13-clue Sudoku X

For fans of Killer Sudoku, Samurai Sudoku and other variants

Postby udosuk » Sat Jul 28, 2007 3:51 pm

Ruud wrote:Came across a 13-clue Sudoku-X which starts with 41 consecutive empty cells...

Wonderful!:D Half of the grid is totally empty! So what can you do next, 5 empty rows?

IMHO the reference about coordinate-system is totally BS (pardon for my bluntness). The original poster of that idea must be a non-mathematician, he/she can't even distinguish between discrete number system and real number system, let alone finity and infinity. Let's leave the coordinates to trigonometry and calculus and complex numbers and such...
udosuk
 
Posts: 2698
Joined: 17 July 2005

Postby Ruud » Sun Jul 29, 2007 9:09 pm

gsf wrote:each of these can be swapped independently (for 4 combinations including the identity)
Code: Select all
r(46)
c(46)


After implementing this change in my canonicalization routine, invalid puzzles appeared in the results.

You need to swap rows 4-6 and columns 4-6 simultaneously, otherwise you are exchanging 2 pairs of digits between the diagonals. The number of pattern permutations is now 96. My program is now rechecking the earlier results.

Ruud
Ruud
 
Posts: 664
Joined: 28 October 2005

Postby gsf » Sun Jul 29, 2007 9:28 pm

Ruud wrote:
gsf wrote:each of these can be swapped independently (for 4 combinations including the identity)
Code: Select all
r(46)
c(46)


After implementing this change in my canonicalization routine, invalid puzzles appeared in the results.

You need to swap rows 4-6 and columns 4-6 simultaneously, otherwise you are exchanging 2 pairs of digits between the diagonals. The number of pattern permutations is now 96. My program is now rechecking the earlier results.

aha
invalid on the diagonals
good catch
gsf
2014 Supporter
 
Posts: 7306
Joined: 21 September 2005
Location: NJ USA

Postby Mauricio » Mon Jul 30, 2007 3:00 am

Ruud wrote:The number of pattern permutations is now 96.

According to my own research, the number of sudoku-X morphisms is twice the number of sudoku automorphisms of this "sudoku":
Code: Select all
+-------+-------+-------+
| 1 . . | . . . | . . 2 |
| . 1 . | . . . | . 2 . |
| . . 1 | . . . | 2 . . |
+-------+-------+-------+
| . . . | 1 . 2 | . . . |
| . . . | . . . | . . . |
| . . . | 2 . 1 | . . . |
+-------+-------+-------+
| . . 2 | . . . | 1 . . |
| . 2 . | . . . | . 1 . |
| 2 . . | . . . | . . 1 |
+-------+-------+-------+

There are 96 of them, so that makes it 192. It is twice because you can rotate 90 degress to swap diagonals, and those are too X-sudokus.
Mauricio
 
Posts: 1175
Joined: 22 March 2006

Postby udosuk » Mon Jul 30, 2007 4:32 am

Ruud wrote:
Code: Select all
. . .|. . .|. . .
. . .|. . .|. . .
. . .|. . .|. . .
-----\-----/-----
. . .|. . .|. . .
. . .|. . 1|2 . .
3 . .|. 4 .|. 5 .
-----/-----\-----
. . 2|6 . 7|. . .
. . .|8 . .|. . 1
7 . .|. . .|3 4 .

Ruud, I tried to solve this puzzle, and arrived at this state:
Code: Select all
 *-----------------------------------------------------------------------------*
 | 14      56789   3789    | 1245    678     2359    | 56      379     48      |
 | 2589    47      3789    | 45      678     359     | 56      1       239     |
 | 2589    56789   1347    | 145     678     359     | 48      379     239     |
 |-------------------------\-------------------------/-------------------------|
 | 589     145789  14789   | 37      2       6       | 48      39      3489    |
 | 89      4789    4789    | 37      5       1       | 2       6       3489    |
 | 3       2       6       | 9       4       8       | 1       5       7       |
 |-------------------------/-------------------------\-------------------------|
 | 14      14      2       | 6       3       7       | 9       8       5       |
 | 6       3       5       | 8       9       4       | 7       2       1       |
 | 7       89      89      | 25      1       25      | 3       4       6       |
 *-----------------------------------------------------------------------------*

