Loki (SER 11.9)

Post puzzles for others to solve here.

Loki (SER 11.9)

Postby mith » Tue Mar 01, 2022 5:59 pm

Code: Select all
+-------+-------+-------+
| 5 7 . | . . . | 9 . . |
| . . . | . . . | . . 8 |
| . 1 . | . . . | . . . |
+-------+-------+-------+
| . . 1 | 6 8 . | . 4 . |
| . . . | . . 2 | 8 . 9 |
| . . 2 | . 9 4 | 1 6 . |
+-------+-------+-------+
| . . . | . 2 . | . . . |
| . 6 . | 9 . 8 | 2 . 4 |
| . . . | 4 1 . | 6 . . |
+-------+-------+-------+
57....9..........8.1.........168..4......28.9..2.9416.....2.....6.9.82.4...41.6..  ED=11.9/1.2/1.2 "Loki"
mith
 
Posts: 996
Joined: 14 July 2020

Re: Loki (SER 11.9)

Postby 999_Springs » Wed Mar 02, 2022 12:11 am

solved by hand, no computer assistance other than automatically filling in the pencilmarks after the singles at the start. took about an hour - most of it trying to find a chain when there was a hidden single available

singles and a hidden pair to here
Code: Select all
+-------+-------+--------+
| 5 7 . | . . . | 9 .  . |
| . . . | . . . | . .  8 |
| . 1 . | . . . | . .  . |
+-------+-------+--------+
| . . 1 | 6 8 . | . 4  2 |
| . . . | 1 . 2 | 8 .  9 |
| . . 2 | . 9 4 | 1 6  . |
+-------+-------+--------+
| . . . | . 2 6 | . 89 . |
| . 6 . | 9 . 8 | 2 .  4 |
| . . . | 4 1 . | 6 89 . |
+-------+-------+--------+

trivalue oddagon r7c9=/=1

singles to
Code: Select all
+-------+-------+--------+
| 5 7 . | 8 . 3 | 9 2  1 |
| . . . | . . 1 | . .  8 |
| . 1 . | . . 9 | . .  6 |
+-------+-------+--------+
| . . 1 | 6 8 . | . 4  2 |
| . . . | 1 . 2 | 8 .  9 |
| . . 2 | . 9 4 | 1 6  . |
+-------+-------+--------+
| 1 . . | . 2 6 | . 89 . |
| . 6 . | 9 . 8 | 2 1  4 |
| . . . | 4 1 . | 6 89 . |
+-------+-------+--------+

3,5,7 are only located in r1, so replace them with A,B,C in b9 using eleven's method
Code: Select all
+-------+---------+---------+
| # # . | 8 .  BC | 9  2  1 |
| . . . | . .  1  | .  .  8 |
| . 1 . | . .  9  | .  .  6 |
+-------+---------+---------+
| . . 1 | 6 8  CA | BC 4  2 |
| . . . | 1 AC 2  | 8  CB 9 |
| . . 2 | B 9  4  | 1  6  A |
+-------+---------+---------+
| 1 . . | C 2  6  | A  89 B |
| # 6 # | 9 BA 8  | 2  1  4 |
| . . . | 4 1  AB | 6  89 C |
+-------+---------+---------+

# cells must be ABC

simple colouring on the remaining unsolved cells in b5689 gives either

case I: letters on the left are all true, or
case II: letters on the right are all true

since r1c6=BC=3, this immediately gives A=/=3

suppose case I is true
then r1c18=AC is a naked pair
r4c2=A, r6c2=C hidden singles in row, then no value for r1c2, contradiction

so case II is true, implying that C = 3

Code: Select all
+---------+-------+--------+
| AB AB . | 8 . 3 | 9 2  1 |
| .  .  . | . . 1 | . .  8 |
| .  1  . | . . 9 | . .  6 |
+---------+-------+--------+
| .  .  1 | 6 8 A | 3 4  2 |
| .  .  . | 1 3 2 | 8 B  9 |
| .  .  2 | B 9 4 | 1 6  A |
+---------+-------+--------+
| 1  .  . | 3 2 6 | A 89 B |
| .  6  . | 9 A 8 | 2 1  4 |
| .  .  . | 4 1 B | 6 89 3 |
+---------+-------+--------+

