.....1..2....3..4...15..6....71..8...2..9...71....4.5...86......4...7.9.3...5....
Whip[3]: => r9c9<>4
4r9c9 - 4r4{r4c9=r4c1} - 4r3{r3c1=r3c5} - 4r7{r7c5=.}
Braid[7]: => r9c2<>6
6r9c2 - 1c2{r9c2=r7c2} - 1c5{r7c5=r8c5} - 7b7{r7c2=r7c1} - 9r7{r7c1=r7c6} - 3b8{r7c6=r8c4} - 8r8{r8c4=r8c9} - 6r8{r8c9=.}
Braid[7]: => r2c9<>8
8r2c9 - 1r2{r2c9=r2c7} - 1r5{r5c7=r5c8} - 5b3{r2c7=r1c7} - 9c7{r1c7=r6c7} - 2b6{r6c7=r4c8} - 6c8{r4c8=r9c8} - 8c8{r9c8=.}
Braid[9]: => r6c2<>9
9r6c2 - 8b4{r6c2=r5c1} - 9r4{r4c1=r4c9} - r5c4{n8=n3} - 3c6{r4c6=r7c6} - 9r7{r7c6=r7c1} - 9r3{r3c1=r3c6} - 9r9{r9c6=r9c4} - 4r9{r9c4=r9c7} - 4c9{r7c9=.}
Braid[9]: => r2c6<>9
9r2c6 - 6b2{r2c6=r1c5} - 9c4{r1c4=r9c4} - r4c5{n6=n2} - 2r6{r6c4=r6c7} - 9c7{r6c7=r1c7} - 9c3{r1c3=r6c3} - 9r4{r4c1=r4c9} - 4c9{r4c9=r7c9} - 4r9{r9c7=.}
Braid[13]: => r4c1<>6
6r4c1 - r4c5{n6=n2} - 4r4{r4c1=r4c9} - r4c8{n2=n3} - 2r6{r6c4=r6c7} - r5c7{n3=n1} - 9b6{r6c7=r6c9} - 1r2{r2c7=r2c9} - 1r8{r8c9=r8c5} - r7c5{n1=n4} - 4r3{r3c5=r3c1} - 2r3{r3c1=r3c6} - 9r3{r3c6=r3c2} - 9r4{r4c2=.}
Braid[13]: => r1c4<>8
8r1c4 - r5c4{n8=n3} - 4c4{r1c4=r9c4} - r8c4{n3=n2} - 3c6{r4c6=r7c6} - r7c5{n2=n1} - 9b8{r7c6=r9c6} - 1c2{r7c2=r9c2} - 1c8{r9c8=r5c8} - r5c7{n1=n4} - 4c3{r5c3=r1c3} - 3c3{r1c3=r6c3} - 9c3{r6c3=r2c3} - 9c4{r2c4=.}
Braid[13]: => r9c2<>9
9r9c2 - 1c2{r9c2=r7c2} - 9r7{r7c1=r7c6} - 1c5{r7c5=r8c5} - 3b8{r7c6=r8c4} - r5c4{n3=n8} - 8r6{r6c4=r6c2} - 8r8{r8c4=r8c9} - 8r9{r9c8=r9c6} - r3c6{n8=n2} - 8r2{r2c6=r2c1} - 2r2{r2c1=r2c3} - r9c3{n2=n6} - 6r8{r8c1=.}
Braid[13]: => r2c9<>9
9r2c9 - 1r2{r2c9=r2c7} - 9c7{r1c7=r6c7} - 1r5{r5c7=r5c8} - 2b6{r6c7=r4c8} - r4c5{n2=n6} - 6c6{r4c6=r2c6} - 6c8{r4c8=r9c8} - 6c9{r8c9=r6c9} - r6c3{n6=n3} - 6c2{r6c2=r1c2} - 3c2{r1c2=r3c2} - r3c9{n3=n8} - 8c8{r1c8=.}
Braid[14]: => r9c7<>1
1r9c7 - 1r5{r5c7=r5c8} - 1r8{r8c7=r8c5} - 4r9{r9c7=r9c4} - r7c5{n4=n2} - r4c5{n2=n6} - 6c8{r4c8=r9c8} - r9c9{n6=n8} - 2b9{r9c8=r8c7} - 8r8{r8c9=r8c4} - r5c4{n8=n3} - 3r8{r8c4=r8c9} - r3c9{n3=n9} - r4c9{n9=n4} - r5c7{n4=.}
Braid[14]: => r7c9<>1