Then I couldn't find any elegant move to crack it.:( I could, using long contradiction chains, to prove r3c3=3 and r3c7=7 both lead to contradictions, and thus r3c3={14} and solve the puzzle. But it feels like trial and error to me.:(

Can you, or your program find any better way to solve it?:?: Thanks!
udosuk
 
Posts: 2698
Joined: 17 July 2005

Postby Ruud » Mon Jul 30, 2007 5:18 pm

udosuk:

The key moves are:

Dual ALS-xz r1c13|r2c23|r3c3 vs. r9c3 x=8/9 => r45c3<>89
XY-chain r2c2-r4c4-r5c4-r5c3 => r3c3|r5c2<>4
3D colors (4)r2c4=(4)r2c2=(4=1)r1c1=(1)r3c3=(1)r3c4) => r3c4<>4

After this last move, the puzzle falls after a few coloring moves on digit 3.

Note: The dual ALS-xz allows you to perform the ALS twice, with the x & z digits swapped.

Hard, but no guessing required. I found worse...

Ruud
Ruud
 
Posts: 664
Joined: 28 October 2005

Postby Para » Mon Jul 30, 2007 6:06 pm

udosuk wrote:Wonderful!:D Half of the grid is totally empty! So what can you do next, 5 empty rows?


There's always the puzzle on the right.
Don't know who made it. Came across it once.

Link to pic

greetings

Para
Para
 
Posts: 46
Joined: 20 February 2007

Postby udosuk » Wed Aug 01, 2007 8:21 am

Para wrote:Don't know who made it. Came across it once.

I happen to know who made it.:)

Link to pic

Apparently it's from a Japanese folk from the city of East Osaka. So there you go.:)

What I wanted to see is a Sudoku-X with 13 clues or fewer and 5 empty rows.:idea:

BTW:
Ruud wrote:After this last move, the puzzle falls after a few coloring moves on digit 3.

That's not true. After that you still need another colouring move on 7 to crack it. (Added later: it is actually a "pointing pair" move on the diagonal, which IMHO warrants at least a mentioning as normal non-X players wouldn't recognise it easily.)

I hated that "3D-colors". To me it smells and tastes like T&E. I think the Dual ALS-xz is very nice and the xy-chain is equivalent to a Y-Wing. I'll look for ways to work around that dreaded 3D-colors move.
Last edited by udosuk on Sat Aug 04, 2007 11:25 am, edited 1 time in total.
udosuk
 
Posts: 2698
Joined: 17 July 2005

Postby udosuk » Thu Aug 02, 2007 4:00 am

Alright here is a brief walkthrough to resolve the puzzle from the state I last posted:
Code: Select all
 *-----------------------------------------------------------------------------*
 | 14      56789   3789    | 1245    678     2359    | 56      379     48      |
 | 2589    47      3789    | 45      678     359     | 56      1       239     |
 | 2589    56789   1347    | 145     678     359     | 48      379     239     |
 |-------------------------\-------------------------/-------------------------|
 | 589     145789  14789   | 37      2       6       | 48      39      3489    |
 | 89      4789    4789    | 37      5       1       | 2       6       3489    |
 | 3       2       6       | 9       4       8       | 1       5       7       |
 |-------------------------/-------------------------\-------------------------|
 | 14      14      2       | 6       3       7       | 9       8       5       |
 | 6       3       5       | 8       9       4       | 7       2       1       |
 | 7       89      89      | 25      1       25      | 3       4       6       |
 *-----------------------------------------------------------------------------*