r8c3 is a hidden single for B in column 3, and all singles from here to the end (this step took much longer than it should have done)
Code: Select all
+---------+-------+-------+
| B  A  6 | 8 4 3 | 9 2 1 |
| 4  9  3 | 2 6 1 | B A 8 |
| 2  1  8 | A B 9 | 4 3 6 |
+---------+-------+-------+
| 9  B  1 | 6 8 A | 3 4 2 |
| 6  4  A | 1 3 2 | 8 B 9 |
| 8  3  2 | B 9 4 | 1 6 A |
+---------+-------+-------+
| 1  8  4 | 3 2 6 | A 9 B |
| 3  6  B | 9 A 8 | 2 1 4 |
| A  2  9 | 4 1 B | 6 8 3 |
+---------+-------+-------+

B=5 and A=7
Code: Select all
+-------+-------+-------+
| 5 7 6 | 8 4 3 | 9 2 1 |
| 4 9 3 | 2 6 1 | 5 7 8 |
| 2 1 8 | 7 5 9 | 4 3 6 |
+-------+-------+-------+
| 9 5 1 | 6 8 7 | 3 4 2 |
| 6 4 7 | 1 3 2 | 8 5 9 |
| 8 3 2 | 5 9 4 | 1 6 7 |
+-------+-------+-------+
| 1 8 4 | 3 2 6 | 7 9 5 |
| 3 6 5 | 9 7 8 | 2 1 4 |
| 7 2 9 | 4 1 5 | 6 8 3 |
+-------+-------+-------+

yay i solved the hardest sudoku in the world by hand with no pencilmarks :D i'm a genius
999_Springs
 
Posts: 591
Joined: 27 January 2007
Location: In the toilet, flushing down springs, one by one.

Re: Loki (SER 11.9)

Postby mith » Wed Mar 02, 2022 12:18 am

Nicely done :)

I've been refining my solution over the afternoon, and have it down to three non-basic steps. I'll post it later when I have a chance to finish writing it up.
mith
 
Posts: 996
Joined: 14 July 2020

Re: Loki (SER 11.9)

Postby denis_berthier » Wed Mar 02, 2022 7:48 am

.
See my comments on this puzzle here: http://forum.enjoysudoku.com/the-hardest-sudokus-new-thread-t6539-1048.html
As I'm not a genius ;) I tried to solve this puzzle with SudoRules after eliminating n1r7c9

[For the users of CSP-Rules] This can be done by typing:
(bind ?*simulated-eliminations* = (create$ (nrc-to-label 1 7 9)))
before typing:
(solve "57....9..........8.1.........168..4......28.9..2.9416.....2.....6.9.82.4...41.6.. ED=11.9/1.2/1.2 Loki)
Beware of not keeping the double quotes around Loki, as this would confuse CLIPS[/For the users of CSP-Rules]


Code: Select all
Resolution state after Singles and whips[1]:
   +----------------------+----------------------+----------------------+
   ! 5      7      46     ! 8      46     3      ! 9      2      1      !
   ! 23469  2349   3469   ! 257    4567   1      ! 3457   357    8      !
   ! 2348   1      348    ! 257    457    9      ! 3457   357    6      !
   +----------------------+----------------------+----------------------+
   ! 379    359    1      ! 6      8      57     ! 357    4      2      !
   ! 3467   345    34567  ! 1      357    2      ! 8      357    9      !
   ! 378    358    2      ! 357    9      4      ! 1      6      357    !
   +----------------------+----------------------+----------------------+
   ! 134789 34589  345789 ! 357    2      6      ! 357    135789 357    !
   ! 137    6      357    ! 9      357    8      ! 2      1357   4      !
   ! 23789  23589  35789  ! 4      1      57     ! 6      35789  357    !
   +----------------------+----------------------+----------------------+
162 candidates.