1r7c9 - 1r8{r8c7=r8c5} - 1c8{r7c8=r5c8} - 4c9{r7c9=r4c9} - r5c7{n4=n3} - r5c4{n3=n8} - 8r8{r8c4=r8c9} - r9c9{n8=n6} - 3b9{r8c9=r7c8} - 6c8{r9c8=r4c8} - r4c5{n6=n2} - 2c8{r4c8=r9c8} - r7c5{n2=n4} - r9c3{n2=n9} - r9c4{n9=.}
Braid[16]: => r8c5<>2
2r8c5 - r4c5{n2=n6} - 1c5{r8c5=r7c5} - 1c2{r7c2=r9c2} - 1c8{r9c8=r5c8} - 6b6{r5c8=r6c9} - r9c9{n6=n8} - 8r8{r8c9=r8c4} - 3b8{r8c4=r7c6} - r5c4{n8=n3} - r5c7{n3=n4} - 4c3{r5c3=r1c3} - 3c3{r1c3=r6c3} - 9r6{r6c3=r6c7} - 2b6{r6c7=r4c8} - r7c8{n2=n7} - 7r9{r9c7=.}
Braid[16]: => r5c8<>3
3r5c8 - r5c4{n3=n8} - 1r5{r5c8=r5c7} - 1r2{r2c7=r2c9} - 1r8{r8c9=r8c5} - 8b8{r8c5=r9c6} - r9c9{n8=n6} - 6c8{r9c8=r4c8} - 2b6{r4c8=r6c7} - r4c5{n6=n2} - r7c5{n2=n4} - 4r3{r3c5=r3c1} - 2r3{r3c1=r3c6} - 9c6{r3c6=r7c6} - 3b8{r7c6=r8c4} - r8c7{n3=n5} - 5c9{r7c9=.}
Braid[30]: => r6c2<>3
3r6c2 - 3c3{r5c3=r1c3} - 8b4{r6c2=r5c1} - 4c3{r1c3=r5c3} - r5c4{n8=n3} - 4r4{r4c1=r4c9} - 3c6{r4c6=r7c6} - r5c7{n3=n1} - r5c8{n1=n6} - 1r2{r2c7=r2c9} - r6c9{n6=n9} - 1r8{r8c9=r8c5} - r6c7{n9=n2} - r7c9{n3=n5} - r6c3{n9=n6} - 6b7{r8c3=r8c1} - 5r8{r8c1=r8c3} - 2r8{r8c3=r8c4} - r7c5{n2=n4} - r7c7{n4=n7} - 7r9{r9c7=r9c2} - 1r9{r9c2=r9c8} - 2r9{r9c8=r9c3} - r2c3{n2=n9} - r3c2{n9=n8} - 8c8{r3c8=r1c8} - 8c5{r1c5=r6c5} - r6c4{n8=n7} - 7r2{r2c4=r2c1} - 2c1{r2c1=r3c1} - 4r3{r3c1=.}
Braid[29]: => r2c6<>2
2r2c6 - 2r3{r3c5=r3c1} - 6b2{r2c6=r1c5} - 4r3{r3c1=r3c5} - r4c5{n6=n2} - 4c4{r1c4=r9c4} - 2r6{r6c4=r6c7} - r7c5{n2=n1} - r8c5{n1=n8} - 1c2{r7c2=r9c2} - r9c6{n8=n9} - 1c8{r9c8=r5c8} - r9c7{n2=n7} - r7c6{n9=n3} - r3c6{n9=n8} - 8b3{r3c8=r1c8} - 7c8{r1c8=r3c8} - 3c8{r3c8=r4c8} - r5c7{n3=n4} - r7c7{n4=n5} - 5c9{r7c9=r2c9} - 1r2{r2c9=r2c7} - 9c7{r2c7=r1c7} - 9r3{r3c9=r3c2} - r2c3{n9=n6} - r7c2{n9=n7} - r2c2{n7=n8} - r6c2{n8=n6} - r6c9{n6=n9} - 9c3{r6c3=.}
Braid[25]: => r2c2<>8
8r2c2 - r2c6{n8=n6} - r6c2{n8=n6} - 8c1{r1c1=r5c1} - r5c4{n8=n3} - 6r5{r5c1=r5c8} - 3c6{r4c6=r7c6} - 1r5{r5c8=r5c7} - r5c6{n3=n5} - 4b6{r5c7=r4c9} - r4c6{n5=n2} - 2r6{r6c4=r6c7} - r4c8{n2=n3} - r7c9{n4=n5} - r8c7{n5=n3} - 3c9{r8c9=r3c9} - 3c2{r3c2=r1c2} - 5c2{r1c2=r4c2} - r4c1{n5=n9} - 9r7{r7c1=r7c2} - r3c2{n9=n7} - 7c1{r1c1=r7c1} - r7c7{n7=n4} - 4r9{r9c7=r9c4} - 9r9{r9c4=r9c6} - 9r3{r3c6=.}