Dual ALS-xz: A=r1c1+r2c2+r123c3={134789}, B=r9c3={89}, x=8|9, z=9|8 => r45c3<>8|9
Y-Wing: r45c4={37}, r2c2,r5c3=4|7 => r3c3,r45c2<>4
d\: either r2c2=4 or r3c3=1 => r23c4 must have 5 => r19c4,r123c6<>5
r9c46=[25] => r1c6=2 (hidden single c6) => r1c14={14} => r1c9=8
Turbot fish: strong links of 3 in r1c38, r3c3+r4c4 => r4c8<>3 => r4c8=9
Box-line interaction: 9 on r1 locked in b1 => r23c123<>9
r5c1=9 (hidden single c1) => r5c2=8 (hidden single r5) => r9c2=9
r1c3=9 (hidden single r1,c3,b1) => r1c8=3 (hidden single r1) => r3c8=7
Pointing pair: 7 on d\ locked in r2c2+r4c4 => r4c2<>7
r4c12=[51] => r27c2=[74] => r4c4=3 => all naked singles

No chains, no colouring move. However, the 3rd line is a bit of elaborated logic, and one can argue it steps on the boundary of T&E.

I've actually proposed it as a new form of ALS in this thread.
udosuk
 
Posts: 2698
Joined: 17 July 2005

Postby kjellfp » Thu Aug 02, 2007 6:15 am

This web page claimes to have (currently) 5503 12-clue Sudoku-X puzzels, like
Code: Select all
\---+---+---/
|...|...|...|
|...|...|...|
|...|...|...|
+---\---/---+
|...|...|12.|
|...|3..|.4.|
|..5|.67|...|
+---/---\---+
|..8|...|..6|
|.1.|4..|...|
|...|...|..8|
/---+---+---\
kjellfp
 
Posts: 140
Joined: 04 October 2005

Postby Mauricio » Thu Aug 02, 2007 6:56 am

kjellfp wrote:This web page claimes to have (currently) 5503 12-clue Sudoku-X puzzels

Of course, it is Ruud'd website.
Mauricio
 
Posts: 1175
Joined: 22 March 2006

Postby kjellfp » Thu Aug 02, 2007 7:33 am

Sorry, I got the impression that 12s where unknown, and apparently didn't read the thread good enough.
kjellfp
 
Posts: 140
Joined: 04 October 2005

Postby Ruud » Sat Aug 04, 2007 9:25 am

The collection has now grown to 7193, but no 11 yet. Growth is slowing down a bit.

I haven't found a Sudoku-X with 5 empty rows and minimum number of clues, but this one is pretty close:

Code: Select all
. . .|. . .|. . .
. . .|. . .|. . .
. . .|. . .|. . .
-----\-----/-----
. . .|. . .|. . .
. . .|. . .|. . 1
. . 2|3 4 5|. . .
-----/-----\-----
5 6 .|. . .|. . .
1 . .|. . .|. 7 .
. . .|8 . .|2 3 .


Ruud
Ruud
 
Posts: 664
Joined: 28 October 2005

Postby udosuk » Sat Aug 04, 2007 3:21 pm

The latest one is not nearly as evil as the first two, but still need a reasonably tricky step to resolve:
Code: Select all
 *--------------------------------------------------------------------*
 | 38     79     1      | 49     2      6      | 3479   489    5      |
 | 269    38     679    | 5      78     349    | 3479   1      23479  |
 | 29     5      4      | 1     @78     39     | 6     @89    -2379   |
 |----------------------\----------------------/----------------------|
 | 3689   348    69     | 2      1      7      | 3489   5      349    |
 | 37     34     5      | 6      9      8      | 347    2      1      |
 | 789    1      2      | 3      4      5      | 789    6     #79     |
 |----------------------/----------------------\----------------------|
 | 5      6      8      | 7      3      2      | 1     *49    #49     |
 | 1      2      3      | 49     6      49     | 5      7      8      |
 | 4      79     79     | 8      5      1      | 2      3      6      |
 *--------------------------------------------------------------------*

ALS-xy-wing:
ALS A (@): r3c58={789}
ALS B (#): r67c9={479}
ALS C (*): r7c8={49}
restricted common between B,C: x=4
restricted common between A,C: y=9
common between A,B: z=7

Therefore r3c9<>7, and singles solve the rest.

Unfortunately I can't find a simple ALS-xz to resolve this.:(

I'd like to call this move a "semi-Y-Wing" because if r3c8 was {79} instead of {89} it would be just a normal Y-Wing.

And now r3c58 combined is effectively performing the role as a single cell of {79} in r3c8.

