YZF_Sudoku

Programs which generate, solve, and analyze Sudoku puzzles

Re: YZF_Sudoku

Postby yzfwsf » Tue Aug 08, 2023 10:28 pm

If so, I recommend you manually modify the configuration file "YZF_Sudoku.ini"-->[Color] section.
yzfwsf
 
Posts: 905
Joined: 16 April 2019

Re: YZF_Sudoku

Postby yzfwsf » Sun Sep 17, 2023 10:52 am

Release V628
Add minlex tool (algorithm from:http://forum.enjoysudoku.com/gridchecker-an-exhaustive-puzzle-enumerator-t30071-45.html#p230322)
Add T&E(Single), For mith's T&E3 puzzle set, each question takes about 0.5~0.6s. I wonder if this speed is feasible.
Add User Manual(Chinese Only,Due to my lack of English proficiency, the English version is not available for the time being.)
yzfwsf
 
Posts: 905
Joined: 16 April 2019

Re: YZF_Sudoku

Postby yzfwsf » Thu Feb 08, 2024 2:57 pm

Finally, Braid/g Braid has been implemented for YZF-Sudoku. Below are the results of solving Mauricio's famous Braid [30] puzzle.
Barid[30] VS g-Braid[23]
But g-Braid's search is about 53 times slower than Braid's search.

Code: Select all
.....1..2....3..4...15..6....71..8...2..9...71....4.5...86......4...7.9.3...5....