Braid[16]: => r6c4<>8
8r6c4 - r5c4{n8=n3} - r6c2{n8=n6} - 8r5{r5c4=r5c1} - r8c4{n3=n2} - 8r2{r2c1=r2c6} - 8c5{r1c5=r8c5} - 1c5{r8c5=r7c5} - r9c6{n8=n9} - 1c2{r7c2=r9c2} - 1c8{r9c8=r5c8} - r5c7{n1=n4} - r5c3{n4=n5} - r8c3{n5=n6} - r9c3{n6=n2} - 2r2{r2c3=r2c1} - 6r2{r2c1=.}
Braid[17]: => r9c4<>8
8r9c4 - r5c4{n8=n3} - 4b8{r9c4=r7c5} - r8c4{n3=n2} - 4c9{r7c9=r4c9} - 4r3{r3c5=r3c1} - r9c6{n2=n9} - r5c7{n4=n1} - 1r2{r2c7=r2c9} - r9c9{n1=n6} - r9c3{n6=n2} - 2r2{r2c3=r2c1} - 8r2{r2c1=r2c6} - 8c5{r1c5=r6c5} - 2r6{r6c5=r6c7} - 9b6{r6c7=r6c9} - 9r3{r3c9=r3c2} - 9c3{r1c3=.}
Braid[18]: => r4c9<>6
6r4c9 - r4c5{n6=n2} - 4r4{r4c9=r4c1} - r4c8{n2=n3} - 4r3{r3c1=r3c5} - 9r4{r4c1=r4c2} - r6c9{n3=n9} - r7c5{n4=n1} - r8c5{n1=n8} - 1c2{r7c2=r9c2} - 8r6{r6c5=r6c2} - r9c9{n1=n8} - r3c9{n8=n3} - r3c2{n3=n7} - r3c8{n7=n8} - 7c1{r1c1=r7c1} - 9r7{r7c1=r7c6} - r3c6{n9=n2} - r9c6{n2=.}
Braid[22]: => r2c4<>2
2r2c4 - 2r3{r3c5=r3c1} - 4r3{r3c1=r3c5} - 4c4{r1c4=r9c4} - 9c4{r9c4=r1c4} - 7c4{r1c4=r6c4} - 7c5{r6c5=r1c5} - 6b2{r1c5=r2c6} - 8r2{r2c6=r2c1} - 8r1{r1c1=r1c8} - 8c2{r1c2=r6c2} - 7c1{r2c1=r7c1} - 8c5{r6c5=r8c5} - r9c2{n7=n1} - 9c1{r7c1=r4c1} - 1c5{r8c5=r7c5} - 4r4{r4c1=r4c9} - 1c8{r7c8=r5c8} - r5c7{n1=n3} - 3r6{r6c7=r6c3} - 3r1{r1c3=r1c2} - 6c2{r1c2=r4c2} - 6r5{r5c1=.}
Locked Candidates 2 (Claiming): 2 in r2 => r3c1<>2
Braid[7]: => r9c8<>2
2r9c8 - 2c7{r7c7=r6c7} - 2c4{r6c4=r8c4} - 2r7{r7c5=r7c1} - 3b8{r8c4=r7c6} - 9r7{r7c6=r7c2} - 1c2{r7c2=r9c2} - 7b7{r9c2=.}
Braid[13]: => r7c6<>2
2r7c6 - 2r3{r3c6=r3c5} - 3b8{r7c6=r8c4} - r4c5{n2=n6} - r5c4{n3=n8} - 6c6{r4c6=r2c6} - 8r6{r6c5=r6c2} - 8r2{r2c6=r2c1} - 6c2{r6c2=r1c2} - 2c1{r2c1=r8c1} - 6c1{r8c1=r5c1} - 6c8{r5c8=r9c8} - r9c3{n6=n9} - 9r7{r7c1=.}
Braid[13]: => r2c1<>6
6r2c1 - r2c6{n6=n8} - 2r2{r2c1=r2c3} - 6r1{r1c1=r1c5} - r4c5{n6=n2} - 2r3{r3c5=r3c6} - 2r6{r6c4=r6c7} - r9c6{n2=n9} - 2r9{r9c7=r9c4} - 4r9{r9c4=r9c7} - 4c9{r7c9=r4c9} - 9b6{r4c9=r6c9} - 9c3{r6c3=r1c3} - 9r3{r3c1=.}
Braid[14]: => r1c3<>6