People who are into chains will also find it as a very simple xy-chain (I'm not one of them).

Ruud, is there any 12-clue Sudoku-X which is solvable using singles only? There're plenty of singles-solvable 17-clue Sudoku puzzles.

PS:
My latest moderator priviledges allowed me to change Para's image to a a pic link (I hope he doesn't mind), thus restoring the normal width of this very page for my tiny 1024x768 laptop screen. Way cool!:D

It's funny when I edit others' posts the "Last edited by..." messages don't appear, but when I edit my own they do. I guess it's fair that I can't change the things I wrote in the past without others noticing.:D
udosuk
 
Posts: 2698
Joined: 17 July 2005

12-clue Sudoku X

Postby m_b_metcalf » Wed Oct 26, 2022 3:29 pm

Some postings in another thread led me to look again at ruud's half-a-million 12-clue x-sudokus. Here are two rated selections, the first from the beginning of his file, the second from the end (the last column is a very rough indication of the length of the solution path):

Hidden Text: Show
Code: Select all
000000000000000000000000000000000000001002003000405000020063000000000100700000840   ED=1.5/1.2/1.2      F   7
000000000000000000000000000000000001000000023004500000610070000003000800000000540   ED=2.0/1.2/1.2      F   9
000000000000000000000000000000000001000000002003450000010062000000000300070000048   ED=2.0/1.5/1.5      F  13
000000000000000000000000000000000001000000023400056000002000700000000540000380000   ED=2.3/1.2/1.2      F  10
000000000000000000000000000000001000002000003400005000000000400560000071000280000   ED=2.3/1.5/1.5      F  12
000000000000000000000000000000000001000000000203405000650010000000070430000000800   ED=2.5/1.2/1.2      F  13
000000000000000000000000000000000001000000023405060000000000700010300080006000400   ED=2.9/1.2/1.2      F  22
000000000000000000000000000000000001002000003000405000065000700003000000000810040   ED=2.9/1.5/1.5      F  13
000000000000000000000000000000000012000003004000005006000010780423000000000000000   ED=2.9/2.0/2.0      F  26
000000000000000000000000000000001000000002000003000405000607020005030000800000010   ED=2.9/2.9/2.9      F  20
000000000000000000000000000000000012000000003004560000170023000000000008000000400   ED=3.0/1.2/1.2      F  21
000000000000000000000000000000000000000102000034000560000000000100000732000480000   ED=3.0/1.5/1.5      F  19
000000000000000000000000000000001000000002000003040005006750000000030004800000010   ED=3.4/1.2/1.2      F  16
000000000000000000000000000000000001203004000000000005060000047010890000000000030   ED=3.4/1.5/1.5      F  34
000000000000000000000000000000000001000200003004500000060071000000000400030000580   ED=3.6/1.2/1.2      F  12
000000000000000000000000000000000001002000304500067000001400000000000050800000700   ED=4.0/1.2/1.2      F  19
000000000000000000000000000000000001000010020003400000500026000000000300708000400   ED=4.0/1.5/1.5      F  18
000000000000000000000000000000000012000000003000045000040320000006000470000800000   ED=4.1/1.2/1.2      F  25
000000000000000000000000000000000001000000023400056000007080400010300000000000070   ED=4.2/1.2/1.2      F  15
000000000000000000000000000000000001000000023004056000000000700010300000005400800   ED=4.2/1.5/1.5      F  14
000000000000000000000000000000000000000000012034500000260030000700000000000400380   ED=4.3/1.2/1.2      F  33
000000000000000000000000000000000000000010023045060000000000700000800500360000400   ED=4.3/1.5/1.5      F  16
000000000000000000000000000000000012000345000000600007000001000080000306000007000   ED=4.4/1.2/1.2      F  19
000000000000000000000000000000000001000000023045006000000607500010000000308000000   ED=4.5/1.2/1.2      F  21
000000000000000000000000000000000012000000003040506000000020000070010000860000050   ED=4.5/2.0/2.0      F  21
000000000000000000000000000000000001002034000003000506000600040007000000008500000   ED=4.6/1.2/1.2      F  33
000000000000000000000000000000000001000000023450060000000100060000000700800000940   ED=5.4/1.2/1.2      F  20
000000000000000000000000000000001000000203000045000060000000007000000301060840000   ED=5.5/1.2/1.2      F  18
000000000000000000000000000000000001200304000000000056006010000000000200040007800   ED=5.6/1.2/1.2      F  20