Code: Select all
Whip[3]: => r9c9<>4
4r9c9 - 4r4{r4c9=r4c1} - 4r3{r3c1=r3c5} - 4r7{r7c5=.}
Braid[7]: => r9c2<>6
6r9c2 - 1c2{r9c2=r7c2} - 1c5{r7c5=r8c5} - 7b7{r7c2=r7c1} - 9r7{r7c1=r7c6} - 3b8{r7c6=r8c4} - 8r8{r8c4=r8c9} - 6r8{r8c9=.}
Braid[7]: => r2c9<>8
8r2c9 - 1r2{r2c9=r2c7} - 1r5{r5c7=r5c8} - 5b3{r2c7=r1c7} - 9c7{r1c7=r6c7} - 2b6{r6c7=r4c8} - 6c8{r4c8=r9c8} - 8c8{r9c8=.}
Braid[9]: => r6c2<>9
9r6c2 - 8b4{r6c2=r5c1} - 9r4{r4c1=r4c9} - r5c4{n8=n3} - 3c6{r4c6=r7c6} - 9r7{r7c6=r7c1} - 9r3{r3c1=r3c6} - 9r9{r9c6=r9c4} - 4r9{r9c4=r9c7} - 4c9{r7c9=.}
Braid[9]: => r2c6<>9
9r2c6 - 6b2{r2c6=r1c5} - 9c4{r1c4=r9c4} - r4c5{n6=n2} - 2r6{r6c4=r6c7} - 9c7{r6c7=r1c7} - 9c3{r1c3=r6c3} - 9r4{r4c1=r4c9} - 4c9{r4c9=r7c9} - 4r9{r9c7=.}
Braid[13]: => r4c1<>6
6r4c1 - r4c5{n6=n2} - 4r4{r4c1=r4c9} - r4c8{n2=n3} - 2r6{r6c4=r6c7} - r5c7{n3=n1} - 9b6{r6c7=r6c9} - 1r2{r2c7=r2c9} - 1r8{r8c9=r8c5} - r7c5{n1=n4} - 4r3{r3c5=r3c1} - 2r3{r3c1=r3c6} - 9r3{r3c6=r3c2} - 9r4{r4c2=.}
Braid[13]: => r1c4<>8
8r1c4 - r5c4{n8=n3} - 4c4{r1c4=r9c4} - r8c4{n3=n2} - 3c6{r4c6=r7c6} - r7c5{n2=n1} - 9b8{r7c6=r9c6} - 1c2{r7c2=r9c2} - 1c8{r9c8=r5c8} - r5c7{n1=n4} - 4c3{r5c3=r1c3} - 3c3{r1c3=r6c3} - 9c3{r6c3=r2c3} - 9c4{r2c4=.}
Braid[13]: => r9c2<>9
9r9c2 - 1c2{r9c2=r7c2} - 9r7{r7c1=r7c6} - 1c5{r7c5=r8c5} - 3b8{r7c6=r8c4} - r5c4{n3=n8} - 8r6{r6c4=r6c2} - 8r8{r8c4=r8c9} - 8r9{r9c8=r9c6} - r3c6{n8=n2} - 8r2{r2c6=r2c1} - 2r2{r2c1=r2c3} - r9c3{n2=n6} - 6r8{r8c1=.}
Braid[13]: => r2c9<>9
9r2c9 - 1r2{r2c9=r2c7} - 9c7{r1c7=r6c7} - 1r5{r5c7=r5c8} - 2b6{r6c7=r4c8} - r4c5{n2=n6} - 6c6{r4c6=r2c6} - 6c8{r4c8=r9c8} - 6c9{r8c9=r6c9} - r6c3{n6=n3} - 6c2{r6c2=r1c2} - 3c2{r1c2=r3c2} - r3c9{n3=n8} - 8c8{r1c8=.}
Braid[14]: => r9c7<>1
1r9c7 - 1r5{r5c7=r5c8} - 1r8{r8c7=r8c5} - 4r9{r9c7=r9c4} - r7c5{n4=n2} - r4c5{n2=n6} - 6c8{r4c8=r9c8} - r9c9{n6=n8} - 2b9{r9c8=r8c7} - 8r8{r8c9=r8c4} - r5c4{n8=n3} - 3r8{r8c4=r8c9} - r3c9{n3=n9} - r4c9{n9=n4} - r5c7{n4=.}
Braid[14]: => r7c9<>1
1r7c9 - 1r8{r8c7=r8c5} - 1c8{r7c8=r5c8} - 4c9{r7c9=r4c9} - r5c7{n4=n3} - r5c4{n3=n8} - 8r8{r8c4=r8c9} - r9c9{n8=n6} - 3b9{r8c9=r7c8} - 6c8{r9c8=r4c8} - r4c5{n6=n2} - 2c8{r4c8=r9c8} - r7c5{n2=n4} - r9c3{n2=n9} - r9c4{n9=.}
Braid[16]: => r8c5<>2
2r8c5 - r4c5{n2=n6} - 1c5{r8c5=r7c5} - 1c2{r7c2=r9c2} - 1c8{r9c8=r5c8} - 6b6{r5c8=r6c9} - r9c9{n6=n8} - 8r8{r8c9=r8c4} - 3b8{r8c4=r7c6} - r5c4{n8=n3} - r5c7{n3=n4} - 4c3{r5c3=r1c3} - 3c3{r1c3=r6c3} - 9r6{r6c3=r6c7} - 2b6{r6c7=r4c8} - r7c8{n2=n7} - 7r9{r9c7=.}
Braid[16]: => r5c8<>3
3r5c8 - r5c4{n3=n8} - 1r5{r5c8=r5c7} - 1r2{r2c7=r2c9} - 1r8{r8c9=r8c5} - 8b8{r8c5=r9c6} - r9c9{n8=n6} - 6c8{r9c8=r4c8} - 2b6{r4c8=r6c7} - r4c5{n6=n2} - r7c5{n2=n4} - 4r3{r3c5=r3c1} - 2r3{r3c1=r3c6} - 9c6{r3c6=r7c6} - 3b8{r7c6=r8c4} - r8c7{n3=n5} - 5c9{r7c9=.}
Braid[30]: => r6c2<>3
3r6c2 - 3c3{r5c3=r1c3} - 8b4{r6c2=r5c1} - 4c3{r1c3=r5c3} - r5c4{n8=n3} - 4r4{r4c1=r4c9} - 3c6{r4c6=r7c6} - r5c7{n3=n1} - r5c8{n1=n6} - 1r2{r2c7=r2c9} - r6c9{n6=n9} - 1r8{r8c9=r8c5} - r6c7{n9=n2} - r7c9{n3=n5} - r6c3{n9=n6} - 6b7{r8c3=r8c1} - 5r8{r8c1=r8c3} - 2r8{r8c3=r8c4} - r7c5{n2=n4} - r7c7{n4=n7} - 7r9{r9c7=r9c2} - 1r9{r9c2=r9c8} - 2r9{r9c8=r9c3} - r2c3{n2=n9} - r3c2{n9=n8} - 8c8{r3c8=r1c8} - 8c5{r1c5=r6c5} - r6c4{n8=n7} - 7r2{r2c4=r2c1} - 2c1{r2c1=r3c1} - 4r3{r3c1=.}
Braid[29]: => r2c6<>2
2r2c6 - 2r3{r3c5=r3c1} - 6b2{r2c6=r1c5} - 4r3{r3c1=r3c5} - r4c5{n6=n2} - 4c4{r1c4=r9c4} - 2r6{r6c4=r6c7} - r7c5{n2=n1} - r8c5{n1=n8} - 1c2{r7c2=r9c2} - r9c6{n8=n9} - 1c8{r9c8=r5c8} - r9c7{n2=n7} - r7c6{n9=n3} - r3c6{n9=n8} - 8b3{r3c8=r1c8} - 7c8{r1c8=r3c8} - 3c8{r3c8=r4c8} - r5c7{n3=n4} - r7c7{n4=n5} - 5c9{r7c9=r2c9} - 1r2{r2c9=r2c7} - 9c7{r2c7=r1c7} - 9r3{r3c9=r3c2} - r2c3{n9=n6} - r7c2{n9=n7} - r2c2{n7=n8} - r6c2{n8=n6} - r6c9{n6=n9} - 9c3{r6c3=.}
Braid[25]: => r2c2<>8
8r2c2 - r2c6{n8=n6} - r6c2{n8=n6} - 8c1{r1c1=r5c1} - r5c4{n8=n3} - 6r5{r5c1=r5c8} - 3c6{r4c6=r7c6} - 1r5{r5c8=r5c7} - r5c6{n3=n5} - 4b6{r5c7=r4c9} - r4c6{n5=n2} - 2r6{r6c4=r6c7} - r4c8{n2=n3} - r7c9{n4=n5} - r8c7{n5=n3} - 3c9{r8c9=r3c9} - 3c2{r3c2=r1c2} - 5c2{r1c2=r4c2} - r4c1{n5=n9} - 9r7{r7c1=r7c2} - r3c2{n9=n7} - 7c1{r1c1=r7c1} - r7c7{n7=n4} - 4r9{r9c7=r9c4} - 9r9{r9c4=r9c6} - 9r3{r3c6=.}
Braid[16]: => r6c4<>8
8r6c4 - r5c4{n8=n3} - r6c2{n8=n6} - 8r5{r5c4=r5c1} - r8c4{n3=n2} - 8r2{r2c1=r2c6} - 8c5{r1c5=r8c5} - 1c5{r8c5=r7c5} - r9c6{n8=n9} - 1c2{r7c2=r9c2} - 1c8{r9c8=r5c8} - r5c7{n1=n4} - r5c3{n4=n5} - r8c3{n5=n6} - r9c3{n6=n2} - 2r2{r2c3=r2c1} - 6r2{r2c1=.}
Braid[17]: => r9c4<>8
