{n9 n1} - r2c3{n1 n7} - c1n7{r3 r5} - b4n4{r5c1 .} ==> r4c3≠9
whip[4]: r9c2{n1 n7} - r2c2{n7 n9} - c3n9{r2 r8} - b7n1{r8c3 .} ==> r5c2≠1
whip[6]: r9n7{c6 c2} - b7n1{r9c2 r8c3} - r8c4{n1 n9} - b5n9{r4c4 r5c5} - r5c2{n9 n2} - r6c3{n2 .} ==> r6c6≠7
biv-chain[3]: r6c6{n9 n1} - r9c6{n1 n7} - r7c5{n7 n9} ==> r5c5≠9
biv-chain[3]: r5c5{n1 n7} - r7c5{n7 n9} - r8c4{n9 n1} ==> r4c4≠1
whip[4]: r4c4{n7 n9} - r6c6{n9 n1} - b4n1{r6c1 r5c1} - b4n4{r5c1 .} ==> r4c3≠7
z-chain[5]: c2n3{r4 r1} - r1n2{c2 c3} - r6c3{n2 n1} - r6c6{n1 n9} - r4c4{n9 .} ==> r4c2≠7
z-chain[3]: b5n7{r4c4 r5c5} - c2n7{r5 r9} - c6n7{r9 .} ==> r2c4≠7
z-chain[4]: r8c3{n1 n9} - r7c1{n9 n7} - b4n7{r5c1 r5c2} - b4n2{r5c2 .} ==> r6c3≠1
z-chain[5]: r4c4{n7 n9} - r4c2{n9 n3} - r1c2{n3 n2} - b4n2{r5c2 r6c3} - b4n7{r6c3 .} ==> r5c5≠7
singles ==> r5c5=1, r6c6=9, r4c4=7
biv-chain[4]: b4n1{r6c1 r4c3} - c3n4{r4 r1} - r1n2{c3 c2} - b1n3{r1c2 r1c1} ==> r6c1≠3
whip[1]: r6n3{c9 .} ==> r4c7≠3, r4c9≠3
biv-chain[3]: r4c3{n4 n1} - r6c1{n1 n6} - r4n6{c1 c9} ==> r4c9≠4
biv-chain[4]: c3n2{r1 r6} - r6c8{n2 n6} - r6c1{n6 n1} - r4c3{n1 n4} ==> r1c3≠4
singles ==> r4c3=4, r6c1=1, r4c1=6, r4c2=3, r1c2=2, r6c3=2, r6c8=6, r1c8=8, r2c9=6, r5c8=2, r1c4=6, r5c9=8, r5c7=4, r9c7=3, r6c7=7, r6c9=3, r9c9=4, r1c1=3, r3c1=4, r2c1=8, r1c5=4
whip[1]: r2n7{c3 .} ==> r1c3≠7
hidden-single-in-a-column ==> r2c3=7
finned-x-wing-in-columns: n1{c3 c4}{r8 r1} ==> r1c6≠1
whip[1]: b2n1{r3c6 .} ==> r3c9≠1
naked-pairs-in-a-row: r3{c5 c9}{n7 n9} ==> r3c6≠7, r3c4≠9
finned-x-wing-in-columns: n9{c4 c3}{r8 r2} ==> r2c2≠9
stte
     +-------+-------+-------+
     ! 3 2 9 ! 6 4 7 ! 5 8 1 !
     ! 8 1 7 ! 5 2 3 ! 9 4 6 !
     ! 4 5 6 ! 1 9 8 ! 2 3 7 !
     +-------+-------+-------+
     ! 6 3 4 ! 7 8 2 ! 1 5 9 !
     ! 7 9 5 ! 3 1 6 ! 4 2 8 !
     ! 1 8 2 ! 4 5 9 ! 7 6 3 !
     +-------+-------+-------+
     ! 9 4 3 ! 8 7 5 ! 6 1 2 !
     ! 2 6 1 ! 9 3 4 ! 8 7 5 !
     ! 5 7 8 ! 2 6 1 ! 3 9 4 !
     +-------+-------+-------+


digits 1 and 7 correspond to the data. No permutation of them is necessary.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Tanngrisnir and Tanngnjóstr (SER 11.7, te3 ID 19252)