000000000000000000000000000000001000002000034050670000300000000004000700000080600   ED=5.6/2.0/2.0      F  22
000000000000000000000000000000001000000000002300040000000030000050206000072000048   ED=5.7/1.2/1.2      F  22
000000000000000000000000000000001000000000002300040005000600000400205000700000180   ED=5.7/2.0/2.0      F  24
000000000000000000000000000000000001000000023004506000000310000007000680000200000   ED=6.3/1.2/1.2      F  24
000000000000000000000000000000000001000000020340506000020000000786000000000910000   ED=6.3/1.5/1.5      F  18
000000000000000000000000000000000001203040000000500067000030200070000000060000080   ED=6.4/1.2/1.2      F  27
000000000000000000000000000000001000002000034000560000007000000000080100034000600   ED=6.4/2.0/2.0      F  22
000000000000000000000000000000000001002034000000005006160000000000070820040000000   ED=6.6/1.2/1.2      F  16
000000000000000000000000000000000001203400000000506000000000004010070000000080320   ED=6.6/1.5/1.5      F  25
000000000000000000000000000000001000000002034050600000700000000308000070000506000   ED=6.7/1.2/1.2      F  26
000000000000000000000000000000000001002304000000000506000000040000000070650810000   ED=6.8/1.2/1.2      F  16
000000000000000000000000000000000001000000002003405000250010000006000030000070080   ED=7.0/2.0/2.0      F  12
000000000000000000000000000000000012030000004056003000000000500700400008100000000   ED=7.1/1.2/1.2      F  18
000000000000000000000000000000001000002000003040560000020000060007000000000800510   ED=7.1/2.9/2.9      F  23
000000000000000000000000000000000012003405000000030006007000000000800500200000007   ED=7.2/1.2/1.2      F  22
000000000000000000000000000000000012340005000000600000000000067001028000000000400   ED=7.2/1.5/1.5      F  20
000000000000000000000000000000000001002300000000450000500016000000000070800000430   ED=7.3/1.2/1.2      F  13
000000000000000000000000000000000001000020003004050002000006700000001800300000900   ED=7.6/2.0/2.0      F  24
000000000000000000000000000000000000001000203000450000030000000500000600000170840   ED=7.7/1.2/1.2      F  21
000000000000000000000000000000000001000020003045600000000000040700081000500000600   ED=7.7/1.5/1.5      F  22
000000000000000000000000000000000000000100023040050000607082000000000400002000050   ED=7.8/1.2/1.2      F  21
000000000000000000000000000000000001000000002003450000060012000000000300070000408   ED=7.8/1.5/1.5      F  25
000000000000000000000000000000000001000000023000045000000006700134000000800000400   ED=7.9/1.2/1.2      F  22
000000000000000000000000000000000001200300000000004050006000007000810002045000000   ED=8.0/1.2/1.2      F  17
000000000000000000000000000000001000000203000045000006000740020300000108000000000   ED=8.3/1.2/1.2      F  21
000000000000000000000000000000001000000000023045600000700082000300000600000000500   ED=8.3/1.5/1.5      F  26
000000000000000000000000000000000012003000004506070000000000870010400000000000600   ED=8.4/1.2/1.2      F  27
000000000000000000000000000000000001200300000000004005000000030405000600000780020   ED=8.4/1.5/1.5      F  23
000000000000000000000000000000000001000000023400056000700080400010200000000000007   ED=8.5/1.2/1.2      F  20
000000000000000000000000000000000001203400000005000006070000840010000000000300050   ED=8.8/1.2/1.2      F  34
000000000000000000000000000000000001200304000000000056037000000400000000000052008   ED=8.8/2.9/2.9      F  24
000000000000000000000000000000000001002034000000000506170600004000000020000000800   ED=8.9/1.2/1.2      F  28
000000000000000000000000000000000001200000003000045000000000600015000700000280040   ED=8.9/1.5/1.5      F  22
000000000000000000000000000000000001000200000301000004000050000050063700000000820   ED=9.0/1.2/1.2      F  10
000000000000000000000000000000000000001000234000056000674000000000000000000381000   ED=9.0/1.5/1.5      F  23
000000000000000000000000000000000001200000003004050000000040650010007000800000400   ED=9.1/1.2/1.2      F  20
000000000000000000000000000000001000000002000034000560000075302800000000600000000   ED=9.1/1.5/1.5      F  14
000000000000000000000000000000000012340005000050000060782000000000060300000000000   ED=9.2/1.2/1.2      F  10
000000000000000000000000000000000001002304000005000067000000000004800300700000006   ED=9.5/1.2/1.2      F  18