8r9c4 - r5c4{n8=n3} - 4b8{r9c4=r7c5} - r8c4{n3=n2} - 4c9{r7c9=r4c9} - 4r3{r3c5=r3c1} - r9c6{n2=n9} - r5c7{n4=n1} - 1r2{r2c7=r2c9} - r9c9{n1=n6} - r9c3{n6=n2} - 2r2{r2c3=r2c1} - 8r2{r2c1=r2c6} - 8c5{r1c5=r6c5} - 2r6{r6c5=r6c7} - 9b6{r6c7=r6c9} - 9r3{r3c9=r3c2} - 9c3{r1c3=.}
Braid[18]: => r4c9<>6
6r4c9 - r4c5{n6=n2} - 4r4{r4c9=r4c1} - r4c8{n2=n3} - 4r3{r3c1=r3c5} - 9r4{r4c1=r4c2} - r6c9{n3=n9} - r7c5{n4=n1} - r8c5{n1=n8} - 1c2{r7c2=r9c2} - 8r6{r6c5=r6c2} - r9c9{n1=n8} - r3c9{n8=n3} - r3c2{n3=n7} - r3c8{n7=n8} - 7c1{r1c1=r7c1} - 9r7{r7c1=r7c6} - r3c6{n9=n2} - r9c6{n2=.}
Braid[22]: => r2c4<>2
2r2c4 - 2r3{r3c5=r3c1} - 4r3{r3c1=r3c5} - 4c4{r1c4=r9c4} - 9c4{r9c4=r1c4} - 7c4{r1c4=r6c4} - 7c5{r6c5=r1c5} - 6b2{r1c5=r2c6} - 8r2{r2c6=r2c1} - 8r1{r1c1=r1c8} - 8c2{r1c2=r6c2} - 7c1{r2c1=r7c1} - 8c5{r6c5=r8c5} - r9c2{n7=n1} - 9c1{r7c1=r4c1} - 1c5{r8c5=r7c5} - 4r4{r4c1=r4c9} - 1c8{r7c8=r5c8} - r5c7{n1=n3} - 3r6{r6c7=r6c3} - 3r1{r1c3=r1c2} - 6c2{r1c2=r4c2} - 6r5{r5c1=.}
Locked Candidates 2 (Claiming): 2 in r2 => r3c1<>2
Braid[7]: => r9c8<>2
2r9c8 - 2c7{r7c7=r6c7} - 2c4{r6c4=r8c4} - 2r7{r7c5=r7c1} - 3b8{r8c4=r7c6} - 9r7{r7c6=r7c2} - 1c2{r7c2=r9c2} - 7b7{r9c2=.}
Braid[13]: => r7c6<>2
2r7c6 - 2r3{r3c6=r3c5} - 3b8{r7c6=r8c4} - r4c5{n2=n6} - r5c4{n3=n8} - 6c6{r4c6=r2c6} - 8r6{r6c5=r6c2} - 8r2{r2c6=r2c1} - 6c2{r6c2=r1c2} - 2c1{r2c1=r8c1} - 6c1{r8c1=r5c1} - 6c8{r5c8=r9c8} - r9c3{n6=n9} - 9r7{r7c1=.}
Braid[13]: => r2c1<>6
6r2c1 - r2c6{n6=n8} - 2r2{r2c1=r2c3} - 6r1{r1c1=r1c5} - r4c5{n6=n2} - 2r3{r3c5=r3c6} - 2r6{r6c4=r6c7} - r9c6{n2=n9} - 2r9{r9c7=r9c4} - 4r9{r9c4=r9c7} - 4c9{r7c9=r4c9} - 9b6{r4c9=r6c9} - 9c3{r6c3=r1c3} - 9r3{r3c1=.}
Braid[14]: => r1c3<>6
6r1c3 - 4c3{r1c3=r5c3} - 6r2{r2c2=r2c6} - 6b7{r8c3=r8c1} - 3c3{r5c3=r6c3} - 6r5{r5c1=r5c8} - r6c9{n6=n9} - r6c7{n9=n2} - r6c4{n2=n7} - 2c8{r4c8=r7c8} - 1c8{r7c8=r9c8} - r9c2{n1=n7} - 7r7{r7c1=r7c7} - 7r2{r2c7=r2c1} - 2c1{r2c1=.}
Braid[14]: => r1c2<>8
8r1c2 - 8r6{r6c2=r6c5} - r5c4{n8=n3} - r8c5{n8=n1} - 7r6{r6c5=r6c4} - 2r6{r6c4=r6c7} - 2c8{r4c8=r7c8} - r7c5{n2=n4} - 4c9{r7c9=r4c9} - 9b6{r4c9=r6c9} - 3b6{r6c9=r4c8} - 3c2{r4c2=r3c2} - r1c8{n3=n7} - r3c9{n3=n8} - r3c8{n8=.}
Braid[17]: => r3c6<>8
8r3c6 - r2c6{n8=n6} - 2r3{r3c6=r3c5} - 8c2{r3c2=r6c2} - r4c5{n2=n6} - 4r3{r3c5=r3c1} - 8c5{r6c5=r8c5} - 4r4{r4c1=r4c9} - 1c5{r8c5=r7c5} - 1c2{r7c2=r9c2} - 6c2{r4c2=r1c2} - 1c8{r9c8=r5c8} - r5c7{n1=n3} - r4c8{n3=n2} - 2r6{r6c7=r6c4} - 3r6{r6c4=r6c3} - 3r1{r1c3=r1c8} - 8b3{r1c8=.}
Braid[8]: => r9c6<>2
2r9c6 - r3c6{n2=n9} - 2c4{r8c4=r6c4} - 9c4{r1c4=r9c4} - 7r6{r6c4=r6c5} - r9c3{n9=n6} - 6r8{r8c1=r8c9} - 6r6{r6c9=r6c2} - 8r6{r6c2=.}
Whip[7]: => r7c2<>5
5r7c2 - 1c2{r7c2=r9c2} - 7b7{r9c2=r7c1} - 9r7{r7c1=r7c6} - r9c6{n9=n8} - 8r8{r8c4=r8c9} - 1c9{r8c9=r2c9} - 5c9{r2c9=.}
Braid[13]: => r9c4<>9
9r9c4 - r9c6{n9=n8} - 4r9{r9c4=r9c7} - 9c6{r7c6=r3c6} - 8r8{r8c4=r8c9} - 2r9{r9c7=r9c3} - 2r2{r2c3=r2c1} - r3c9{n8=n3} - 8r2{r2c1=r2c4} - 8r5{r5c4=r5c1} - 8r1{r1c1=r1c8} - r3c8{n8=n7} - 7r2{r2c7=r2c2} - 7r9{r9c2=.}
Locked Candidates 2 (Claiming): 9 in c4 => r3c6<>9
Naked Single: r3c6=2
Braid[7]: => r2c1<>9
9r2c1 - 9r3{r3c1=r3c9} - 9r4{r4c9=r4c2} - 9r7{r7c2=r7c6} - r9c6{n9=n8} - 3b8{r7c6=r8c4} - r5c4{n3=n8} - 8r2{r2c4=.}
Whip[8]: => r1c2<>9
9r1c2 - 9r3{r3c1=r3c9} - 9c7{r2c7=r6c7} - 2b6{r6c7=r4c8} - r4c5{n2=n6} - 6r1{r1c5=r1c1} - 6c2{r2c2=r6c2} - r6c3{n6=n3} - r6c9{n3=.}
Braid[9]: => r3c2<>8
8r3c2 - 8r6{r6c2=r6c5} - r8c5{n8=n1} - 7r6{r6c5=r6c4} - 2r6{r6c4=r6c7} - 2r4{r4c8=r4c5} - r7c5{n2=n4} - 4r3{r3c5=r3c1} - 9r3{r3c1=r3c9} - 9c7{r1c7=.}
Hidden Single: 8 in c2 => r6c2=8
Braid[9]: => r1c3<>9
9r1c3 - 4c3{r1c3=r5c3} - 9r3{r3c1=r3c9} - 3c3{r5c3=r6c3} - r6c9{n3=n6} - r5c8{n6=n1} - r5c7{n1=n3} - 3r4{r4c8=r4c6} - r7c6{n3=n9} - 9r9{r9c6=.}
Braid[9]: => r2c1<>5
5r2c1 - 2r2{r2c1=r2c3} - 5r1{r1c1=r1c7} - 5r7{r7c7=r7c9} - 4c9{r7c9=r4c9} - r4c1{n4=n9} - 9c3{r6c3=r9c3} - r9c6{n9=n8} - 8r2{r2c6=r2c4} - 8r5{r5c4=.}
Whip[10]: => r8c9<>6
6r8c9 - 6r9{r9c8=r9c3} - 6r6{r6c3=r6c5} - r4c5{n6=n2} - 2r6{r6c4=r6c7} - 2r9{r9c7=r9c4} - 4r9{r9c4=r9c7} - 4c9{r7c9=r4c9} - 9b6{r4c9=r6c9} - 9c3{r6c3=r2c3} - 9r3{r3c1=.}
Locked Candidates 2 (Claiming): 6 in r8 => r9c3<>6
Whip[5]: => r8c3<>2
2r8c3 - r9c3{n2=n9} - r9c6{n9=n8} - 8r5{r5c6=r5c4} - 8r2{r2c4=r2c1} - 2r2{r2c1=.}
Whip[5]: => r8c4<>8
8r8c4 - r9c6{n8=n9} - r9c3{n9=n2} - 2r2{r2c3=r2c1} - 8r2{r2c1=r2c6} - 8r5{r5c6=.}
Whip[5]: => r8c9<>5
5r8c9 - r8c3{n5=n6} - r8c1{n6=n2} - r9c3{n2=n9} - r9c6{n9=n8} - 8r8{r8c5=.}
Braid[5]: => r2c3<>5