6r1c3 - 4c3{r1c3=r5c3} - 6r2{r2c2=r2c6} - 6b7{r8c3=r8c1} - 3c3{r5c3=r6c3} - 6r5{r5c1=r5c8} - r6c9{n6=n9} - r6c7{n9=n2} - r6c4{n2=n7} - 2c8{r4c8=r7c8} - 1c8{r7c8=r9c8} - r9c2{n1=n7} - 7r7{r7c1=r7c7} - 7r2{r2c7=r2c1} - 2c1{r2c1=.}
Braid[14]: => r1c2<>8
8r1c2 - 8r6{r6c2=r6c5} - r5c4{n8=n3} - r8c5{n8=n1} - 7r6{r6c5=r6c4} - 2r6{r6c4=r6c7} - 2c8{r4c8=r7c8} - r7c5{n2=n4} - 4c9{r7c9=r4c9} - 9b6{r4c9=r6c9} - 3b6{r6c9=r4c8} - 3c2{r4c2=r3c2} - r1c8{n3=n7} - r3c9{n3=n8} - r3c8{n8=.}
Braid[17]: => r3c6<>8
8r3c6 - r2c6{n8=n6} - 2r3{r3c6=r3c5} - 8c2{r3c2=r6c2} - r4c5{n2=n6} - 4r3{r3c5=r3c1} - 8c5{r6c5=r8c5} - 4r4{r4c1=r4c9} - 1c5{r8c5=r7c5} - 1c2{r7c2=r9c2} - 6c2{r4c2=r1c2} - 1c8{r9c8=r5c8} - r5c7{n1=n3} - r4c8{n3=n2} - 2r6{r6c7=r6c4} - 3r6{r6c4=r6c3} - 3r1{r1c3=r1c8} - 8b3{r1c8=.}
Braid[8]: => r9c6<>2
2r9c6 - r3c6{n2=n9} - 2c4{r8c4=r6c4} - 9c4{r1c4=r9c4} - 7r6{r6c4=r6c5} - r9c3{n9=n6} - 6r8{r8c1=r8c9} - 6r6{r6c9=r6c2} - 8r6{r6c2=.}
Whip[7]: => r7c2<>5
5r7c2 - 1c2{r7c2=r9c2} - 7b7{r9c2=r7c1} - 9r7{r7c1=r7c6} - r9c6{n9=n8} - 8r8{r8c4=r8c9} - 1c9{r8c9=r2c9} - 5c9{r2c9=.}
Braid[13]: => r9c4<>9
9r9c4 - r9c6{n9=n8} - 4r9{r9c4=r9c7} - 9c6{r7c6=r3c6} - 8r8{r8c4=r8c9} - 2r9{r9c7=r9c3} - 2r2{r2c3=r2c1} - r3c9{n8=n3} - 8r2{r2c1=r2c4} - 8r5{r5c4=r5c1} - 8r1{r1c1=r1c8} - r3c8{n8=n7} - 7r2{r2c7=r2c2} - 7r9{r9c2=.}
Locked Candidates 2 (Claiming): 9 in c4 => r3c6<>9
Naked Single: r3c6=2
Braid[7]: => r2c1<>9
9r2c1 - 9r3{r3c1=r3c9} - 9r4{r4c9=r4c2} - 9r7{r7c2=r7c6} - r9c6{n9=n8} - 3b8{r7c6=r8c4} - r5c4{n3=n8} - 8r2{r2c4=.}
Whip[8]: => r1c2<>9
9r1c2 - 9r3{r3c1=r3c9} - 9c7{r2c7=r6c7} - 2b6{r6c7=r4c8} - r4c5{n2=n6} - 6r1{r1c5=r1c1} - 6c2{r2c2=r6c2} - r6c3{n6=n3} - r6c9{n3=.}
Braid[9]: => r3c2<>8
8r3c2 - 8r6{r6c2=r6c5} - r8c5{n8=n1} - 7r6{r6c5=r6c4} - 2r6{r6c4=r6c7} - 2r4{r4c8=r4c5} - r7c5{n2=n4} - 4r3{r3c5=r3c1} - 9r3{r3c1=r3c9} - 9c7{r1c7=.}
Hidden Single: 8 in c2 => r6c2=8
Braid[9]: => r1c3<>9
9r1c3 - 4c3{r1c3=r5c3} - 9r3{r3c1=r3c9} - 3c3{r5c3=r6c3} - r6c9{n3=n6} - r5c8{n6=n1} - r5c7{n1=n3} - 3r4{r4c8=r4c6} - r7c6{n3=n9} - 9r9{r9c6=.}
Braid[9]: => r2c1<>5