Postby marek stefanik » Sun Jul 03, 2022 11:56 am

That's an exceptionally fun one. :)

Code: Select all
.--------------------.-------------------.-----------------.
| 34789   2379  2479 | 56789   479  5789 | 59    68   1    |
| 1789    179   179  | 156789  2    3    | 59    4    68   |
| 1489    5     6    | 189     149  189  | 2     3    7    |
:--------------------+-------------------+-----------------:
| 134679 #1379  1479 |#179     8    2    | 1347  5    3469 |
|#1479    1279  5    | 3      #179  6    | 147   28   489  |
| 13679   8    #1279 | 4       5   #179  | 137   26   369  |
:--------------------+-------------------+-----------------:
|#179     4     3    | 58     #179  58   | 6     179  2    |
| 2       6    #179  |#179     3    4    | 8     179  5    |
| 5      #179   8    | 2       6   #179  | 34    179  34   |
'--------------------'-------------------'-----------------'
TH 179b4578
| 4r5c1 – 4r13c1 = (4–2)r1c3 = 2r6c3 (merges next branch)
| 2r6c3 – 2r1c3 = (2–3)r1c2 = 3r4c2
| 3r4c2
=> 3r4c2


Code: Select all
.-------------------.-------------------.---------------.
| 3      279   2479 | 56789   479  5789 | 59   68   1   |
| 1789   179   179  | 156789  2    3    | 59   4    68  |
| 1489   5     6    | 189     149  189  | 2    3    7   |
:-------------------+-------------------+---------------:
| 14679  3    #1479 |#179     8    2    | 147  5    469 |
| 1479  #1279  5    | 3      #179  6    | 147  28   489 |
|#1679   8     1279 | 4       5   #179  | 137  26   369 |
:-------------------+-------------------+---------------:
|#179    4     3    | 58     #179  58   | 6    179  2   |
| 2      6    #179  |#179     3    4    | 8    179  5   |
| 5     #179   8    | 2       6   #179  | 34   179  34  |
'-------------------'-------------------'---------------'
TH 179b4578
| 6r6c1 – (6=2)r6c8 – 2r5c8 = 2r5c2 (merges next branch)
| 2r5c2 – 2r1c2 = (2–4)r1c3 = 4r4c3
| 4r4c3
=> 4r4c3


Code: Select all
.---------------.---------------.------------.
| 3    2   *79  | 6    4    57  | 59  8    1 |
| 8   *179 *179 | 5–7  2    3   | 59  4    6 |
| 4    5    6   | 189  19   189 | 2   3    7 |
:---------------+---------------+------------:
| 6    3   #4   |A17   8    2   | 17  5    9 |
| 179 #179  5   | 3   #179  6   | 4   2    8 |
|#179  8    2   | 4    5   #179 | 17  6    3 |
:---------------+---------------+------------:
|#179  4    3   | 58  #179  58  | 6   179  2 |
| 2    6   A179 |A179  3    4   | 8   17–9 5 |
| 5   #179  8   | 2    6   #179 | 3   179  4 |
'---------------'---------------'------------'
TH with a single rectangle guardian => RTs 179A, ...
7b1A\r2c34 => –7r2c4
9A\r8 => –9r8c9, stte

Marek
marek stefanik
 
Posts: 360
Joined: 05 May 2021

Re: Tanngrisnir and Tanngnjóstr (SER 11.7, te3 ID 19252)

Postby denis_berthier » Mon Aug 01, 2022 6:39 am

.
After adding:
- to the generic part of CSP-Rules: OR3-Forcing-Whips
- to SudoRules, the detection of anti-tridagons with more than 2 guardians,
here is my new solution to this puzzle:

Code: Select all
Resolution state after Singles and whips[1]:
   +----------------------+----------------------+----------------------+
   ! 34789  2379   2479   ! 56789  479    5789   ! 59     5689   1      !
   ! 1789   179    179    ! 156789 2      3      ! 59     4      689    !
   ! 1489   5      6      ! 189    149    189    ! 2      3      7      !
   +----------------------+----------------------+----------------------+
   ! 134679 1379   1479   ! 179    8      2      ! 134579 15679  3469   !
   ! 1479   1279   5      ! 3      179    6      ! 1479   12789  489    !
   ! 13679  8      1279   ! 4      5      179    ! 1379   12679  369    !
   +----------------------+----------------------+----------------------+
   ! 179    4      3      ! 15789  179    15789  ! 6      179    2      !
   ! 2      6      179    ! 179    3      4      ! 8      179    5      !
   ! 5      179    8      ! 2      6      179    ! 13479  179    349    !
   +----------------------+----------------------+----------------------+
189 candidates

Code: Select all
naked-pairs-in-a-column: c7{r1 r2}{n5 n9} ==> r9c7≠9, r6c7≠9, r5c7≠9, r4c7≠9, r4c7≠5
hidden-single-in-a-block ==> r4c8=5
whip[1]: c7n9{r2 .} ==> r1c8≠9, r2c9≠9
hidden-pairs-in-a-row: r9{n3 n4}{c7 c9} ==> r9c9≠9, r9c7≠7, r9c7≠1
whip[1]: b9n1{r9c8 .} ==> r5c8≠1, r6c8≠1
whip[1]: b9n7{r9c8 .} ==> r5c8≠7, r6c8≠7
whip[1]: c9n9{r6 .} ==> r5c8≠9, r6c8≠9
hidden-pairs-in-a-row: r7{n5 n8}{c4 c6} ==> r7c6≠9, r7c6≠7, r7c6≠1, r7c4≠9, r7c4≠7, r7c4≠1
biv-chain[3]: r1c7{n9 n5} - r2n5{c7 c4} - b2n6{r2c4 r1c4} ==> r1c4≠9
biv-chain[4]: c3n4{r4 r1} - c3n2{r1 r6} - r6c8{n2 n6} - b4n6{r6c1 r4c1} ==> r4c1≠4
z-chain[5]: c2n2{r1 r5} - r5c8{n2 n8} - r1c8{n8 n6} - r2n6{c9 c4} - r2n7{c4 .} ==> r1c2≠7
biv-chain[6]: r1c7{n9 n5} - r2n5{c7 c4} - b2n6{r2c4 r1c4} - c8n6{r1 r6} - b6n2{r6c8 r5c8} - c2n2{r5 r1} ==> r1c2≠9
t-whip[5]: c1n6{r4 r6} - r6c8{n6 n2} - r5n2{c8 c2} - r1c2{n2 n3} - b4n3{r4c2 .} ==> r4c1≠1, r4c1≠7, r4c1≠9
z-chain[6]: r1n3{c1 c2} - c2n2{r1 r5} - r5c8{n2 n8} - r1c8{n8 n6} - r2n6{c9 c4} - r2n7{c4 .} ==> r1c1≠7
biv-chain[7]: r1c7{n9 n5} - r2n5{c7 c4} - b2n6{r2c4 r1c4} - c8n6{r1 r6} - b6n2{r6c8 r5c8} - c2n2{r5 r1} - b1n3{r1c2 r1c1} ==> r1c1≠9
   +----------------------+----------------------+----------------------+
   ! 348    23     2479   ! 5678   479    5789   ! 59     68     1      !
   ! 1789   179    179    ! 156789 2      3      ! 59     4      68     !
   ! 1489   5      6      ! 189    149    189    ! 2      3      7      !
   +----------------------+----------------------+----------------------+
   ! 36     1379   1479   ! 179    8      2      ! 1347   5      3469   !
   ! 1479   1279   5      ! 3      179    6      ! 147    28     489    !
   ! 13679  8      1279   ! 4      5      179    ! 137    26     369    !
   +----------------------+----------------------+----------------------+
   ! 179    4      3      ! 58     179    58     ! 6      179    2      !
   ! 2      6      179    ! 179    3      4      ! 8      179    5      !
   ! 5      179    8      ! 2      6      179    ! 34     179    34     !
   +----------------------+----------------------+----------------------+