5r2c3 - 2c3{r2c3=r9c3} - 5c9{r2c9=r7c9} - 9c3{r9c3=r6c3} - 4c9{r7c9=r4c9} - 9r4{r4c9=.}
Whip[5]: => r2c1<>7
7r2c1 - 2r2{r2c1=r2c3} - r9c3{n2=n9} - r9c6{n9=n8} - 8r2{r2c6=r2c4} - 8r5{r5c4=.}
Whip[8]: => r2c2<>6
6r2c2 - r2c6{n6=n8} - r2c1{n8=n2} - r2c3{n2=n9} - 9r3{r3c1=r3c9} - 9r6{r6c9=r6c7} - 2b6{r6c7=r4c8} - r4c5{n2=n6} - 6r1{r1c5=.}
Whip[2]: => r4c6<>6
6r4c6 - 6r2{r2c6=r2c3} - 6c2{r1c2=.}
Braid[6]: => r4c9<>3
3r4c9 - 4r4{r4c9=r4c1} - 4c9{r4c9=r7c9} - 9r4{r4c1=r4c2} - 5c9{r7c9=r2c9} - 5c2{r2c2=r1c2} - 6c2{r1c2=.}
Braid[7]: => r1c2<>7
7r1c2 - 6c2{r1c2=r4c2} - r4c5{n6=n2} - 3c2{r4c2=r3c2} - 5c2{r4c2=r2c2} - r4c8{n2=n3} - 3r1{r1c8=r1c7} - 5r1{r1c7=.}
Braid[9]: => r7c7<>7
7r7c7 - 7r9{r9c7=r9c2} - 7r2{r2c2=r2c4} - 9c4{r2c4=r1c4} - 4c4{r1c4=r9c4} - r9c7{n4=n2} - 4r7{r7c5=r7c9} - r4c9{n4=n9} - 9r6{r6c7=r6c3} - r9c3{n9=.}
Braid[8]: => r1c1<>6
6r1c1 - 6r2{r2c3=r2c6} - 6c2{r1c2=r4c2} - r4c5{n6=n2} - 6r5{r5c3=r5c8} - 2c8{r4c8=r7c8} - 1c8{r7c8=r9c8} - r9c2{n1=n7} - 7r7{r7c1=.}
Braid[7]: => r5c3<>5
5r5c3 - r8c3{n5=n6} - 4c3{r5c3=r1c3} - 6c1{r8c1=r5c1} - 3c3{r1c3=r6c3} - r4c2{n3=n9} - r4c9{n9=n4} - r4c1{n4=.}
Braid[8]: => r1c2<>3
3r1c2 - 6c2{r1c2=r4c2} - 5c2{r4c2=r2c2} - r1c3{n5=n4} - 5c9{r2c9=r7c9} - r5c3{n4=n3} - 4c9{r7c9=r4c9} - 9r4{r4c9=r4c1} - r6c3{n9=.}
Braid[6]: => r4c8<>3
3r4c8 - 2b6{r4c8=r6c7} - 3c2{r4c2=r3c2} - 3r1{r1c3=r1c7} - 9c7{r1c7=r2c7} - 1r2{r2c7=r2c9} - 5b3{r2c9=.}
Whip[2]: => r4c2<>6
6r4c2 - r4c5{n6=n2} - r4c8{n2=.}
Hidden Single: 6 in c2 => r1c2=6
Hidden Single: 6 in r2 => r2c6=6
Whip[2]: => r6c3<>9
9r6c3 - r2c3{n9=n2} - r9c3{n2=.}
Locked Candidates 1 (Pointing): 9 in b4 => r4c9<>9
Naked Single: r4c9=4
Whip[3]: => r7c1<>9
9r7c1 - r4c1{n9=n5} - r4c6{n5=n3} - r7c6{n3=.}
Braid[3]: => r6c4<>3
3r6c4 - r4c6{n3=n5} - r5c4{n3=n8} - r5c6{n8=.}
Braid[4]: => r9c8<>8
8r9c8 - r9c6{n8=n9} - 8c9{r8c9=r3c9} - 9c3{r9c3=r2c3} - 9r3{r3c1=.}
Locked Candidates 2 (Claiming): 8 in c8 => r3c9<>8
Whip[3]: => r3c1<>9
9r3c1 - r3c9{n9=n3} - 3c2{r3c2=r4c2} - 9r4{r4c2=.}
Braid[4]: => r8c9<>3
3r8c9 - r3c9{n3=n9} - 3c4{r8c4=r5c4} - 3b6{r5c7=r6c7} - 9r6{r6c7=.}
Whip[2]: => r8c7<>1
1r8c7 - r8c5{n1=n8} - r8c9{n8=.}
Braid[4]: => r6c7<>2
2r6c7 - 2c8{r4c8=r7c8} - 9r6{r6c7=r6c9} - r3c9{n9=n3} - 3c8{r1c8=.}
Hidden Single: 2 in b6 => r4c8=2
Hidden Single: 6 in r4 => r4c5=6
Whip[4]: => r7c7<>1
1r7c7 - r8c9{n1=n8} - r9c9{n8=n6} - 6c8{r9c8=r5c8} - 1r5{r5c8=.}
Whip[4]: => r1c7<>9
9r1c7 - r3c9{n9=n3} - 3c2{r3c2=r4c2} - 5c2{r4c2=r2c2} - 5r1{r1c1=.}
Whip[5]: => r9c3<>2
2r9c3 - 9r9{r9c3=r9c6} - 8b8{r9c6=r8c5} - 1c5{r8c5=r7c5} - 2r7{r7c5=r7c7} - 4r7{r7c7=.}
Hidden Single: 2 in c3 => r2c3=2
Hidden Single: 9 in c3 => r9c3=9
Hidden Single: 9 in r7 => r7c6=9
Hidden Single: 3 in b8 => r8c4=3
Naked Single: r2c1=8
Hidden Single: 8 in c4 => r5c4=8
Hidden Single: 8 in c6 => r9c6=8
Hidden Single: 8 in r8 => r8c9=8
Hidden Single: 1 in r8 => r8c5=1
Whip[2]: => r2c2<>7
7r2c2 - r7c2{n7=n1} - r9c2{n1=.}
Whip[2]: => r3c2<>7
7r3c2 - r7c2{n7=n1} - r9c2{n1=.}
Locked Candidates 1 (Pointing): 7 in b1 => r7c1<>7
Whip[2]: => r3c8<>3
3r3c8 - r3c2{n3=n9} - r3c9{n9=.}
Whip[2]: => r7c8<>3
3r7c8 - 1r7{r7c8=r7c2} - 7r7{r7c2=.}
Hidden Single: 3 in c8 => r1c8=3
Hidden Single: 8 in r1 => r1c5=8
Hidden Single: 3 in r3 => r3c2=3
Hidden Single: 8 in r3 => r3c8=8
Hidden Single: 9 in r3 => r3c9=9
Hidden Single: 3 in r4 => r4c6=3
Full House: r5c6=5
Hidden Single: 9 in r6 => r6c7=9
Locked Candidates 1 (Pointing): 7 in b3 => r9c7<>7
Braid[3]: => r3c5<>7
7r3c5 - r2c4{n7=n9} - 7c1{r3c1=r1c1} - 9r1{r1c1=.}
Hidden Single: 7 in r3 => r3c1=7
Full House: r3c5=4
Hidden Single: 4 in r7 => r7c7=4
Hidden Single: 3 in r7 => r7c9=3
Hidden Single: 3 in r6 => r6c3=3
Hidden Single: 3 in r5 => r5c7=3
Hidden Single: 1 in r5 => r5c8=1
Full House: r6c9=6
Hidden Single: 1 in r7 => r7c2=1
Hidden Single: 5 in r7 => r7c1=5
Hidden Single: 5 in r4 => r4c2=5
Full House: r4c1=9
Hidden Single: 9 in r1 => r1c4=9
Full House: r2c4=7
Hidden Single: 7 in r1 => r1c7=7
Hidden Single: 5 in r1 => r1c3=5
Full House: r1c1=4
Full House: r2c2=9
Full House: r9c2=7
Hidden Single: 4 in r5 => r5c3=4
Full House: r5c1=6
Full House: r8c1=2
Full House: r8c3=6
Full House: r8c7=5
Hidden Single: 5 in r2 => r2c9=5
Full House: r2c7=1
Full House: r9c7=2
Full House: r9c9=1
Hidden Single: 7 in r6 => r6c5=7
Full House: r6c4=2
Full House: r9c4=4
Full House: r9c8=6
Full House: r7c5=2
Full House: r7c8=7
131 Steps!Time elapsed: 3793.8 ms,Most difficult Braid[30]