5r2c1 - 2r2{r2c1=r2c3} - 5r1{r1c1=r1c7} - 5r7{r7c7=r7c9} - 4c9{r7c9=r4c9} - r4c1{n4=n9} - 9c3{r6c3=r9c3} - r9c6{n9=n8} - 8r2{r2c6=r2c4} - 8r5{r5c4=.}
Whip[10]: => r8c9<>6
6r8c9 - 6r9{r9c8=r9c3} - 6r6{r6c3=r6c5} - r4c5{n6=n2} - 2r6{r6c4=r6c7} - 2r9{r9c7=r9c4} - 4r9{r9c4=r9c7} - 4c9{r7c9=r4c9} - 9b6{r4c9=r6c9} - 9c3{r6c3=r2c3} - 9r3{r3c1=.}
Locked Candidates 2 (Claiming): 6 in r8 => r9c3<>6
Whip[5]: => r8c3<>2
2r8c3 - r9c3{n2=n9} - r9c6{n9=n8} - 8r5{r5c6=r5c4} - 8r2{r2c4=r2c1} - 2r2{r2c1=.}
Whip[5]: => r8c4<>8
8r8c4 - r9c6{n8=n9} - r9c3{n9=n2} - 2r2{r2c3=r2c1} - 8r2{r2c1=r2c6} - 8r5{r5c6=.}
Whip[5]: => r8c9<>5
5r8c9 - r8c3{n5=n6} - r8c1{n6=n2} - r9c3{n2=n9} - r9c6{n9=n8} - 8r8{r8c5=.}
Braid[5]: => r2c3<>5
5r2c3 - 2c3{r2c3=r9c3} - 5c9{r2c9=r7c9} - 9c3{r9c3=r6c3} - 4c9{r7c9=r4c9} - 9r4{r4c9=.}
Whip[5]: => r2c1<>7
7r2c1 - 2r2{r2c1=r2c3} - r9c3{n2=n9} - r9c6{n9=n8} - 8r2{r2c6=r2c4} - 8r5{r5c4=.}
Whip[8]: => r2c2<>6
6r2c2 - r2c6{n6=n8} - r2c1{n8=n2} - r2c3{n2=n9} - 9r3{r3c1=r3c9} - 9r6{r6c9=r6c7} - 2b6{r6c7=r4c8} - r4c5{n2=n6} - 6r1{r1c5=.}
Whip[2]: => r4c6<>6
6r4c6 - 6r2{r2c6=r2c3} - 6c2{r1c2=.}
Braid[6]: => r4c9<>3
3r4c9 - 4r4{r4c9=r4c1} - 4c9{r4c9=r7c9} - 9r4{r4c1=r4c2} - 5c9{r7c9=r2c9} - 5c2{r2c2=r1c2} - 6c2{r1c2=.}
Braid[7]: => r1c2<>7
7r1c2 - 6c2{r1c2=r4c2} - r4c5{n6=n2} - 3c2{r4c2=r3c2} - 5c2{r4c2=r2c2} - r4c8{n2=n3} - 3r1{r1c8=r1c7} - 5r1{r1c7=.}
Braid[9]: => r7c7<>7
7r7c7 - 7r9{r9c7=r9c2} - 7r2{r2c2=r2c4} - 9c4{r2c4=r1c4} - 4c4{r1c4=r9c4} - r9c7{n4=n2} - 4r7{r7c5=r7c9} - r4c9{n4=n9} - 9r6{r6c7=r6c3} - r9c3{n9=.}
Braid[8]: => r1c1<>6
6r1c1 - 6r2{r2c3=r2c6} - 6c2{r1c2=r4c2} - r4c5{n6=n2} - 6r5{r5c3=r5c8} - 2c8{r4c8=r7c8} - 1c8{r7c8=r9c8} - r9c2{n1=n7} - 7r7{r7c1=.}
Braid[7]: => r5c3<>5
5r5c3 - r8c3{n5=n6} - 4c3{r5c3=r1c3} - 6c1{r8c1=r5c1} - 3c3{r1c3=r6c3} - r4c2{n3=n9} - r4c9{n9=n4} - r4c1{n4=.}
Braid[8]: => r1c2<>3
3r1c2 - 6c2{r1c2=r4c2} - 5c2{r4c2=r2c2} - r1c3{n5=n4} - 5c9{r2c9=r7c9} - r5c3{n4=n3} - 4c9{r7c9=r4c9} - 9r4{r4c9=r4c1} - r6c3{n9=.}
Braid[6]: => r4c8<>3
3r4c8 - 2b6{r4c8=r6c7} - 3c2{r4c2=r3c2} - 3r1{r1c3=r1c7} - 9c7{r1c7=r2c7} - 1r2{r2c7=r2c9} - 5b3{r2c9=.}
Whip[2]: => r4c2<>6