hidden-pairs-in-a-column: c8{n8 n9}{r7 r9} ==> r9c8≠7, r9c8≠5, r9c8≠3, r7c8≠7, r7c8≠5, r7c8≠3, r7c8≠1
singles ==> r8c8=1, r7c1=1
finned-x-wing-in-columns: n3{c4 c9}{r6 r7} ==> r7c7≠3
whip[1]: b9n3{r9c9 .} ==> r6c9≠3
naked-triplets-in-a-row: r7{c4 c7 c9}{n3 n7 n5} ==> r7c3≠7, r7c3≠5, r7c3≠3, r7c2≠5, r7c2≠3
z-chain[3]: r1c3{n4 n6} - c1n6{r2 r5} - c1n4{r5 .} ==> r2c2≠4, r3c3≠4, r2c3≠4
t-whip[3]: r8c1{n3 n7} - c3n7{r9 r5} - r5n6{c3 .} ==> r5c1≠3
t-whip[3]: c1n6{r5 r2} - r1c3{n6 n4} - c1n4{r3 .} ==> r5c1≠7
t-whip[3]: r1c3{n6 n4} - c1n4{r3 r5} - r5n6{c1 .} ==> r2c3≠6
t-whip[3]: c5n3{r5 r8} - r8c1{n3 n7} - c3n7{r9 .} ==> r5c5≠7, r5c3≠3
biv-chain[3]: c4n3{r7 r6} - r5c5{n3 n5} - c6n5{r4 r9} ==> r7c4≠5
whip[1]: r7n5{c9 .} ==> r9c9≠5
biv-chain[3]: b6n3{r4c7 r5c8} - r5c5{n3 n5} - r4c6{n5 n7} ==> r4c7≠7
whip[3]: r4n7{c1 c6} - r6n7{c4 c9} - r9n7{c9 .} ==> r8c1≠7
singles ==> r8c1=3, r7c4=3, r5c5=3, r4c7=3, r6c2=3, r6c1=8, r3c3=8, r2c3=3, r3c8=3, r9c9=3
whip[1]: c3n9{r9 .} ==> r7c2≠9, r9c1≠9, r9c2≠9
x-wing-in-columns: n7{c1 c6}{r4 r9} ==> r9c3≠7
biv-chain[2]: c8n5{r2 r5} - r6n5{c9 c4} ==> r2c4≠5
biv-chain[2]: c8n7{r2 r5} - r6n7{c9 c4} ==> r2c4≠7
stte

This path could probably be shortened, but that's irrelevant here.

The point is, a puzzle that was not in T&E(2) - the first known such puzzle, the hardest of the hardest - and not even in gT&E(2) is turned into a relatively easy puzzle (solvable in W3) by the elimination of a single candidate (whichever way this elimination is justified).
As of now, this is probably the largest known effect of a single elimination.
denis_berthier
2010 Supporter
 
Posts: 4205
Joined: 19 June 2007
Location: Paris

Re: Loki (SER 11.9)

Postby shye » Wed Mar 02, 2022 3:08 pm

first off, congrats on the new 11.9 mith! surprised it is actually solvable

after singles and hidden pair in b9

Code: Select all
.-----------------------.---------------------.-------------------.
| 5       7      3468   | 238    346    13    | 9     123    136  |
| 23469   2349   3469   | 2357   34567  13579 | 3457  12357  8    |
| 234689  1      34689  | 23578  34567  3579  | 3457  2357   3567 |
:-----------------------+---------------------+-------------------:
| 379     359    1      | 6      8     #357   |#357   4      2    |
| 3467    345    34567  | 1     #357    2     | 8    #357    9    |
| 378     358    2      |#357    9      4     | 1     6     #357  |
:-----------------------+---------------------+-------------------:
| 134789  34589  345789 |#357    2      6     |#357   89     1357 |
| 137     6      357    | 9     #357    8     | 2    #357+1  4    |
| 23789   23589  35789  | 4      1     #357   | 6     89    #357  |
'-----------------------'---------------------'-------------------'

trivalue oddagon
+1r8c8

singles, naked triple in r7, an empty rectangle (3r6c4 = 3r7c4 - 3b9p13 = 3b9p9 => -3r6c9) and consequent lc
then:

Code: Select all
.---------------------.---------------.----------------.
| 5      7      46    | 8    46    3  | 9     2    1   |
| 23469  2349   3469  | 257  4567  1  | 3457  357  8   |
| 2348   1      348   | 257  457   9  | 3457  357  6   |
:---------------------+---------------+----------------:
| 379    359    1     | 6    8     57 |#357   4    2   |
| 3467   345    34567 | 1    357   2  | 8    #57-3 9   |
| 378    358    2     | 357  9     4  | 1     6   #57  |
:---------------------+---------------+----------------:
| 1      489    489   | 357  2     6  | 57    89   357 |
| 37     6      357   | 9    357   8  | 2     1    4   |
| 23789  23589  35789 | 4    1     57 | 6     89   357 |
'---------------------'---------------'----------------'

.---------------.----------------.    .---------------.----------------.
| 6    8    B57 |A357   4    2   |    | 6    8    C57 |A357   4    2   |
| 1   C357   2  | 8    B357  9   |    | 1   A357   2  | 8    B357  9   |
|A357  9     4  | 1     6   C57  |    |B357  9     4  | 1     6   C57  |
:---------------+----------------:    :---------------+----------------:
|B357  2     6  |C57    89  A357 |    |A357  2     6  |C57    89  B357 |
| 9   A357   8  | 2     1    4   |    | 9   C357   8  | 2     1    4   |
| 4    1    C57 | 6     89  B357 |    | 4    1    B57 | 6     89  A357 |
'---------------'----------------'    '---------------'----------------'

set 357 in b6 to ABC and label b5689 accrdingly. there are two possible arrangements, but in each case the 57 pair in c6 is always comprised of B and C
-3r5c8, 3 is placed in b6

then, a small chain: 5r8c3 = 5r8c5 - (5=7)r9c6 - 7r4c6 = 7r4c1 - (7=3)r8c1 => -3r8c3
a two-string kite: 3r6c4 = 3r7c4 - 3r8c5 = 3r8c1 => -3r6c1
another chain: 8r6c1 = (8-3)r6c2 = 3r6c4 - 3b8p1 = 3b8p5 - (3=7)r8c1 => -7r6c1
an empty rectangle: 7r6c9 = 7r6c4 - 7b9p39 = 7b9p1 => -7r7c4
a crane: 7r4c1 = 7r4c6 - 7b8p9 = 7b8p5 => -7r8c1

many singles and 9lc in b7
then to finish

Code: Select all
.-----------------.---------------.-------------.
| 5     7    46   | 8    46    3  | 9    2   1  |
| 2469  249  3    | 2-57 4567  1  | 457 #57  8  |
| 24    1    8    | 257  457   9  | 457  3   6  |
:-----------------+---------------+-------------:
| 79    59   1    | 6    8     57 | 3    4   2  |
| 467   45   4567 | 1    3     2  | 8   #57  9  |
| 8     3    2    |#57   9     4  | 1    6  #57 |
:-----------------+---------------+-------------:
| 1     48   49   | 3    2     6  | 57   89  57 |
| 3     6    57   | 9    57    8  | 2    1   4  |
| 27    258  579  | 4    1     57 | 6    89  3  |
'-----------------'---------------'-------------'

remote pair
-57r2c4 stte
User avatar
shye
 
Posts: 323
Joined: 12 June 2021

Re: Loki (SER 11.9)

Postby mith » Wed Mar 02, 2022 4:19 pm

Alright, here is my three step solution. After basics...

