- Code: Select all
1 0 0 0 0 4 0 0 0
0 0 0 0 0 0 0 9 0
0 0 0 6 0 0 0 0 0
0 0 5 0 3 0 0 0 0
0 0 0 0 0 0 0 2 9
0 6 0 0 0 0 0 0 0
0 0 0 0 0 6 0 0 0
0 0 0 0 0 0 0 0 0
0 3 8 0 0 0 5 0 0
Enjoy!
Gordon
1 0 0 0 0 4 0 0 0
0 0 0 0 0 0 0 9 0
0 0 0 6 0 0 0 0 0
0 0 5 0 3 0 0 0 0
0 0 0 0 0 0 0 2 9
0 6 0 0 0 0 0 0 0
0 0 0 0 0 6 0 0 0
0 0 0 0 0 0 0 0 0
0 3 8 0 0 0 5 0 0
ihope127 wrote:Wait, just what are the new can't-be-the-same groups?
X 0 0 0 0 4 0 0 0
0 X 0 0 0 0 0 9 0
0 0 X 6 0 0 0 0 0
0 0 5 X 3 0 0 0 0
0 0 0 0 X 0 0 2 9
0 6 0 0 0 X 0 0 0
0 0 0 0 0 6 X 0 0
0 0 0 0 0 0 0 X 0
0 3 8 0 0 0 5 0 X
1 0 0 0 0 4 0 0 X
0 0 0 0 0 0 0 X 0
0 0 0 6 0 0 X 0 0
0 0 5 0 3 X 0 0 0
0 0 0 0 X 0 0 2 9
0 6 0 X 0 0 0 0 0
0 0 X 0 0 6 0 0 0
0 X 0 0 0 0 0 0 0
X 3 8 0 0 0 5 0 0
gfroyle wrote:Here is a 13-clue Sudoku X (ie diagonal + antidiagonal added as extra blocks that must contain no repeated numbers)
- Code: Select all
1 0 0 0 0 4 0 0 0
0 0 0 0 0 0 0 9 0
0 0 0 6 0 0 0 0 0
0 0 5 0 3 0 0 0 0
0 0 0 0 0 0 0 2 9
0 6 0 0 0 0 0 0 0
0 0 0 0 0 6 0 0 0
0 0 0 0 0 0 0 0 0
0 3 8 0 0 0 5 0 0
Enjoy!
Gordon
Ruud wrote:The first puzzle in the collection (also shown on the page) starts with a series of 33 empty cells.
*-----------------------------------------------------------------------------*
| 6 35789 379 | 1 4 #359 | 2 5789 39 |
| 4 2 379 | 5789 @3579 #359 | 35789 6 1 |
| 3589 35789 1 | 56789 -23579 26 | 3579 5789 4 |
|-------------------------+-------------------------+-------------------------|
| 379 6 379 | 59 8 4 | 1 2 57 |
| 789 789 2 | 3 @59 1 | 6 4 57 |
| 1 4 5 | 2 6 7 | 389 89 39 |
|-------------------------+-------------------------+-------------------------|
| 2 3579 8 | 579 13579 359 | 4 1579 6 |
| 579 1 6 | 4 @579 8 | 579 3 2 |
| 3579 3579 4 | 5679 123579 26 | 59 1579 8 |
*-----------------------------------------------------------------------------*
*-----------------------------------------------------------------------------*
| 6 35789 *379 | 1 4 *359 | 2 5789 -39 |
| 4 2 *379 |*5789 *3579 *359 | 35789 6 1 |
| 3589 35789 1 |*56789 2357 26 | 3579 5789 4 |
|-------------------------+-------------------------+-------------------------|
| 379 6 *379 |*59 8 4 | 1 2 57 |
| 789 789 2 | 3 #59 1 | 6 4 57 |
| 1 4 5 | 2 6 7 | 389 89 39 |
|-------------------------+-------------------------+-------------------------|
| 2 3579 8 | 579 13579 359 | 4 1579 6 |
| 579 1 6 | 4 579 8 | 579 3 2 |
| 3579 3579 4 | 5679 123579 26 | 59 1579 8 |
*-----------------------------------------------------------------------------*
*--------------------------------------------------------------------*
| 6 8 7 | 1 4 9 | 2 5 3 |
| 4 2 9 | 57 357 35 | 8 6 1 |
| 3 5 1 | 8 2 6 |@79 79 4 |
|----------------------+----------------------+----------------------|
|@79 6 3 |*59 8 4 | 1 2 57 |
| 8 79 2 | 3 *59 1 | 6 4 57 |
| 1 4 5 | 2 6 7 | 3 8 9 |
|----------------------+----------------------+----------------------|
| 2 37 8 | 579 13579 35 | 4 179 6 |
| 579 1 6 | 4 79 8 | 579 3 2 |
|-579 379 4 | 6 1379 2 | 59 179 8 |
*--------------------------------------------------------------------*
Ruud wrote:The current collection has 1167 canonicalized Sudoku-X puzzles with 12 clues. This collection is exhausted for the -1+1 search method. No elevens were found. I will sleep better if anyone (gsf?) can confirm that the puzzles are unique upto isomorphism.
r(46)
c(46)
r(12)(89)c(12)(89)
r(13)(79)c(13)(79)
r(23)(78)c(23)(78)
except for '#' at r3c4 udosuk wrote:
- Code: Select all
*----------------------------------------------------------------*
| 6 35789 *379 | 1 4 *359 | 2 5789 -39 |
| 4 2 *379 |*5789 *3579 *359 | 35789 6 1 |
| 3589 35789 1 |#56789 2357 26 | 3579 5789 4 |
|----------------------+----------------------+------------------|
| 379 6 *379 |*59 8 4 | 1 2 57 |
| 789 789 2 | 3 #59 1 | 6 4 57 |
| 1 4 5 | 2 6 7 | 389 89 39 |
|----------------------+----------------------+------------------|
| 2 3579 8 | 579 13579 359 | 4 1579 6 |
| 579 1 6 | 4 579 8 | 579 3 2 |
| 3579 3579 4 | 5679 123579 26 | 59 1579 8 |
*----------------------------------------------------------------*
Mutant Sashimi Swordfish (c3+b2+b5/r1+r2+r4c4 with fin @ r5c5): r1c9<>9 => r1c9=3
(Logic:
If r5c5=9, r1c9<>9 (d/).
If r5c5<>9, r4c4=9 => the 9s in c3 & b2 form a grouped x-wing @ r12c356 => r1c9<>9.
Therefore r1c9<>9 no matter what.)I particular hate that mutant sashimi swordfish which I ain't even sure if I got the representation correct.