6r4c2 - r4c5{n6=n2} - r4c8{n2=.}
Hidden Single: 6 in c2 => r1c2=6
Hidden Single: 6 in r2 => r2c6=6
Whip[2]: => r6c3<>9
9r6c3 - r2c3{n9=n2} - r9c3{n2=.}
Locked Candidates 1 (Pointing): 9 in b4 => r4c9<>9
Naked Single: r4c9=4
Whip[3]: => r7c1<>9
9r7c1 - r4c1{n9=n5} - r4c6{n5=n3} - r7c6{n3=.}
Braid[3]: => r6c4<>3
3r6c4 - r4c6{n3=n5} - r5c4{n3=n8} - r5c6{n8=.}
Braid[4]: => r9c8<>8
8r9c8 - r9c6{n8=n9} - 8c9{r8c9=r3c9} - 9c3{r9c3=r2c3} - 9r3{r3c1=.}
Locked Candidates 2 (Claiming): 8 in c8 => r3c9<>8
Whip[3]: => r3c1<>9
9r3c1 - r3c9{n9=n3} - 3c2{r3c2=r4c2} - 9r4{r4c2=.}
Braid[4]: => r8c9<>3
3r8c9 - r3c9{n3=n9} - 3c4{r8c4=r5c4} - 3b6{r5c7=r6c7} - 9r6{r6c7=.}
Whip[2]: => r8c7<>1
1r8c7 - r8c5{n1=n8} - r8c9{n8=.}
Braid[4]: => r6c7<>2
2r6c7 - 2c8{r4c8=r7c8} - 9r6{r6c7=r6c9} - r3c9{n9=n3} - 3c8{r1c8=.}
Hidden Single: 2 in b6 => r4c8=2
Hidden Single: 6 in r4 => r4c5=6
Whip[4]: => r7c7<>1
1r7c7 - r8c9{n1=n8} - r9c9{n8=n6} - 6c8{r9c8=r5c8} - 1r5{r5c8=.}
Whip[4]: => r1c7<>9
9r1c7 - r3c9{n9=n3} - 3c2{r3c2=r4c2} - 5c2{r4c2=r2c2} - 5r1{r1c1=.}
Whip[5]: => r9c3<>2
2r9c3 - 9r9{r9c3=r9c6} - 8b8{r9c6=r8c5} - 1c5{r8c5=r7c5} - 2r7{r7c5=r7c7} - 4r7{r7c7=.}
Hidden Single: 2 in c3 => r2c3=2
Hidden Single: 9 in c3 => r9c3=9
Hidden Single: 9 in r7 => r7c6=9
Hidden Single: 3 in b8 => r8c4=3
Naked Single: r2c1=8
Hidden Single: 8 in c4 => r5c4=8
Hidden Single: 8 in c6 => r9c6=8
Hidden Single: 8 in r8 => r8c9=8
Hidden Single: 1 in r8 => r8c5=1
Whip[2]: => r2c2<>7
7r2c2 - r7c2{n7=n1} - r9c2{n1=.}
Whip[2]: => r3c2<>7
7r3c2 - r7c2{n7=n1} - r9c2{n1=.}
Locked Candidates 1 (Pointing): 7 in b1 => r7c1<>7
Whip[2]: => r3c8<>3
3r3c8 - r3c2{n3=n9} - r3c9{n9=.}
Whip[2]: => r7c8<>3
3r7c8 - 1r7{r7c8=r7c2} - 7r7{r7c2=.}
Hidden Single: 3 in c8 => r1c8=3
Hidden Single: 8 in r1 => r1c5=8
Hidden Single: 3 in r3 => r3c2=3
Hidden Single: 8 in r3 => r3c8=8
Hidden Single: 9 in r3 => r3c9=9
Hidden Single: 3 in r4 => r4c6=3
Full House: r5c6=5
Hidden Single: 9 in r6 => r6c7=9
Locked Candidates 1 (Pointing): 7 in b3 => r9c7<>7
Braid[3]: => r3c5<>7
7r3c5 - r2c4{n7=n9} - 7c1{r3c1=r1c1} - 9r1{r1c1=.}