Step 1: trivalue oddagon b5689 => -357r8c8, +1r8c8

Code: Select all
+--------+-------+--------+
| 5  7 . | . . . | 9 .  . |
| .  . . | . . . | . .  8 |
| .  1 . | . . . | . .  . |
+--------+-------+--------+
| .  . 1 | 6 8 . | . 4  2 |
| .  . . | 1 . 2 | 8 .  9 |
| .  . 2 | B 9 4 | 1 6  A |
+--------+-------+--------+
| .  . . | C 2 6 | A 89 B |
| 37 6 . | 9 . 8 | 2 1  4 |
| .  . . | 4 1 . | 6 89 C |
+--------+-------+--------+


(There are singles we can do here, but they aren't needed for the next step so for the sake of clarity we'll use the above diagram with just the 1 filled.)

Step 2:

I've borrowed 999_Springs' lettering - we can see r6c9 == r7c7 (A), r7c4 == r9c9 (C), and as a consequence of these r6c4 == r7c9 (B).

Note that r6c4, r6c9, and r7c4 form a remote triple. An immediate consequence of this is that the other connected (by row/column) cells in b568 also form remote triples - r5c5/r5c8/r8c5, and r4c6/r4c7/r9c6

(You can see this by looking at the cases as in 999_Springs' post, but more generally - one of the cells in b6 must be C, and whichever it is places A in b5 and B in b8. So that is a remote triple, and if we have two remote triples among 9 cells which we know are three triples from the boxes, the third group must also be a remote triple. This is related to the "parity flow" idea proving the trivalue oddagon - the permutation of letters from b6 to b5 to b8 is ABC for our starting triple, so the permutation for the other two triples must be BCA and CAB; that is, they all have the same parity.)

The important remote triple is r5c5/r5c8/r8c5, and its relationship to r8c1. In chain terms:

Code: Select all
7r46c1 = r5c13 - r5c58 =(rt)= r8c5 => -7r8c1


Or as a contradiction: if 7 were in r8c1, it would also be in r5c3, and 7 would see all three cells of the remote triple (which we know contains 7). #

After singles:

Code: Select all
+-------+-------+--------+
| 5 7 . | 8 . 3 | 9 2  1 |
| . . 3 | . . 1 | . A  8 |
| . 1 8 | * . 9 | . 3  6 |
+-------+-------+--------+
| . . 1 | 6 8 A | 3 4  2 |
| . . . | 1 3 2 | 8 B  9 |
| 8 3 2 | B 9 4 | 1 6  A |
+-------+-------+--------+
| 1 . . | 3 2 6 | A 89 B |
| 3 6 . | 9 A 8 | 2 1  4 |
| . . . | 4 1 B | 6 89 3 |
+-------+-------+--------+


Step 3: r3c4 is the only place for A in b2/c4 => -2r3c4, stte

----------------

As it turns out, you can use the remote triple idea to prove the trivalue oddagon elimination, as follows:

Step A: r5c8 and r8c5 cannot contain the same digit. If they were the same (say "B"), the other cells in b68 are A/C in some order, and either:
i. r4c7 == r7c4 (A), r6c9 == r9c6 (C), in which case both r6c4 and r4c6 would need to be B
ii. r4c7 == r9c6 (A), r6c9 == r7c4 (C), in which case both r7c7 and r9c9 would need to be B
So r5c5/r5c8/r8c5 is a remote triple, as are r4c6/r4c7/r9c6 and r6c4/r6c9/r7c4.

Step B: If r8c8 were also from 357, the same remote triple argument would apply to b689. However, since r7c7 and r9c9 each cells from different b568 triples (r4c7/r7c4 and r6c9/r9c6 respectively), this implies all four of r4c7/r7c4/r6c9/r9c6 are different. # -357r8c8

(You do still need the TH deduction to make use of step 2; eliminting 7r8c1 on its own isn't sufficent for progress.)
mith
 
Posts: 996
Joined: 14 July 2020

Re: Loki (SER 11.9)

Postby denis_berthier » Mon Mar 14, 2022 7:00 am

.
Now that I have coded this pattern in SudoRules, I can propose a solution where it is integrated with my usual chains, instead of a priori eliminating the target of this pattern.
Notice that, as tridagons rely on 12 CSP-variables (the 12 rc-cells), they are assigned complexity 12. That's why one appears only after a whip[9] in the following path. But the tridagon was available before applying the whip[9].