Hidden Text: Show
Code: Select all
000000010012000000000000030000000000000000000400500000000000006000000504037080000   ED=1.5/1.2/1.2      F   9
000000010002034000000000056000500000000000000000000000760000000100000000000000820   ED=2.0/1.2/1.2      F  14
000000010200000030405000000000000000000000000000000605000000040076000000010000800   ED=2.5/1.2/1.2      F  13
000000010002003000000000045000000000000000000000000000610000000500002000000007308   ED=2.9/1.2/1.2      F  14
000000010002030000000000040000500000300000000000006000050000000000070802040000000   ED=2.9/1.5/1.5      F  14
000000010002030000040000005000000000000060000500000000003000700800000000000000240   ED=2.9/2.9/2.9      F  21
000000010200000000000000034000000000005000200000001000000003000060000500070000800   ED=3.0/1.2/1.2      F  20
000000010020003000000000045000000000060070000000000000400000000801005000000000600   ED=3.4/1.2/1.2      F  23
000000010002003000000000045000000000006000000000000000470000000100000000000890300   ED=3.6/1.2/1.2      F  12
000000010002030000000000045000400000000000000600000200050000000000000600070000800   ED=4.0/1.2/1.2      F  22
000000010002030000400000050000000000000000000000200000060000000000070809051000000   ED=4.0/2.0/2.0      F  26
000000010200000000300000040000000050000000000000204000000000006000000703085000000   ED=4.1/1.2/1.2      F  20
000000010020000300000004000000000000000000000405600700030008000000000005010000000   ED=4.1/2.9/2.9      F  18
000000010020000030004000500000000000000006007000000000010000000708000600000020000   ED=4.2/1.5/1.5      F  25
000000010200000000000000034000000000003000500000001000030000000000000600780000200   ED=4.3/1.2/1.2      F  13
000000010002000003450060000000000000000000600000003000000020000001000070000008000   ED=4.3/1.5/1.5      F  20
000000010023000000040000005000000000600070000000000000000001040008000000900000300   ED=4.3/2.9/2.9      F  29
000000010200030000400000050000000000000000000000006070080000000000000403071000000   ED=4.4/1.2/1.2      F  18
000000010200000000000000340000000000000000000005600007080000506000000002010000000   ED=4.5/1.2/1.2      F  27
000000010200000000000000034000000000000000050006700800010000000000000600040000200   ED=5.4/1.2/1.2      F  19
000000010200000000000000034000000000005000000000001000030000000000600207080000500   ED=5.5/1.2/1.2      F  27
000000010002000030450060000000000000000000000000000000000078000001000204000030000   ED=5.6/1.5/1.5      F  20
000000010200003000400000050300002600000000000000000000000000007000000003085000000   ED=5.6/2.9/2.9      F  12
000000010200000000300000040000005000006000000000700000040000002000000805060000000   ED=5.7/1.2/1.2      F  20
000000010002003000004000005000002000000000000010600000500000000000007000000000308   ED=5.7/1.5/1.5      F  18
000000010002003000000000040503002000000000000000000000040000006000000307080000000   ED=5.7/2.9/2.9      F  17
000000010002003000000000040005000000000000000006000000170000000400000308000000200   ED=6.1/1.2/1.2      F  22
000000010200000000300000040000000000000000050000600000070000000000800306015000000   ED=6.3/1.2/1.2      F  14
000000010002003000000000045006002000000000000000000000450000000000000700080000600   ED=6.4/1.2/1.2      F  23
000000010200000000300000040000000000000000000000005000040000002000030607085000000   ED=6.6/1.2/1.2      F  17
000000010002000003450060000000000000000000600000003000000020000001000070080000000   ED=6.6/1.5/1.5      F  25