Hidden Single: 7 in r3 => r3c1=7
Full House: r3c5=4
Hidden Single: 4 in r7 => r7c7=4
Hidden Single: 3 in r7 => r7c9=3
Hidden Single: 3 in r6 => r6c3=3
Hidden Single: 3 in r5 => r5c7=3
Hidden Single: 1 in r5 => r5c8=1
Full House: r6c9=6
Hidden Single: 1 in r7 => r7c2=1
Hidden Single: 5 in r7 => r7c1=5
Hidden Single: 5 in r4 => r4c2=5
Full House: r4c1=9
Hidden Single: 9 in r1 => r1c4=9
Full House: r2c4=7
Hidden Single: 7 in r1 => r1c7=7
Hidden Single: 5 in r1 => r1c3=5
Full House: r1c1=4
Full House: r2c2=9
Full House: r9c2=7
Hidden Single: 4 in r5 => r5c3=4
Full House: r5c1=6
Full House: r8c1=2
Full House: r8c3=6
Full House: r8c7=5
Hidden Single: 5 in r2 => r2c9=5
Full House: r2c7=1
Full House: r9c7=2
Full House: r9c9=1
Hidden Single: 7 in r6 => r6c5=7
Full House: r6c4=2
Full House: r9c4=4
Full House: r9c8=6
Full House: r7c5=2
Full House: r7c8=7
131 Steps!Time elapsed: 3793.8 ms,Most difficult Braid[30]
Whip[3]: => r9c9<>4
4r9c9 - 4r4{r4c9=r4c1} - 4r3{r3c1=r3c5} - 4r7{r7c5=.}
Braid[7]: => r9c2<>6
6r9c2 - 1c2{r9c2=r7c2} - 1c5{r7c5=r8c5} - 7b7{r7c2=r7c1} - 9r7{r7c1=r7c6} - 3b8{r7c6=r8c4} - 8r8{r8c4=r8c9} - 6r8{r8c9=.}
Braid[7]: => r2c9<>8
8r2c9 - 1r2{r2c9=r2c7} - 1r5{r5c7=r5c8} - 5b3{r2c7=r1c7} - 9c7{r1c7=r6c7} - 2b6{r6c7=r4c8} - 6c8{r4c8=r9c8} - 8c8{r9c8=.}
Braid[9]: => r6c2<>9
9r6c2 - 8b4{r6c2=r5c1} - 9r4{r4c1=r4c9} - r5c4{n8=n3} - 3c6{r4c6=r7c6} - 9r7{r7c6=r7c1} - 9r3{r3c1=r3c6} - 9r9{r9c6=r9c4} - 4r9{r9c4=r9c7} - 4c9{r7c9=.}
Braid[9]: => r2c6<>9
9r2c6 - 6b2{r2c6=r1c5} - 9c4{r1c4=r9c4} - r4c5{n6=n2} - 2r6{r6c4=r6c7} - 9c7{r6c7=r1c7} - 9c3{r1c3=r6c3} - 9r4{r4c1=r4c9} - 4c9{r4c9=r7c9} - 4r9{r9c7=.}
g-Braid[12]: => r4c1<>6
6r4c1 - r4c5{n6=n2} - 4r4{r4c1=r4c9} - 2r6{r6c4=r6c7} - 9r4{r4c9=r4c2} - 9r6{r6c3=r6c9} - 6b6{r6c9=r5c8} - 1c8{r5c8=r79c8} - 1r8{r8c7=r8c5} - r7c5{n1=n4} - 4r3{r3c5=r3c1} - 2r3{r3c1=r3c6} - 9r3{r3c6=.}
g-Braid[12]: => r1c4<>8
8r1c4 - r5c4{n8=n3} - 4c4{r1c4=r9c4} - 3c6{r4c6=r7c6} - 9c4{r9c4=r2c4} - 9c6{r3c6=r9c6} - 8b8{r9c6=r8c5} - 1r8{r8c5=r8c79} - 1c8{r7c8=r5c8} - r5c7{n1=n4} - 4c3{r5c3=r1c3} - 3c3{r1c3=r6c3} - 9c3{r6c3=.}
