I originally thought about using r1c36 as the fins instead. Could you fish out something with that feature?

udosuk wrote:On the other hand, I bet you can do better if you work on Windoku X or DG X...
. 4 6|. . .|. . 3
. . .|. . 1|. . .
. . 3|. . .|. . .
-----+-----+-----
2 . .|. . .|. . .
. . .|5 4 .|. . .
8 . .|. . .|7 . .
-----+-----+-----
1 . .|. . .|. . .
. . .|. . .|. . .
. . .|. . .|. . .
046000003000001000003000000200000000000540000800000700100000000000000000000000000
. 4 6|. . .|. . 3
. . .|. . 1|. . .
. . 3|. . .|. . .
-----+-----+-----
2 . .|. . .|8 . .
. . .|9 4 .|. . .
. . .|. . .|7 . .
-----+-----+-----
1 . .|. . .|. . .
. . .|. . .|. . .
. . .|. . .|. . .
046000003000001000003000000200000800000940000000000700100000000000000000000000000
udosuk wrote:I originally thought about using r1c36 as the fins instead. Could you fish out something with that feature?
*----------------------------------------------------------------*
| 6 35789 #379 | 1 4 #359 | 2 5789 -39 |
| 4 2 *379 |*5789 *3579 *359 | 35789 6 1 |
| 3589 35789 1 |#56789 2357 26 | 3579 5789 4 |
|----------------------+----------------------+------------------|
| 379 6 *379 |*59 8 4 | 1 2 57 |
| 789 789 2 | 3 *59 1 | 6 4 57 |
| 1 4 5 | 2 6 7 | 389 89 39 |
|----------------------+----------------------+------------------|
| 2 3579 8 | 579 13579 359 | 4 1579 6 |
| 579 1 6 | 4 579 8 | 579 3 2 |
| 3579 3579 4 | 5679 123579 26 | 59 1579 8 |
*----------------------------------------------------------------*
sashimi mutant swordfish c3b25\r24d1 plus fins r1c36 and r3c4, implies r1c9<>9
udosuk wrote:I didn't realise a fin could have "indirect interaction" with the elimination cell.
udosuk wrote:I thought it's "sashimi" because without the fin (r5c5) the pattern reduces to a single (r4c4) and a grouped x-wing. The word "mutant" was used because it's not an ordinary row or column swordfish.
udosuk wrote:So for example this one can be marked as "[c3b2d\] \ [r24d/]".
If you have to labelled them with numbers I think using d1 for d\ and d2 for d/ is more intuitive.
Ruud wrote:Thanks for the comments on the canonicalization algorithm. Because the outer r/c swaps generate a total of 6 permutations, the total number of pattern permutations is 4 (Rot) * 2 (Mir) * 4 (r/c 46) * 6 (r/c 123/789) = 192. I updated the code and the 1167 still holds.
ronk wrote:Since d/ is the true diagonal, how about reversing your numbers ... for d1 for d/ and d2 for d\ -- as in "diagonal too?"
ronk wrote:Since d/ is the true diagonal
Pat wrote:no, d\ is the (main) diagonal (starts at r1c1);ronk wrote:Since d/ is the true diagonal
d/ is the anti-diagonal.
Pat wrote:no, d\ is the (main) diagonal (starts at r1c1);ronk wrote:Since d/ is the true diagonal
d/ is the anti-diagonal.
udosuk wrote:I can't believe so many people got this wrong.
udosuk wrote:I wonder why Ruud has put in the incorrect definitions on the sudopedia pages in the first place.
. . .|. . .|. . .
. . .|. . .|. . .
. . .|. . .|. . .
-----\-----/-----
. . .|. . .|. . .
. . .|. . 1|2 . .
3 . .|. 4 .|. 5 .
-----/-----\-----
. . 2|6 . 7|. . .
. . .|8 . .|. . 1
7 . .|. . .|3 4 .
000000000000000000000000000000000000000001200300040050002607000000800001700000340
Ruud wrote:The argument, if I remember it correctly, was that in Math, coordinates usually start at the bottom-left (like X & Y coordinates in a graph), so despite using different coordinates, the main diagonal still ran from LB to RT.