000000010002003000000000045000006000000000000000000070470000000500000000000000308   ED=6.7/1.2/1.2      F  23
000000010200000000000000034000000000005000060000708000010000000000000200060000500   ED=6.8/1.2/1.2      F  24
000000010200000300450000000000000000000000002000006000000000007000000504018000000   ED=7.0/1.2/1.2      F  23
000000010002003000000000045006000000000000000000000000410000000000002708090000000   ED=7.1/1.2/1.2      F  22
000000010002030000000000040000100000003000000000005000460000000000000207000080000   ED=7.1/1.5/1.5      F  18
000000010200000000003040050000000030000000000000000060070000000000000802035000000   ED=7.2/1.2/1.2      F  18
000000010200000000300000040000005000000000000010000060000000005000000702008400000   ED=7.3/1.2/1.2      F  20
000000010020000003000004000000000500000060000700000000130000000008000007000000400   ED=7.3/2.9/2.9      F  17
000000010002030000000000040000000000003000000000506000710000000000000802060000000   ED=7.5/1.2/1.2      F  13
000000010200000000300000450000000000000000000000006000070000000000040802065000000   ED=7.6/1.2/1.2      F  21
000000010200000000300000040000000000000000000000005060010000700000000802045000000   ED=7.7/1.2/1.2      F  28
000000010002003000000000045000000060000000000000000000170000000400000000000230800   ED=7.8/1.2/1.2      F  14
000000010020000003000004000405006700000000000000000000010000000000000500030000008   ED=7.8/2.9/2.9      F  19
000000010002003000000000045000000000000000000006000000740000000000008309010000000   ED=7.9/1.2/1.2      F  23
000000010002003000004000005000000000006000370000000000150000000000000200000000800   ED=7.9/2.9/2.9      F  17
000000010020000003000000040000000000105004000000000600000070000060080000000000050   ED=8.0/1.2/1.2      F  21
000000010002003000000000040005002000000000000000300000160000000000000705080000000   ED=8.2/1.2/1.2      F  33
000000010002030000000000040000000000005000000000006000170600000000000205000000800   ED=8.3/1.2/1.2      F  21
000000010020003000003000004500000000000060000000000000000000050074000000000100800   ED=8.3/1.5/1.5      F  16
000000010002003000000000040003002000500000000000000000040000006000000307080000000   ED=8.3/2.9/2.9      F  19
000000010200000000000000034000100050000000000002000000050000000000003607080000000   ED=8.4/1.2/1.2      F  24
000000010200000000300000040000000000000000000000005060070000000000008309014000000   ED=8.5/1.2/1.2      F  14
000000010002003000000000040000100000003000000000005000640000000000000307000000800   ED=8.8/1.2/1.2      F  13
000000010002003000000000040300005000000000000005000000640000000000000703080000000   ED=8.9/1.2/1.2      F  28
000000010200000000000030400000000000034050000000000000600000000700001002000000800   ED=8.9/1.5/1.5      F  25
000000010023000000400000500000000000000000000000000060010000000000500704082000000   ED=9.0/1.2/1.2      F  15
000000010020000300400005000000006000000000700000000000000000006000000005038070000   ED=9.0/1.5/1.5      F  19
000000010200000000300000040000005000000000460000700000000000002000000005081000000   ED=9.1/1.2/1.2      F  12
000000010002030000000000045000000600000000000100005000470000000000000200000000800   ED=9.2/1.2/1.2      F  16
000000010200000000000030040000000000000000500006000000140000000000200705080000000   ED=9.3/1.2/1.2      F  17
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13637
Joined: 15 May 2006
Location: Berlin

PreviousNext

Return to Sudoku variants