Code: Select all
Whip[3]: => r9c9<>4
4r9c9 - 4r4{r4c9=r4c1} - 4r3{r3c1=r3c5} - 4r7{r7c5=.}
Braid[7]: => r9c2<>6
6r9c2 - 1c2{r9c2=r7c2} - 1c5{r7c5=r8c5} - 7b7{r7c2=r7c1} - 9r7{r7c1=r7c6} - 3b8{r7c6=r8c4} - 8r8{r8c4=r8c9} - 6r8{r8c9=.}
Braid[7]: => r2c9<>8
8r2c9 - 1r2{r2c9=r2c7} - 1r5{r5c7=r5c8} - 5b3{r2c7=r1c7} - 9c7{r1c7=r6c7} - 2b6{r6c7=r4c8} - 6c8{r4c8=r9c8} - 8c8{r9c8=.}
Braid[9]: => r6c2<>9
9r6c2 - 8b4{r6c2=r5c1} - 9r4{r4c1=r4c9} - r5c4{n8=n3} - 3c6{r4c6=r7c6} - 9r7{r7c6=r7c1} - 9r3{r3c1=r3c6} - 9r9{r9c6=r9c4} - 4r9{r9c4=r9c7} - 4c9{r7c9=.}
Braid[9]: => r2c6<>9
9r2c6 - 6b2{r2c6=r1c5} - 9c4{r1c4=r9c4} - r4c5{n6=n2} - 2r6{r6c4=r6c7} - 9c7{r6c7=r1c7} - 9c3{r1c3=r6c3} - 9r4{r4c1=r4c9} - 4c9{r4c9=r7c9} - 4r9{r9c7=.}
g-Braid[12]: => r4c1<>6
6r4c1 - r4c5{n6=n2} - 4r4{r4c1=r4c9} - 2r6{r6c4=r6c7} - 9r4{r4c9=r4c2} - 9r6{r6c3=r6c9} - 6b6{r6c9=r5c8} - 1c8{r5c8=r79c8} - 1r8{r8c7=r8c5} - r7c5{n1=n4} - 4r3{r3c5=r3c1} - 2r3{r3c1=r3c6} - 9r3{r3c6=.}
g-Braid[12]: => r1c4<>8
8r1c4 - r5c4{n8=n3} - 4c4{r1c4=r9c4} - 3c6{r4c6=r7c6} - 9c4{r9c4=r2c4} - 9c6{r3c6=r9c6} - 8b8{r9c6=r8c5} - 1r8{r8c5=r8c79} - 1c8{r7c8=r5c8} - r5c7{n1=n4} - 4c3{r5c3=r1c3} - 3c3{r1c3=r6c3} - 9c3{r6c3=.}
g-Braid[13]: => r9c4<>8
8r9c4 - r5c4{n8=n3} - 4r9{r9c4=r9c7} - 4c4{r9c4=r1c4} - r8c4{n3=n2} - 4c9{r7c9=r4c9} - 9c4{r1c4=r2c4} - r9c6{n2=n9} - 9r4{r4c9=r4c12} - 9c3{r6c3=r1c3} - 3c3{r1c3=r6c3} - 3r4{r4c2=r4c8} - 2b6{r4c8=r6c7} - 9c7{r6c7=.}
Braid[13]: => r9c2<>9
9r9c2 - 1c2{r9c2=r7c2} - 9r7{r7c1=r7c6} - 1c5{r7c5=r8c5} - 3b8{r7c6=r8c4} - r5c4{n3=n8} - 8r6{r6c4=r6c2} - 8r8{r8c4=r8c9} - 8r9{r9c8=r9c6} - r3c6{n8=n2} - 8r2{r2c6=r2c1} - 2r2{r2c1=r2c3} - r9c3{n2=n6} - 6r8{r8c1=.}
g-Braid[13]: => r4c9<>6
6r4c9 - r4c5{n6=n2} - 4r4{r4c9=r4c1} - r4c8{n2=n3} - 4r3{r3c1=r3c5} - 9r4{r4c1=r4c2} - 4c4{r1c4=r9c4} - r6c9{n3=n9} - 9c4{r9c4=r12c4} - 9r3{r3c6=r3c1} - 2r3{r3c1=r3c6} - 2c4{r2c4=r8c4} - 3b8{r8c4=r7c6} - 9r7{r7c6=.}
Braid[13]: => r2c9<>9
9r2c9 - 1r2{r2c9=r2c7} - 9c7{r1c7=r6c7} - 1r5{r5c7=r5c8} - 2b6{r6c7=r4c8} - r4c5{n2=n6} - 6c6{r4c6=r2c6} - 6c8{r4c8=r9c8} - 6c9{r8c9=r6c9} - r6c3{n6=n3} - 6c2{r6c2=r1c2} - 3c2{r1c2=r3c2} - r3c9{n3=n8} - 8c8{r1c8=.}
Braid[14]: => r9c7<>1
1r9c7 - 1r5{r5c7=r5c8} - 1r8{r8c7=r8c5} - 4r9{r9c7=r9c4} - r7c5{n4=n2} - r4c5{n2=n6} - 6c8{r4c8=r9c8} - r9c9{n6=n8} - 2b9{r9c8=r8c7} - 8r8{r8c9=r8c4} - r5c4{n8=n3} - 3r8{r8c4=r8c9} - r3c9{n3=n9} - r4c9{n9=n4} - r5c7{n4=.}
Braid[14]: => r7c9<>1
1r7c9 - 1r8{r8c7=r8c5} - 1c8{r7c8=r5c8} - 4c9{r7c9=r4c9} - r5c7{n4=n3} - r5c4{n3=n8} - 8r8{r8c4=r8c9} - r9c9{n8=n6} - 3b9{r8c9=r7c8} - 6c8{r9c8=r4c8} - r4c5{n6=n2} - 2c8{r4c8=r9c8} - r7c5{n2=n4} - r9c3{n2=n9} - r9c4{n9=.}
g-Braid[16]: => r8c5<>2
2r8c5 - r4c5{n2=n6} - 1c5{r8c5=r7c5} - 1c2{r7c2=r9c2} - 1c8{r9c8=r5c8} - 6b6{r5c8=r6c9} - r9c9{n6=n8} - 8r8{r8c9=r8c4} - r5c4{n8=n3} - 3r8{r8c4=r8c79} - r5c7{n3=n4} - 4c3{r5c3=r1c3} - 3c3{r1c3=r6c3} - 9r6{r6c3=r6c7} - 2b6{r6c7=r4c8} - r7c8{n2=n7} - 7r9{r9c7=.}
g-Braid[16]: => r5c8<>3
3r5c8 - r5c4{n3=n8} - 1r5{r5c8=r5c7} - 1r2{r2c7=r2c9} - 1r8{r8c9=r8c5} - 8b8{r8c5=r9c6} - r9c9{n8=n6} - 6c8{r9c8=r4c8} - r4c5{n6=n2} - 2c8{r4c8=r79c8} - r7c5{n2=n4} - 4r3{r3c5=r3c1} - 2r3{r3c1=r3c6} - 9c6{r3c6=r7c6} - 3b8{r7c6=r8c4} - r8c7{n3=n5} - 5c9{r7c9=.}
g-Braid[20]: => r9c8<>2
2r9c8 - 2c7{r7c7=r6c7} - 6c8{r9c8=r45c8} - 8c8{r9c8=r13c8} - 9c7{r6c7=r12c7} - r3c9{n9=n3} - r6c9{n3=n9} - r4c9{n9=n4} - r7c9{n4=n5} - r2c9{n5=n1} - 1r9{r9c9=r9c2} - 7r9{r9c2=r9c7} - 4r9{r9c7=r9c4} - 9c4{r9c4=r12c4} - 9r3{r3c6=r3c12} - 9c3{r1c3=r9c3} - r7c2{n9=n7} - r7c1{n7=n2} - r7c5{n2=n1} - r8c5{n1=n8} - r9c6{n8=.}
Braid[18]: => r1c3<>6
6r1c3 - 4c3{r1c3=r5c3} - 6r2{r2c1=r2c6} - 6b7{r8c3=r8c1} - 3c3{r5c3=r6c3} - 4r4{r4c1=r4c9} - 6r5{r5c1=r5c8} - 1r5{r5c8=r5c7} - 3b6{r5c7=r4c8} - 2c8{r4c8=r7c8} - 1c8{r7c8=r9c8} - r9c2{n1=n7} - r9c7{n7=n4} - 4r7{r7c7=r7c5} - 4r3{r3c5=r3c1} - 2c1{r3c1=r2c1} - 7c1{r2c1=r1c1} - r1c5{n7=n8} - r1c8{n8=.}
g-Braid[20]: => r8c9<>3
3r8c9 - 3r7{r7c7=r7c6} - 6r8{r8c9=r8c13} - 8r8{r8c9=r8c45} - 9r7{r7c6=r7c12} - r9c3{n9=n2} - r9c6{n2=n9} - r9c4{n9=n4} - r9c7{n4=n7} - r9c2{n7=n1} - 1c9{r9c9=r2c9} - 5c9{r2c9=r7c9} - 4c9{r7c9=r4c9} - 9r4{r4c9=r4c12} - 9c3{r6c3=r12c3} - 9r3{r3c1=r3c9} - r2c7{n9=n5} - r1c7{n5=n3} - r5c7{n3=n1} - r5c8{n1=n6} - r6c9{n6=.}
Braid[18]: => r3c1<>8
8r3c1 - 4r3{r3c1=r3c5} - 8c2{r1c2=r6c2} - 8b3{r3c8=r1c8} - 2r3{r3c5=r3c6} - 4c4{r1c4=r9c4} - 8c5{r1c5=r8c5} - 1c5{r8c5=r7c5} - 2b8{r7c5=r8c4} - 3r8{r8c4=r8c7} - 1r8{r8c7=r8c9} - r2c9{n1=n5} - r7c9{n5=n4} - 4r4{r4c9=r4c1} - 4r1{r1c1=r1c3} - 3r1{r1c3=r1c2} - 5r1{r1c2=r1c1} - r5c1{n5=n6} - r8c1{n6=.}
g-Braid[23]: => r1c1<>6
6r1c1 - 6r2{r2c1=r2c6} - 6c2{r1c2=r46c2} - 6r5{r5c3=r5c8} - 1r5{r5c8=r5c7} - 1r2{r2c7=r2c9} - 4b6{r5c7=r4c9} - 5b3{r2c9=r12c7} - 9r4{r4c9=r4c12} - r6c3{n9=n3} - 3b6{r6c7=r4c8} - 2c8{r4c8=r7c8} - 1c8{r7c8=r9c8} - r9c2{n1=n7} - r8c7{n2=n3} - r7c9{n3=n5} - 3r1{r1c7=r1c2} - r7c1{n5=n9} - r4c1{n9=n5} - 9r4{r4c1=r4c2} - r3c2{n9=n8} - 8r2{r2c1=r2c4} - r8c4{n8=n2} - r8c1{n2=.}
Whip[9]: => r1c2<>9
9r1c2 - 6r1{r1c2=r1c5} - r4c5{n6=n2} - 2r6{r6c4=r6c7} - 9c7{r6c7=r2c7} - 9r3{r3c9=r3c6} - 2r3{r3c6=r3c1} - 4r3{r3c1=r3c5} - 4c4{r1c4=r9c4} - 9c4{r9c4=.}
Braid[16]: => r6c5<>8
8r6c5 - r5c4{n8=n3} - r8c5{n8=n1} - 7r6{r6c5=r6c4} - 2r6{r6c4=r6c7} - 2c8{r4c8=r7c8} - r7c5{n2=n4} - 4r3{r3c5=r3c1} - 4r4{r4c1=r4c9} - r5c7{n4=n1} - r5c8{n1=n6} - 1r7{r7c7=r7c2} - r9c2{n1=n7} - 7r7{r7c1=r7c7} - 7r2{r2c7=r2c1} - 2c1{r2c1=r8c1} - 6c1{r8c1=.}
Braid[11]: => r2c4<>8
8r2c4 - r5c4{n8=n3} - 8c5{r1c5=r8c5} - 8c6{r9c6=r5c6} - 3r8{r8c4=r8c7} - 5c6{r5c6=r4c6} - 1r8{r8c7=r8c9} - r2c9{n1=n5} - 5c7{r1c7=r7c7} - 5c2{r7c2=r1c2} - 6r1{r1c2=r1c5} - 6c6{r2c6=.}
Braid[13]: => r4c6<>2
2r4c6 - r4c5{n2=n6} - 2c8{r4c8=r7c8} - r4c8{n6=n3} - 2c5{r7c5=r3c5} - 4r3{r3c5=r3c1} - 4r4{r4c1=r4c9} - r5c7{n4=n1} - 1c8{r5c8=r9c8} - r9c2{n1=n7} - 7r3{r3c2=r3c8} - r1c8{n7=n8} - 8c5{r1c5=r8c5} - 1r8{r8c5=.}
Braid[13]: => r3c6<>9
9r3c6 - 9c4{r1c4=r9c4} - 4c4{r9c4=r1c4} - 4r3{r3c5=r3c1} - 2r3{r3c1=r3c5} - r4c5{n2=n6} - 2b5{r4c5=r6c4} - 6c6{r4c6=r2c6} - 8r6{r6c4=r6c2} - 8r2{r2c2=r2c1} - 2r2{r2c1=r2c3} - r9c3{n2=n6} - 6r6{r6c3=r6c9} - 6r8{r8c9=.}
Locked Candidates 1 (Pointing): 9 in b2 => r9c4<>9
Whip[9]: => r2c1<>9
9r2c1 - 9r3{r3c1=r3c9} - 9r4{r4c9=r4c2} - 9r7{r7c2=r7c6} - 3b8{r7c6=r8c4} - r5c4{n3=n8} - 8r6{r6c4=r6c2} - 8r2{r2c2=r2c6} - r3c6{n8=n2} - r9c6{n2=.}
Braid[9]: => r5c6<>8
8r5c6 - r3c6{n8=n2} - 8r6{r6c4=r6c2} - r9c6{n2=n9} - 8r2{r2c2=r2c1} - 2r2{r2c1=r2c3} - r9c3{n2=n6} - r8c3{n6=n5} - 5r5{r5c3=r5c1} - 6c1{r5c1=.}