Code: Select all
Resolution state after Singles and whips[1]:
   +----------------------+----------------------+----------------------+
   ! 5      7      3468   ! 238    346    13     ! 9      123    136    !
   ! 23469  2349   3469   ! 2357   34567  13579  ! 3457   12357  8      !
   ! 234689 1      34689  ! 23578  34567  3579   ! 3457   2357   3567   !
   +----------------------+----------------------+----------------------+
   ! 379    359    1      ! 6      8      357    ! 357    4      2      !
   ! 3467   345    34567  ! 1      357    2      ! 8      357    9      !
   ! 378    358    2      ! 357    9      4      ! 1      6      357    !
   +----------------------+----------------------+----------------------+
   ! 134789 34589  345789 ! 357    2      6      ! 357    135789 1357   !
   ! 137    6      357    ! 9      357    8      ! 2      1357   4      !
   ! 23789  23589  35789  ! 4      1      357    ! 6      35789  357    !
   +----------------------+----------------------+----------------------+
205 candidates.

hidden-pairs-in-a-column: c8{n8 n9}{r7 r9} ==> r9c8≠7, r9c8≠5, r9c8≠3, r7c8≠7, r7c8≠5, r7c8≠3, r7c8≠1
whip[9]: b9n1{r7c9 r8c8} - b3n1{r2c8 r1c9} - r1c6{n1 n3} - c4n3{r3 r6} - c5n3{r5 r8} - r8c1{n3 n7} - r6n7{c1 c9} - r9n7{c9 c6} - r4n7{c6 .} ==> r7c9≠3
tridagon for digits 3, 5 and 7 in blocks:
----- b9, cells: r8c8 (target cell), r9c9, r7c7
----- b8, cells: r8c5, r9c6, r7c4
----- b6, cells: r5c8, r6c9, r4c7
----- b5, cells: r5c5, r6c4, r4c6
==> r8c8≠3,5,7

singles ==> r8c8=1, r1c9=1, r1c6=3, r1c8=2, r1c4=8, r2c6=1, r3c6=9, r3c9=6, r7c1=1
finned-x-wing-in-columns: n3{c4 c9}{r6 r7} ==> r7c7≠3
hidden-single-in-a-block ==> r9c9=3
whip[1]: b9n5{r7c9 .} ==> r7c2≠5, r7c3≠5, r7c4≠5
whip[1]: b9n7{r7c9 .} ==> r7c3≠7, r7c4≠7
singles ==> r7c4=3, r5c5=3, r4c7=3
naked-pairs-in-a-row: r6{c4 c9}{n5 n7} ==> r6c2≠5, r6c1≠7
finned-x-wing-in-rows: n7{r4 r9}{c6 c1} ==> r8c1≠7
singles ==> r8c1=3, r6c1=8, r6c2=3, r3c3=8, r2c3=3, r3c8=3
whip[1]: c3n9{r9 .} ==> r7c2≠9, r9c1≠9, r9c2≠9
biv-chain[2]: r6n7{c4 c9} - c8n7{r5 r2} ==> r2c4≠7
biv-chain[2]: r6n5{c4 c9} - c8n5{r5 r2} ==> r2c4≠5
stte
denis_berthier
2010 Supporter
 
Posts: 4205
Joined: 19 June 2007
Location: Paris

Re: Loki (SER 11.9)

Postby denis_berthier » Fri Oct 21, 2022 11:05 am

.
By assigning Tridagons a higher priority, SudoRules now requires only W3 to solve it.
The tridagon elimination rule brings down Loki complexity from T&E(3) to W3 - the low part of T&E(1)