OR4-anti-tridagon[12] (type diag) for digits 1, 7 and 9 in blocks:
        b4, with cells: r4c3, r5c2, r6c1
        b5, with cells: r4c4, r5c5, r6c6
        b7, with cells: r8c3, r9c2, r7c1
        b8, with cells: r8c4, r9c6, r7c5
with 4 guardians: n4r4c3 n2r5c2 n3r6c1 n6r6c1

Note that this OR4 relation is detected, but not used, as I don't have OR4-Forcing-Whips currently. But we can do without it:

Code: Select all
   +----------------------+----------------------+----------------------+
   ! 348    23     2479   ! 5678   479    5789   ! 59     68     1      !
   ! 1789   179    179    ! 156789 2      3      ! 59     4      68     !
   ! 1489   5      6      ! 189    149    189    ! 2      3      7      !
   +----------------------+----------------------+----------------------+
   ! 36     1379   1479   ! 179    8      2      ! 1347   5      3469   !
   ! 1479   1279   5      ! 3      179    6      ! 147    28     489    !
   ! 13679  8      1279   ! 4      5      179    ! 137    26     369    !
   +----------------------+----------------------+----------------------+
   ! 179    4      3      ! 58     179    58     ! 6      179    2      !
   ! 2      6      179    ! 179    3      4      ! 8      179    5      !
   ! 5      179    8      ! 2      6      179    ! 34     179    34     !
   +----------------------+----------------------+----------------------+

OR3-anti-tridagon[12] (type antidiag) for digits 1, 7 and 9 in blocks:
        b4, with cells: r4c2, r5c1, r6c3
        b5, with cells: r4c4, r5c5, r6c6
        b7, with cells: r9c2, r7c1, r8c3
        b8, with cells: r9c6, r7c5, r8c4
with 3 guardians: n3r4c2 n4r5c1 n2r6c3
OR3-forcing-whip-elim[4] based on OR3-anti-tridagon[12] for n3r4c2, n4r5c1 and  n2r6c3:
....partial-whip[1]: r1c2{n3 n2} -
....partial-whip[1]: c3n4{r4 r1} -
....partial-whip[1]: c2n2{r5 r1} -
 ==> r1c3≠2
singles ==> r1c2=2, r1c1=3, r4c1=6, r4c2=3, r6c3=2, r6c8=6, r1c8=8, r2c9=6, r5c8=2, r1c4=6, r5c9=8


A mere tridagon will allow to easily finish the puzzle:
Code: Select all
   +-------------------+-------------------+-------------------+
   ! 3     2     479   ! 6     479   579   ! 59    8     1     !
   ! 1789  179   179   ! 15789 2     3     ! 59    4     6     !
   ! 1489  5     6     ! 189   149   189   ! 2     3     7     !
   +-------------------+-------------------+-------------------+
   ! 6     3     1479  ! 179   8     2     ! 147   5     49    !
   ! 1479  179   5     ! 3     179   6     ! 147   2     8     !
   ! 179   8     2     ! 4     5     179   ! 137   6     39    !
   +-------------------+-------------------+-------------------+
   ! 179   4     3     ! 58    179   58    ! 6     179   2     !
   ! 2     6     179   ! 179   3     4     ! 8     179   5     !
   ! 5     179   8     ! 2     6     179   ! 34    179   34    !
   +-------------------+-------------------+-------------------+