Locked Candidates 1 (Pointing): 8 in b5 => r8c4<>8
Braid[9]: => r9c3<>6
6r9c3 - 6r8{r8c1=r8c9} - 8r8{r8c9=r8c5} - 1r8{r8c5=r8c7} - 1r5{r5c7=r5c8} - 3r8{r8c7=r8c4} - 6c8{r5c8=r4c8} - 2c8{r4c8=r7c8} - r7c6{n2=n9} - 9r9{r9c6=.}
Locked Candidates 1 (Pointing): 6 in b7 => r8c9<>6
Braid[10]: => r6c2<>3
3r6c2 - 3c3{r5c3=r1c3} - 8r6{r6c2=r6c4} - r5c4{n8=n3} - r8c4{n3=n2} - r9c4{n2=n4} - r7c5{n4=n1} - 1c2{r7c2=r9c2} - 1c8{r9c8=r5c8} - r5c7{n1=n4} - 4c3{r5c3=.}
Braid[5]: => r3c2<>8
8r3c2 - r6c2{n8=n6} - 6r1{r1c2=r1c5} - 6c9{r6c9=r9c9} - 8c5{r1c5=r8c5} - 8c9{r8c9=.}
Whip[7]: => r2c2<>8
8r2c2 - r6c2{n8=n6} - 6r1{r1c2=r1c5} - r2c6{n6=n2} - r3c6{n2=n8} - 8c5{r3c5=r8c5} - 8c9{r8c9=r9c9} - 6c9{r9c9=.}
Whip[5]: => r2c1<>7
7r2c1 - 8r2{r2c1=r2c6} - r3c6{n8=n2} - r9c6{n2=n9} - r9c3{n9=n2} - 2r2{r2c3=.}
Whip[5]: => r2c1<>6
6r2c1 - 8r2{r2c1=r2c6} - r3c6{n8=n2} - r9c6{n2=n9} - r9c3{n9=n2} - 2r2{r2c3=.}
Whip[5]: => r2c1<>5
5r2c1 - 8r2{r2c1=r2c6} - r3c6{n8=n2} - r9c6{n2=n9} - r9c3{n9=n2} - 2r2{r2c3=.}
Braid[8]: => r1c3<>9
9r1c3 - r9c3{n9=n2} - 9c4{r1c4=r2c4} - 9c7{r2c7=r6c7} - 2b6{r6c7=r4c8} - r4c5{n2=n6} - 6c6{r4c6=r2c6} - 2r2{r2c6=r2c1} - 8r2{r2c1=.}
g-Braid[10]: => r6c2<>6
6r6c2 - 6c1{r5c1=r8c1} - 8r6{r6c2=r6c4} - r5c4{n8=n3} - r8c4{n3=n2} - r8c3{n2=n5} - r5c3{n5=n4} - r1c3{n4=n3} - 4r4{r4c1=r4c9} - 9r4{r4c9=r4c12} - r6c3{n9=.}
Naked Single: r6c2=8
Hidden Single: 8 in r5 => r5c4=8
Braid[9]: => r9c8<>8
8r9c8 - 6r9{r9c8=r9c9} - 8c9{r8c9=r3c9} - r3c6{n8=n2} - r9c6{n2=n9} - r7c6{n9=n3} - 3c4{r8c4=r6c4} - r6c9{n3=n9} - 9c3{r6c3=r2c3} - 9r3{r3c1=.}
Locked Candidates 2 (Claiming): 8 in c8 => r3c9<>8
g-Whip[5]: => r4c8<>6
6r4c8 - 2c8{r4c8=r7c8} - 2c7{r7c7=r6c7} - 9c7{r6c7=r12c7} - r3c9{n9=n3} - 3c8{r1c8=.}
Whip[2]: => r6c5<>6
6r6c5 - 6r1{r1c5=r1c2} - 6r4{r4c2=.}
Braid[5]: => r7c7<>1
1r7c7 - 1r5{r5c7=r5c8} - 1r8{r8c7=r8c5} - 6c8{r5c8=r9c8} - r9c9{n6=n8} - 8r8{r8c9=.}
Braid[7]: => r1c2<>7
7r1c2 - 6r1{r1c2=r1c5} - r4c5{n6=n2} - r4c8{n2=n3} - 2r6{r6c4=r6c7} - 3c2{r4c2=r3c2} - r3c9{n3=n9} - 9c7{r1c7=.}
Braid[7]: => r1c2<>5
5r1c2 - 6r1{r1c2=r1c5} - r4c5{n6=n2} - r4c8{n2=n3} - 2r6{r6c4=r6c7} - 3c2{r4c2=r3c2} - r3c9{n3=n9} - 9c7{r1c7=.}
Braid[8]: => r5c6<>6
6r5c6 - r5c8{n6=n1} - 5c6{r5c6=r4c6} - 3c6{r4c6=r7c6} - 3r8{r8c4=r8c7} - 1c7{r8c7=r2c7} - r2c9{n1=n5} - 5c2{r2c2=r7c2} - 5r8{r8c1=.}
Locked Candidates 1 (Pointing): 6 in b5 => r4c2<>6
Locked Candidates 2 (Claiming): 6 in c2 => r2c3<>6
Braid[7]: => r4c9<>9
9r4c9 - 4c9{r4c9=r7c9} - 9r6{r6c7=r6c3} - r9c3{n9=n2} - r2c3{n2=n5} - r8c3{n5=n6} - r8c1{n6=n5} - 5c9{r8c9=.}
Locked Candidates 2 (Claiming): 9 in r4 => r6c3<>9
Whip[5]: => r7c6<>3
3r7c6 - 3c4{r8c4=r6c4} - r6c3{n3=n6} - 6c9{r6c9=r9c9} - 8r9{r9c9=r9c6} - 9c6{r9c6=.}
Hidden Single: 3 in b8 => r8c4=3
Whip[2]: => r4c5<>2
2r4c5 - r6c4{n2=n7} - r6c5{n7=.}
Hidden Single: 2 in r4 => r4c8=2
Naked Single: r4c5=6
Hidden Single: 6 in r1 => r1c2=6
Hidden Single: 6 in r2 => r2c6=6
Hidden Single: 8 in r2 => r2c1=8
Whip[3]: => r3c1<>9
9r3c1 - r3c9{n9=n3} - 3c2{r3c2=r4c2} - 9r4{r4c2=.}
Whip[6]: => r7c1<>9
9r7c1 - r9c3{n9=n2} - r9c4{n2=n4} - r9c7{n4=n7} - 7r7{r7c7=r7c2} - 7r2{r2c2=r2c4} - 2r2{r2c4=.}
Whip[6]: => r1c7<>9
9r1c7 - r3c9{n9=n3} - r4c9{n3=n4} - r7c9{n4=n5} - 5c7{r7c7=r2c7} - 5c2{r2c2=r4c2} - 3c2{r4c2=.}
Whip[7]: => r7c7<>7
7r7c7 - 7r9{r9c7=r9c2} - 7r2{r2c2=r2c4} - 9c4{r2c4=r1c4} - 4c4{r1c4=r9c4} - 4r7{r7c5=r7c9} - 4r4{r4c9=r4c1} - 9c1{r4c1=.}
g-Whip[6]: => r6c9<>9
9r6c9 - r3c9{n9=n3} - 3c8{r1c8=r7c8} - 7r7{r7c8=r7c12} - r9c2{n7=n1} - 1c8{r9c8=r5c8} - 6b6{r5c8=.}
Hidden Single: 9 in r6 => r6c7=9
Hidden Single: 9 in c9 => r3c9=9
Whip[6]: => r1c8<>7
7r1c8 - 7c7{r1c7=r9c7} - r9c2{n7=n1} - r9c8{n1=n6} - r9c9{n6=n8} - 8r8{r8c9=r8c5} - 8r1{r1c5=.}
Whip[7]: => r7c7<>5
5r7c7 - 5c9{r7c9=r2c9} - 5c2{r2c2=r4c2} - 9r4{r4c2=r4c1} - 4r4{r4c1=r4c9} - 4r7{r7c9=r7c5} - 4c4{r9c4=r1c4} - 9r1{r1c4=.}
Whip[5]: => r8c1<>5
5r8c1 - 5r7{r7c1=r7c9} - 4c9{r7c9=r4c9} - 3c9{r4c9=r6c9} - r6c3{n3=n6} - 6r8{r8c3=.}
g-Whip[6]: => r9c6<>9
9r9c6 - r9c3{n9=n2} - 2r8{r8c1=r8c7} - 5c7{r8c7=r12c7} - r2c9{n5=n1} - 1r8{r8c9=r8c5} - 8b8{r8c5=.}
Hidden Single: 9 in r9 => r9c3=9
Hidden Single: 9 in r7 => r7c6=9
Braid[5]: => r4c2<>3
3r4c2 - r4c9{n3=n4} - 3r6{r6c3=r6c9} - r7c9{n3=n5} - 5c2{r7c2=r2c2} - 9c2{r2c2=.}
Hidden Single: 3 in c2 => r3c2=3
Whip[4]: => r2c4<>2
2r2c4 - r3c6{n2=n8} - r3c8{n8=n7} - 7r2{r2c7=r2c2} - 9r2{r2c2=.}
Hidden Single: 2 in r2 => r2c3=2
Braid[5]: => r5c3<>6
6r5c3 - r6c3{n6=n3} - r8c3{n6=n5} - 5r7{r7c1=r7c9} - 3c9{r7c9=r4c9} - 4c9{r4c9=.}
Whip[3]: => r5c1<>5
5r5c1 - r5c6{n5=n3} - 3c3{r5c3=r6c3} - 6b4{r6c3=.}
Braid[5]: => r3c5<>8
8r3c5 - r3c6{n8=n2} - r3c8{n8=n7} - 7c7{r1c7=r9c7} - 2r9{r9c7=r9c4} - 4r9{r9c4=.}
Whip[3]: => r1c5<>7
7r1c5 - r6c5{n7=n2} - 2r3{r3c5=r3c6} - 8b2{r3c6=.}
Braid[5]: => r8c1<>6
6r8c1 - r5c1{n6=n4} - 2c1{r8c1=r7c1} - 4r3{r3c1=r3c5} - 2c5{r3c5=r6c5} - 7c5{r6c5=.}
Hidden Single: 6 in r8 => r8c3=6
Hidden Single: 6 in r6 => r6c9=6
Hidden Single: 6 in r5 => r5c1=6
Hidden Single: 3 in r6 => r6c3=3
Hidden Single: 6 in r9 => r9c8=6
Naked Single: r5c8=1
Naked Single: r8c1=2
Locked Candidates 1 (Pointing): 5 in b7 => r7c9<>5
Whip[3]: => r2c7<>7
7r2c7 - 1r2{r2c7=r2c9} - 1r9{r9c9=r9c2} - 7r9{r9c2=.}
Whip[2]: => r1c7<>5
5r1c7 - r2c7{n5=n1} - r2c9{n1=.}
Locked Candidates 2 (Claiming): 5 in r1 => r2c2<>5
Braid[3]: => r5c3<>5
5r5c3 - r4c2{n5=n9} - 5r1{r1c3=r1c1} - 9c1{r1c1=.}
Hidden Single: 5 in r5 => r5c6=5
Hidden Single: 3 in r5 => r5c7=3
Full House: r5c3=4
Full House: r1c3=5
Full House: r4c9=4
Hidden Single: 3 in r1 => r1c8=3
Hidden Single: 8 in r1 => r1c5=8
Hidden Single: 8 in r3 => r3c8=8
Full House: r7c8=7
Hidden Single: 3 in r4 => r4c6=3
Hidden Single: 3 in r7 => r7c9=3
Hidden Single: 8 in r8 => r8c9=8
Hidden Single: 5 in r8 => r8c7=5
Full House: r8c5=1
Hidden Single: 5 in r2 => r2c9=5
Full House: r9c9=1
Hidden Single: 1 in r2 => r2c7=1
Full House: r1c7=7
Hidden Single: 1 in r7 => r7c2=1
Hidden Single: 5 in r7 => r7c1=5
Full House: r9c2=7
Hidden Single: 7 in r2 => r2c4=7
Full House: r2c2=9
Full House: r4c2=5
Full House: r4c1=9
Hidden Single: 9 in r1 => r1c4=9
Full House: r1c1=4
Full House: r3c1=7
Hidden Single: 4 in r3 => r3c5=4
Full House: r3c6=2
Full House: r9c6=8
Hidden Single: 7 in r6 => r6c5=7
Full House: r6c4=2
Full House: r9c4=4
Full House: r9c7=2
Full House: r7c5=2
Full House: r7c7=4
132 Steps! Time elapsed: 199823.3 ms,Most difficult g-Braid[23]
yzfwsf
 