Code: Select all
hidden-pairs-in-a-column: c8{n8 n9}{r7 r9} ==> r9c8≠7, r9c8≠5, r9c8≠3, r7c8≠7, r7c8≠5, r7c8≠3, r7c8≠1
   +----------------------+----------------------+----------------------+
   ! 5      7      3468   ! 238    346    13     ! 9      123    136    !
   ! 23469  2349   3469   ! 2357   34567  13579  ! 3457   12357  8      !
   ! 234689 1      34689  ! 23578  34567  3579   ! 3457   2357   3567   !
   +----------------------+----------------------+----------------------+
   ! 379    359    1      ! 6      8      357    ! 357    4      2      !
   ! 3467   345    34567  ! 1      357    2      ! 8      357    9      !
   ! 378    358    2      ! 357    9      4      ! 1      6      357    !
   +----------------------+----------------------+----------------------+
   ! 134789 34589  345789 ! 357    2      6      ! 357    89     1357   !
   ! 137    6      357    ! 9      357    8      ! 2      1357   4      !
   ! 23789  23589  35789  ! 4      1      357    ! 6      89     357    !
   +----------------------+----------------------+----------------------+


Code: Select all
tridagon for digits 3, 5 and 7 in blocks:
        b9, with cells: r8c8 (target cell), r9c9, r7c7
        b8, with cells: r8c5, r9c6, r7c4
        b6, with cells: r5c8, r6c9, r4c7
        b5, with cells: r5c5, r6c4, r4c6
 ==> r8c8≠3,5,7


Code: Select all
singles ==> r8c8=1, r1c9=1, r1c6=3, r1c8=2, r1c4=8, r2c6=1, r3c6=9, r3c9=6, r7c1=1
finned-x-wing-in-columns: n3{c4 c9}{r6 r7} ==> r7c7≠3
whip[1]: b9n3{r9c9 .} ==> r6c9≠3
naked-triplets-in-a-row: r7{c4 c7 c9}{n3 n5 n7} ==> r7c3≠7, r7c3≠5, r7c3≠3, r7c2≠5, r7c2≠3
z-chain[3]: r1c3{n4 n6} - c1n6{r2 r5} - c1n4{r5 .} ==> r3c3≠4, r2c3≠4, r2c2≠4
t-whip[3]: r8c1{n3 n7} - c3n7{r9 r5} - r5n6{c3 .} ==> r5c1≠3
t-whip[3]: r1c3{n6 n4} - c1n4{r3 r5} - r5n6{c1 .} ==> r2c3≠6
t-whip[3]: r5n6{c1 c3} - r1c3{n6 n4} - c1n4{r3 .} ==> r5c1≠7
t-whip[3]: c5n3{r5 r8} - r8c1{n3 n7} - c3n7{r9 .} ==> r5c3≠3, r5c5≠7
biv-chain[3]: b6n3{r4c7 r5c8} - r5c5{n3 n5} - r4c6{n5 n7} ==> r4c7≠7
biv-chain[3]: b8n3{r7c4 r8c5} - r5c5{n3 n5} - c6n5{r4 r9} ==> r7c4≠5
whip[1]: r7n5{c9 .} ==> r9c9≠5
whip[3]: r4n7{c1 c6} - r6n7{c4 c9} - r9n7{c9 .} ==> r8c1≠7
singles ==> r8c1=3, r7c4=3, r5c5=3, r4c7=3, r6c2=3, r6c1=8, r3c3=8,r2c3=3, r3c8=3, r9c9=3
whip[1]: c3n9{r9 .} ==> r7c2≠9, r9c1≠9, r9c2≠9
x-wing-in-columns: n7{c1 c6}{r4 r9} ==> r9c3≠7
biv-chain[2]: c8n5{r2 r5} - r6n5{c9 c4} ==> r2c4≠5
biv-chain[2]: c8n7{r2 r5} - r6n7{c9 c4} ==> r2c4≠7
stte
denis_berthier
2010 Supporter
 
Posts: 4205
Joined: 19 June 2007
Location: Paris


Return to Puzzles