tridagon type diag for digits 1, 7 and 9 in blocks:
        b4, with cells: r4c3 (target cell), r5c2, r6c1
        b5, with cells: r4c4, r5c5, r6c6
        b7, with cells: r8c3, r9c2, r7c1
        b8, with cells: r8c4, r9c6, r7c5
 ==> r4c3≠1,7,9
singles ==> r4c3=4, r4c9=9, r6c9=3, r9c9=4, r9c7=3, r5c7=4, r3c1=4, r2c1=8, r1c5=4
whip[1]: r3n1{c6 .} ==> r2c4≠1
whip[1]: r3n9{c6 .} ==> r1c6≠9, r2c4≠9
finned-x-wing-in-columns: n7{c5 c1}{r7 r5} ==> r5c2≠7
whip[1]: b4n7{r6c1 .} ==> r7c1≠7
biv-chain[2]: c2n7{r9 r2} - b2n7{r2c4 r1c6} ==> r9c6≠7
biv-chain[3]: b2n8{r3c6 r3c4} - c4n9{r3 r8} - r9c6{n9 n1} ==> r3c6≠1
biv-chain[3]: c6n1{r9 r6} - r4c4{n1 n7} - b8n7{r8c4 r7c5} ==> r7c5≠1
biv-chain[3]: r5n7{c1 c5} - r7c5{n7 n9} - r7c1{n9 n1} ==> r5c1≠1
finned-x-wing-in-columns: n1{c6 c1}{r6 r9} ==> r9c2≠1
t-whip[4]: r1c3{n9 n7} - r2n7{c3 c4} - r4c4{n7 n1} - r8c4{n1 .} ==> r8c3≠9
whip[1]: c3n9{r2 .} ==> r2c2≠9
biv-chain[2]: b7n9{r9c2 r7c1} - r6n9{c1 c6} ==> r9c6≠9
naked-single ==> r9c6=1
biv-chain[3]: r2c2{n7 n1} - r5n1{c2 c5} - r4c4{n1 n7} ==> r2c4≠7
singles ==> r2c4=5, r1c6=7, r1c3=9, r1c7=5, r6c6=9, r3c6=8, r7c6=5, r2c7=9, r7c4=8
biv-chain[3]: c1n9{r7 r5} - r5n7{c1 c5} - r7c5{n7 n9} ==> r7c8≠9
biv-chain[3]: b9n1{r7c8 r8c8} - c8n9{r8 r9} - b7n9{r9c2 r7c1} ==> r7c1≠1
stte
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Tanngrisnir and Tanngnjóstr (SER 11.7, te3 ID 19252)

Postby yzfwsf » Mon Aug 01, 2022 10:25 am

The output of my solver:
Code: Select all
Locked Pair: in r1c7,r2c7 => r1c8<>59,r2c9<>9,r4c7<>59,r5c7<>9,r6c7<>9,r9c7<>9,
Hidden Single: 5 in r4 => r4c8=5
Locked Triple: in r7c8,r8c8,r9c8 => r5c8<>179,r6c8<>179,r9c7<>17,r9c9<>9,
Hidden Pair: 58 in r7c4,r7c6 => r7c4<>179,r7c6<>179
Triplet Oddagon Forcing Chain: Each true guardian of Triplet Oddagon will all lead To: r4c179,r1c2,r6c1<>3,r4c2<>7,r4c2<>9
3r4c2
4r5c1 - (4=17893)b1p14567 - 3r1c2 = 3r4c2
2r6c3 - (2=1793)r2459c2
Hidden Single: 3 in r1 => r1c1=3
Hidden Single: 3 in r4 => r4c2=3
Triplet Oddagon Forcing Chain: Each true guardian of Triplet Oddagon will all lead To: r2c4,r3c1<>1,r2c49,r3c1<>8,r23c1<>9
4r4c3 - (4=12798)b1p23456
2r5c2 - (2=1798)b1p2456
6r6c1 - (6=2)r6c8 - 2r6c3 = 2r1c3 - (2=1798)b1p2456
Hidden Single: 8 in r2 => r2c1=8
Hidden Single: 8 in c9 => r5c9=8
Hidden Single: 8 in c8 => r1c8=8
Hidden Single: 6 in r1 => r1c4=6
Hidden Single: 6 in r2 => r2c9=6
Hidden Single: 6 in r4 => r4c1=6
Hidden Single: 6 in r6 => r6c8=6
Hidden Single: 2 in r6 => r6c3=2
Hidden Single: 2 in r1 => r1c2=2
Hidden Single: 2 in r5 => r5c8=2
Naked Single: r3c1=4
Hidden Single: 4 in r1 => r1c5=4
Hidden Single: 4 in r5 => r5c7=4
Hidden Single: 4 in r4 => r4c3=4
Hidden Single: 4 in r9 => r9c9=4
Hidden Single: 3 in r9 => r9c7=3
Hidden Single: 3 in r6 => r6c9=3
Full House: r4c9=9
Locked Candidates 2 (Claiming): 9 in r3 => r1c6<>9,r2c4<>9
Finned X-Wing:7c15\r57 fr6c1 => r5c2<>7
Locked Candidates 1 (Pointing): 7 in b4 => r7c1<>7
Sashimi Swordfish:7r178\c368 fb8p24 => r9c6<>7
AIC Type 2: (9=7)r1c3 - r1c6 = (7-9)r6c6 = r6c1 - (9=1)r7c1 - r8c3 = 1r2c3 => r2c3<>9
Discontinuous Nice Loop: 9r1c3 = r1c7 - (9=5)r2c7 - r2c4 = (5-8)r7c4 = (8-9)r3c4 = r8c4 - r8c3 = 9r1c3 => r1c3=9
Hidden Single: 7 in r1 => r1c6=7
Full House: r1c7=5
Full House: r2c7=9
Hidden Single: 5 in r2 => r2c4=5
Hidden Single: 5 in r7 => r7c6=5
Hidden Single: 8 in r7 => r7c4=8
Hidden Single: 8 in r3 => r3c6=8
Sashimi X-Wing:9c26\r59 fr6c6 => r5c5<>9
Hidden Single: 9 in b5 => r6c6=9
Full House: r9c6=1
Dual Firework S-Wing: 79r5c1b4 is firework => r5c1<>1
XY-Chain: (7=1)r2c3 - (1=7)r8c3 - (7=9)r8c4 - (9=7)r7c5 - (7=1)r5c5 - (1=9)r5c2 - (9=7)r9c2 => r2c2,r8c3<>7
stte
yzfwsf
 