Posts: 905
Joined: 16 April 2019

Re: YZF_Sudoku

Postby denis_berthier » Thu Feb 08, 2024 4:42 pm

.
your computation times are very good.

g-Braid's search is about 53 times slower than Braid's search.


Only for this case. If you want a better estimate of the ratio, use the mean times for the cbg-000 collection.
denis_berthier
2010 Supporter
 
Posts: 4208
Joined: 19 June 2007
Location: Paris

Re: YZF_Sudoku

Postby yzfwsf » Fri Feb 09, 2024 2:55 pm

I tested cbg-000 collection and obtained the following results:

B-rating: A total of 21375 puzzles were solved in 157.12 seconds, each taking 7.35 milliseconds
gB-rating: A total of 21375 puzzles were solved in 1685.46 seconds, each taking 78.85 milliseconds

g-Braid's search is about 10.3 times slower than Braid's search.
yzfwsf
 
Posts: 905
Joined: 16 April 2019

Re: YZF_Sudoku

Postby yzfwsf » Sat Mar 16, 2024 12:03 pm

Release V629 on my google drive
This update adds new techniques such as XYZ-Ring, Blossom Loop, Braid, g-Braid and MultiFish. Among them, the Blossom Loop technique must be placed before Cell/Region FC, otherwise it will not be found. Braid shares related options with Whip, such as large memory mode and shortest first. When solving extremely difficult TE2 puzzles, the Braid engine may encounter insufficient buffer. If you want to test its exact Braid score, please check Use the old AIC algorithm so that the program will automatically enter the DFS search mode when the buffering is insufficient. This will avoid the dilemma of insufficient buffer.
yzfwsf
 
Posts: 905
Joined: 16 April 2019

Re: YZF_Sudoku

Postby StrmCkr » Mon Mar 18, 2024 7:51 pm

want to test this new stuff out, but the English translations are still missing :( so i have no idea what button does what?
Some do, some teach, the rest look it up.
stormdoku
User avatar
StrmCkr
 
Posts: 1430
Joined: 05 September 2006

Re: YZF_Sudoku

Postby jco » Mon Mar 18, 2024 9:36 pm

StrmCkr wrote:want to test this new stuff out, but the English translations are still missing :( so i have no idea what button does what?


I opened the YZF_Sudoku.ini file and at the end of it,
under [Language], I replaced "Setting=Custom.lang" by "Setting=default.lang"
Last edited by jco on Wed Mar 20, 2024 1:05 am, edited 1 time in total.
JCO
jco
 
Posts: 741
Joined: 09 June 2020

Re: YZF_Sudoku

Postby StrmCkr » Tue Mar 19, 2024 4:12 am

I'll try that, thanks.
Some do, some teach, the rest look it up.
stormdoku
User avatar
StrmCkr
 
Posts: 1430
Joined: 05 September 2006

Re: YZF_Sudoku

Postby ghfick » Tue Mar 19, 2024 2:54 pm

If YZF_Sudoku is not showing English, you can go to the menu bar. The third column is actually Options (in English). The last in that list is Language. Then the first choice is English. YZF_Sudoku should remember the change.
ghfick
 
Posts: 233
Joined: 06 April 2016
Location: Calgary, Alberta, Canada youtube.com/@gordonfick

Re: YZF_Sudoku

Postby StrmCkr » Thu Mar 21, 2024 10:31 pm

If YZF_Sudoku is not showing English, you can go to the menu bar. The third column is actually Options (in English). The last in that list is Language. Then the first choice is English. YZF_Sudoku should remember the change.
yup that fixed it for me thanks.

500000009020100070008000300040002000000050000000706010003000800060004020900000005
Code: Select all
+-------------------------+--------------------------+-------------------------+
| 5       17(3)     1467  | 23468   234678    378    | 12     46(8)     9      |
| 46(3)   2         46(9) | 1       -46(389)  (3589) | 46(5)  7         46(8)  |
| 1467    17(9)     8     | 24569   24679     579    | 3      46(5)     12     |
+-------------------------+--------------------------+-------------------------+
| 13678   4         15679 | 389     1389      2      | 5679   -6(3589)  3678   |
| 123678  -17(389)  12679 | 3489    5         1389   | 24679  -46(389)  234678 |
| 238     (3589)    259   | 7       3489      6      | 2459   1         2348   |
+-------------------------+--------------------------+-------------------------+
| 24      17(5)     3     | 2569    12679     1579   | 8      46(9)     1467   |
| 17(8)   6         17(5) | (3589)  -17(389)  4      | 17(9)  2         17(3)  |
| 9       17(8)     24    | 2368    123678    1378   | 1467   46(3)     5      |
+-------------------------+--------------------------+-------------------------+

missing "hidden SK-loop" :

aals [20,236] 44 Candidates
24 Truths = {3589R2 3589R8 3589C2 3589C8 3B19 5B37 8B37 9B19}
8 Links = {56n2 8n4 28n5 2n6 45n8}
9 Eliminations --> r45c8<>6, r2c5<>46, r5c2<>17, r8c5<>17, r5c8<>4,
Code: Select all
     
