.
See my comments on this puzzle here:
http://forum.enjoysudoku.com/the-hardest-sudokus-new-thread-t6539-1048.htmlAs I'm not a genius
I tried to solve this puzzle with SudoRules after eliminating n1r7c9
[For the users of CSP-Rules] This can be done by typing:
(bind ?*simulated-eliminations* = (create$ (nrc-to-label 1 7 9)))
before typing:
(solve "57....9..........8.1.........168..4......28.9..2.9416.....2.....6.9.82.4...41.6.. ED=11.9/1.2/1.2 Loki)
Beware of not keeping the double quotes around Loki, as this would confuse CLIPS[/For the users of CSP-Rules]
- Code: Select all
Resolution state after Singles and whips[1]:
+----------------------+----------------------+----------------------+
! 5 7 46 ! 8 46 3 ! 9 2 1 !
! 23469 2349 3469 ! 257 4567 1 ! 3457 357 8 !
! 2348 1 348 ! 257 457 9 ! 3457 357 6 !
+----------------------+----------------------+----------------------+
! 379 359 1 ! 6 8 57 ! 357 4 2 !
! 3467 345 34567 ! 1 357 2 ! 8 357 9 !
! 378 358 2 ! 357 9 4 ! 1 6 357 !
+----------------------+----------------------+----------------------+
! 134789 34589 345789 ! 357 2 6 ! 357 135789 357 !
! 137 6 357 ! 9 357 8 ! 2 1357 4 !
! 23789 23589 35789 ! 4 1 57 ! 6 35789 357 !
+----------------------+----------------------+----------------------+
162 candidates.
hidden-pairs-in-a-column: c8{n8 n9}{r7 r9} ==> r9c8≠7, r9c8≠5, r9c8≠3, r7c8≠7, r7c8≠5, r7c8≠3, r7c8≠1
singles ==> r8c8=1, r7c1=1
finned-x-wing-in-columns: n3{c4 c9}{r6 r7} ==> r7c7≠3
whip[1]: b9n3{r9c9 .} ==> r6c9≠3
naked-triplets-in-a-row: r7{c4 c7 c9}{n3 n7 n5} ==> r7c3≠7, r7c3≠5, r7c3≠3, r7c2≠5, r7c2≠3
z-chain[3]: r1c3{n4 n6} - c1n6{r2 r5} - c1n4{r5 .} ==> r2c2≠4, r3c3≠4, r2c3≠4
t-whip[3]: r8c1{n3 n7} - c3n7{r9 r5} - r5n6{c3 .} ==> r5c1≠3
t-whip[3]: c1n6{r5 r2} - r1c3{n6 n4} - c1n4{r3 .} ==> r5c1≠7
t-whip[3]: r1c3{n6 n4} - c1n4{r3 r5} - r5n6{c1 .} ==> r2c3≠6
t-whip[3]: c5n3{r5 r8} - r8c1{n3 n7} - c3n7{r9 .} ==> r5c5≠7, r5c3≠3
biv-chain[3]: c4n3{r7 r6} - r5c5{n3 n5} - c6n5{r4 r9} ==> r7c4≠5
whip[1]: r7n5{c9 .} ==> r9c9≠5
biv-chain[3]: b6n3{r4c7 r5c8} - r5c5{n3 n5} - r4c6{n5 n7} ==> r4c7≠7
whip[3]: r4n7{c1 c6} - r6n7{c4 c9} - r9n7{c9 .} ==> r8c1≠7
singles ==> r8c1=3, r7c4=3, r5c5=3, r4c7=3, r6c2=3, r6c1=8, r3c3=8, r2c3=3, r3c8=3, r9c9=3
whip[1]: c3n9{r9 .} ==> r7c2≠9, r9c1≠9, r9c2≠9
x-wing-in-columns: n7{c1 c6}{r4 r9} ==> r9c3≠7
biv-chain[2]: c8n5{r2 r5} - r6n5{c9 c4} ==> r2c4≠5
biv-chain[2]: c8n7{r2 r5} - r6n7{c9 c4} ==> r2c4≠7
stte
This path could probably be shortened, but that's irrelevant here.
The point is, a puzzle that was not in T&E(2) - the first known such puzzle, the hardest of the hardest - and not even in gT&E(2) is turned into a relatively easy puzzle (solvable in W3) by the elimination of a single candidate (whichever way this elimination is justified).
As of now, this is probably the largest known effect of a single elimination.