Posts: 921
Joined: 16 April 2019

Re: Tanngrisnir and Tanngnjóstr (SER 11.7, te3 ID 19252)

Postby P.O. » Mon Aug 01, 2022 1:25 pm

i have checked some of the puzzles solved with the tridagon rule with the POM procedure, they all exhibit the same repartion of templates at the start: three values have a relatively higher number of templates than the six others (whose number of templates is rather low), the three values in the tridagon. That repartition make them easy to solve with POM has it lower the number of combinations.

puzzle / #templates at the start / combinations tested
Code: Select all
..............1..2....34.56.14.78...73.94....8.91.37...98......17.......4.3.19.8.
#VT: (8 64 20 14 99 79 6 13 14)   (2 2 3 2 2 3 2 3 2 3 2 3 4 2 2 3)

........1.....2.3.....4.56......7.....481.2..19..248...89..1..742..78..97.1.9....
#VT: (4 6 96 13 119 99 8 8 9)     (2 2 3 2 3 2 3 2 3 4 2 2 3 2 2 3 2 3 2 2 2 3 4)

........1.....2.3.....4.56....7.8.....491.2..17..249...97..1..842..89...8.1.7....
#VT: (4 6 91 13 140 96 10 8 8)    (2 2 3 2 3 2 3 4)

........1.....2.3.....4.56....7.8.....491.2..18..249...98..1..742..79...7.1.8....
#VT: (4 6 91 13 140 96 6 14 8)    (2 2 3 2 3 2 3 4)

..............1..2....34.56.17......34..18.9.9.8.......9314.7..47.8.3...8.1.79...
#VT: (8 68 20 20 106 88 6 11 13)  (2 2 3 2 2 3 2 3 2 3 2 3 2 3 4)

...........1.23.45..214.3.6......45..5...46.1.6..51.32.4.......7....2...8.9.36...
#VT: (8 6 13 4 11 7 91 123 146)   (2 2 3 2 2 3 2 3 2 3 4 2 2)

........1.....234..35.1.......4..65....6.12.36....5.1...7.4.....89.5....21.....3.
#VT: (4 16 12 10 4 18 387 387 387) (2 2 3 2 2 3 2 2 3 2 2 3 2 3 2 2 3 2 2 3 2 3 2 3 2 3 4 2 2 3 2 2 3 2 3 2 3 2 3 4)