+---------------------------+--------------------------+---------------------------+
| 5        17(3)     1467   | 23468   2467-38   378    | 12      46(8)     9       |
| 46(3)    2         46(9)  | 1       -46(389)  (3589) | 46(5)   7         46(8)   |
| 1467     17(9)     8      | 24569   2467-9    579    | 3       46(5)     12      |
+---------------------------+--------------------------+---------------------------+
| 13678    4         15679  | (389)   1(389)    2      | 5679    -6(3589)  3678    |
| 1267-38  -17(389)  1267-9 | 4(389)  5         1(389) | 2467-9  -46(389)  2467-38 |
| 238      (3589)    259    | 7       4(389)    6      | 2459    1         2348    |
+---------------------------+--------------------------+---------------------------+
| 24       17(5)     3      | 2569    1267-9    1579   | 8       46(9)     1467    |
| 17(8)    6         17(5)  | (3589)  -17(389)  4      | 17(9)   2         17(3)   |
| 9        17(8)     24     | 2368    1267-38   1378   | 1467    46(3)     5       |
+---------------------------+--------------------------+---------------------------+


aals [20,236] 59 Candidates
27 Truths = {3589R2 3589R8 3589C2 3589C8 3B159 5B37 8B357 9B159}
15 Links = {389r5 389c5 56n2 48n4 28n5 2n6 45n8}
21 Eliminations --> r5c19<>3, r5c19<>8, r5c37<>9, r19c5<>3, r19c5<>8, r37c5<>9, r45c8<>6,
r2c5<>46, r5c2<>17, r8c5<>17, r5c8<>4,


afik hidden SK + naked Sk = the two components that make up: MSLS
Some do, some teach, the rest look it up.
stormdoku
User avatar
StrmCkr
 
Posts: 1430
Joined: 05 September 2006

Re: YZF_Sudoku

Postby yzfwsf » Mon Mar 25, 2024 3:12 am

StrmCkr wrote:missing "hidden SK-loop" :

aals [20,236] 44 Candidates
24 Truths = {3589R2 3589R8 3589C2 3589C8 3B19 5B37 8B37 9B19}
8 Links = {56n2 8n4 28n5 2n6 45n8}
9 Eliminations --> r45c8<>6, r2c5<>46, r5c2<>17, r8c5<>17, r5c8<>4,

I did not write this form of SK-Loop. This looks like Xsudo's explanation. Strictly speaking, this should not be considered an SK-Loop because it is not a zero-rank structure at all. My solver has implemented MultiFish and should be able to find this zero-rank structure with regions as Truth. I'm curious about the implementation details of xsudo. I guess it uses the DLX algorithm to search all solution sets of limited truth and then obtain their intersection. Therefore, when there are many truths, there will be too many solutions and their intersection cannot be obtained. The Hidden Sk you gave an example is not the simplest structure either. Xsudo can slim it down to 16truth. I feel like I've written quite a few variations of zero-rank structures, so I can only say sorry for now. I have uploaded 629v2 to Google Drive, fixed the crash bug under extreme testing conditions, and adopted some interface modification suggestions provided by Mr. Gordon Fick.
yzfwsf
 
Posts: 905
Joined: 16 April 2019

Re: YZF_Sudoku

Postby StrmCkr » Fri Apr 05, 2024 6:03 am

fair enough:
so I can only say sorry for now.

Code: Select all
+-------------------------+--------------------------+-------------------------+
| 5       17(3)     1467  | 23468   234678    378    | 12     46(8)     9      |
| 46(3)   2         46(9) | 1       -46(389)  (3589) | 46(5)  7         46(8)  |
| 1467    17(9)     8     | 24569   24679     579    | 3      46(5)     12     |
+-------------------------+--------------------------+-------------------------+
| 13678   4         15679 | 389     1389      2      | 5679   -6(3589)  3678   |
| 123678  -17(389)  12679 | 3489    5         1389   | 24679  -46(389)  234678 |
| 238     (3589)    259   | 7       3489      6      | 2459   1         2348   |
+-------------------------+--------------------------+-------------------------+
| 24      17(5)     3     | 2569    12679     1579   | 8      46(9)     1467   |
| 17(8)   6         17(5) | (3589)  -17(389)  4      | 17(9)  2         17(3)  |
| 9       17(8)     24    | 2368    123678    1378   | 1467   46(3)     5      |
+-------------------------+--------------------------+-------------------------+


i forgot to convert the truths to links~

aals [20,236] 44 Candidates,
16 Truths = {3589R2 3589R8 3589C2 3589C8}
16 Links = {56n2 8n4 28n5 2n6 45n8 3b19 5b37 8b37 9b19}
9 Eliminations --> r45c8<>6, r2c5<>46, r5c2<>17, r8c5<>17, r5c8<>4,

a rank zero structure: i built this one manually using AHS 3589 ( in the 4 sectors r28c28 ): in-which each ahs is quadruple linked {2 per col} and (2 per row) x4 : acts as a ring.
the complementary Hidden set sk-loop to the normal ALS Sk-loop, pretty much I'm the only one on here that's ever mentioned this or posted them {afaik, even Hidden sk-loop title is what i called these years back}

either ways something interesting if it ever peeks your attention.

this next item might be more up your ally:

intresting-logic-what-would-you-do-here-t42707.html
Some do, some teach, the rest look it up.
stormdoku
User avatar
StrmCkr
 
Posts: 1430
Joined: 05 September 2006

Re: YZF_Sudoku

Postby yzfwsf » Sat Apr 06, 2024 11:20 pm

StrmCkr wrote: 16 Truths = {3589R2 3589R8 3589C2 3589C8}
16 Links = {56n2 8n4 28n5 2n6 45n8 3b19 5b37 8b37 9b19}
9 Eliminations --> r45c8<>6, r2c5<>46, r5c2<>17, r8c5<>17, r5c8<>4,

My solver outputs 4 types of 16 truth Multi-Fish, I'm not sure if it meets your expectations.
Code: Select all
Multi-Fish: 16 Truths:1467r1,1467r3,1467r7,1467r9,16 Links:17c2,46c8,467b2,1b3,4b7,167b8+r1c3,r3c1,r7c9,r9c7 => 9 eliminations
r5c2<>17, r4c8<>6, r5c8<>46, r2c5<>46, r8c5<>17

Code: Select all
Multi-Fish: 16 Truths:1467c1,1467c3,1467c7,1467c9,16 Links:46r2,17r8,1b3,167b4,467b6,4b7+r1c3,r3c1,r7c9,r9c7 => 9 eliminations
r2c5<>46, r8c5<>17, r5c2<>17, r4c8<>6, r5c8<>46

Code: Select all
Multi-Fish: 16 Truths:3589r2,3589r4,3589r6,3589r8,16 Links:38c1,59c3,389c5,59c7,38c9+r4c48,r2c6,r6c2,r8c4 => 13 eliminations
r4c8<>6, r5c1<>38, r5c3<>9, r1c5<>38, r3c5<>9, r7c5<>9, r9c5<>38, r5c7<>9, r5c9<>38

Code: Select all
Multi-Fish: 16 Truths:3589c2,3589c4,3589c6,3589c8,16 Links:38r1,59r3,389r5,59r7,38r9+r4c48,r2c6,r6c2,r8c4 => 13 eliminations
r4c8<>6, r1c5<>38, r3c5<>9, r5c1<>38, r5c3<>9, r5c7<>9, r5c9<>38, r7c5<>9, r9c5<>38
yzfwsf
 
Posts: 905
Joined: 16 April 2019

Re: YZF_Sudoku

Postby yzfwsf » Sun May 05, 2024 3:07 am

Release 629V3
1 Fixed a crash issue when searching all possible steps
After pasting the following puzzle, if you use the search all possible steps function and then switch the tab control on the right, the program will crash
Code: Select all
.618..9.38..6..2419.4....8.7.5....9.....5.....9....5.7.8....4.9142..6..83.9..816.

2 Fixed a crash issue when using the pattern game search function in some cases.
Paste the following puzzle and then use the pattern game search function, the program will crash.
Code: Select all
1....5..9.8.....4...23..7....5.....2....6....3.....9....7..83...9.....6.8..2....1

3 Fixed the bug that AR cannot be searched after pasting a partially solved puzzle.
After pasting the following partially solved puzzle, the program cannot search for AR
Code: Select all
:0000:x:9+1+5.4+8.6+3+47+65.+3+9.8+2+83+6.94.+5.6+4.+8+53+9...89+3..4.3..1.4..7+54.8..1+3.+8.7+3.1..+46+3+1+4+5+2..9:657 259 267 675::
yzfwsf
 
Posts: 905
Joined: 16 April 2019

PreviousNext

Return to Software