.......12.....34.5..514.6......6.3...2.35..6..6.4.1.5..1.23....7.8......932....4.
#VT: (12 2 4 10 7 12 184 197 196)  (2 2 3 2 3 2 3 4 2 3 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 3 4 5 2 2 3 2 2 3 2 3 4 2 2 3 2 3 4 2 2 3 2 2 3 2 3 2 3 2 2 3)

Tanngrisnir and Tanngnjóstr (SER 11.7, te3 ID 19252)
#VT: (100 2 6 8 4 4 117 7 396)     (2 2 3 2 2 3 2 3 4 2 3 2 3 4 2 3 2 2 3 2 2 3)

Hidden Text: Show
Code: Select all
Tanngrisnir and Tanngnjóstr (SER 11.7, te3 ID 19252)

#VT: (100 2 6 8 4 4 117 7 396)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil nil
2
#VT: (94 2 6 8 4 4 112 7 343)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil nil
2 3
#VT: (39 2 6 7 3 3 43 7 67)
Cells: nil nil nil nil (35) nil nil nil nil
SetVC: ( n5r4c8 )

#VT: (91 2 6 8 3 3 106 7 367)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil nil
2
#VT: (86 2 6 8 3 3 98 7 309)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil nil
2 3
#VT: (39 2 6 7 3 3 41 7 64)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:(44 53 58 60 79) nil nil nil nil nil (2 44 53 58 60 79) nil (4 8 18 34 43 44 52 53 58 60 79 81)
2 3 4
#VT: (33 2 6 6 3 3 32 7 19)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil (28) nil nil (1) nil (2 13 28)
2 3
#VT: (27 2 6 6 3 3 31 7 19)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil nil
2 3 4
#VT: (19 2 6 6 3 3 21 7 16)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:(48) nil nil nil nil nil (48) nil nil
2 3
#VT: (19 2 6 6 3 3 21 7 13)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil (1 48)
EraseCC: ( n2r6c3   n6r6c8   n8r1c8   n6r2c9   n2r5c8   n2r1c2
           n3r4c2   n3r1c1   n6r4c1   n6r1c4   n8r5c9 )

#VT: (40 1 2 3 2 1 30 3 46)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil nil
2
#VT: (32 1 2 3 2 1 23 3 35)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil nil
2 3
#VT: (5 1 2 3 2 1 9 3 6)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:(10 13 19 43 59) nil nil nil nil nil nil nil (11 22 46 59 71)
EraseCC: ( n7r7c5 )

#VT: (29 1 2 3 2 1 6 3 36)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil (30) nil nil
2
#VT: (15 1 2 3 2 1 6 3 17)
Cells: nil nil nil nil nil nil nil nil nil
Candidates:nil nil nil nil nil nil nil nil (6)
2 3
#VT: (3 1 2 3 2 1 2 2 1)
Cells: nil nil nil nil nil nil (37 71 74) (10) (3 16 23 36 38 51 55 67 80)
SetVC: ( n9r1c3   n4r1c5   n5r1c7   n8r2c1   n9r2c7   n4r3c1
         n9r3c5   n9r4c9   n7r5c1   n9r5c2   n1r5c5   n4r5c7
         n1r6c1   n9r6c6   n3r6c9   n9r7c1   n1r7c8   n9r8c4
         n7r8c8   n7r9c2   n1r9c6   n3r9c7   n9r9c8   n4r9c9
         n7r1c6   n1r2c2   n7r2c3   n5r2c4   n8r3c6   n4r4c3
         n7r4c4   n1r4c7   n7r6c7   n8r7c4   n5r7c6   n1r8c3
         n1r3c4 )
3 2 9   6 4 7   5 8 1
8 1 7   5 2 3   9 4 6
4 5 6   1 9 8   2 3 7
6 3 4   7 8 2   1 5 9
7 9 5   3 1 6   4 2 8
1 8 2   4 5 9   7 6 3
9 4 3   8 7 5   6 1 2
2 6 1   9 3 4   8 7 5
5 7 8   2 6 1   3 9 4

(2 2 3 2 2 3 2 3 4 2 3 2 3 4 2 3 2 2 3 2 2 3)
P.O.
 
Posts: 1762
Joined: 07 June 2021


Return to Puzzles