g-Braid[13]: => r9c4<>8
8r9c4 - r5c4{n8=n3} - 4r9{r9c4=r9c7} - 4c4{r9c4=r1c4} - r8c4{n3=n2} - 4c9{r7c9=r4c9} - 9c4{r1c4=r2c4} - r9c6{n2=n9} - 9r4{r4c9=r4c12} - 9c3{r6c3=r1c3} - 3c3{r1c3=r6c3} - 3r4{r4c2=r4c8} - 2b6{r4c8=r6c7} - 9c7{r6c7=.}
Braid[13]: => r9c2<>9
9r9c2 - 1c2{r9c2=r7c2} - 9r7{r7c1=r7c6} - 1c5{r7c5=r8c5} - 3b8{r7c6=r8c4} - r5c4{n3=n8} - 8r6{r6c4=r6c2} - 8r8{r8c4=r8c9} - 8r9{r9c8=r9c6} - r3c6{n8=n2} - 8r2{r2c6=r2c1} - 2r2{r2c1=r2c3} - r9c3{n2=n6} - 6r8{r8c1=.}
g-Braid[13]: => r4c9<>6
6r4c9 - r4c5{n6=n2} - 4r4{r4c9=r4c1} - r4c8{n2=n3} - 4r3{r3c1=r3c5} - 9r4{r4c1=r4c2} - 4c4{r1c4=r9c4} - r6c9{n3=n9} - 9c4{r9c4=r12c4} - 9r3{r3c6=r3c1} - 2r3{r3c1=r3c6} - 2c4{r2c4=r8c4} - 3b8{r8c4=r7c6} - 9r7{r7c6=.}
Braid[13]: => r2c9<>9
9r2c9 - 1r2{r2c9=r2c7} - 9c7{r1c7=r6c7} - 1r5{r5c7=r5c8} - 2b6{r6c7=r4c8} - r4c5{n2=n6} - 6c6{r4c6=r2c6} - 6c8{r4c8=r9c8} - 6c9{r8c9=r6c9} - r6c3{n6=n3} - 6c2{r6c2=r1c2} - 3c2{r1c2=r3c2} - r3c9{n3=n8} - 8c8{r1c8=.}
Braid[14]: => r9c7<>1
1r9c7 - 1r5{r5c7=r5c8} - 1r8{r8c7=r8c5} - 4r9{r9c7=r9c4} - r7c5{n4=n2} - r4c5{n2=n6} - 6c8{r4c8=r9c8} - r9c9{n6=n8} - 2b9{r9c8=r8c7} - 8r8{r8c9=r8c4} - r5c4{n8=n3} - 3r8{r8c4=r8c9} - r3c9{n3=n9} - r4c9{n9=n4} - r5c7{n4=.}
Braid[14]: => r7c9<>1
1r7c9 - 1r8{r8c7=r8c5} - 1c8{r7c8=r5c8} - 4c9{r7c9=r4c9} - r5c7{n4=n3} - r5c4{n3=n8} - 8r8{r8c4=r8c9} - r9c9{n8=n6} - 3b9{r8c9=r7c8} - 6c8{r9c8=r4c8} - r4c5{n6=n2} - 2c8{r4c8=r9c8} - r7c5{n2=n4} - r9c3{n2=n9} - r9c4{n9=.}
g-Braid[16]: => r8c5<>2
2r8c5 - r4c5{n2=n6} - 1c5{r8c5=r7c5} - 1c2{r7c2=r9c2} - 1c8{r9c8=r5c8} - 6b6{r5c8=r6c9} - r9c9{n6=n8} - 8r8{r8c9=r8c4} - r5c4{n8=n3} - 3r8{r8c4=r8c79} - r5c7{n3=n4} - 4c3{r5c3=r1c3} - 3c3{r1c3=r6c3} - 9r6{r6c3=r6c7} - 2b6{r6c7=r4c8} - r7c8{n2=n7} - 7r9{r9c7=.}
g-Braid[16]: => r5c8<>3
3r5c8 - r5c4{n3=n8} - 1r5{r5c8=r5c7} - 1r2{r2c7=r2c9} - 1r8{r8c9=r8c5} - 8b8{r8c5=r9c6} - r9c9{n8=n6} - 6c8{r9c8=r4c8} - r4c5{n6=n2} - 2c8{r4c8=r79c8} - r7c5{n2=n4} - 4r3{r3c5=r3c1} - 2r3{r3c1=r3c6} - 9c6{r3c6=r7c6} - 3b8{r7c6=r8c4} - r8c7{n3=n5} - 5c9{r7c9=.}
g-Braid[20]: => r9c8<>2
2r9c8 - 2c7{r7c7=r6c7} - 6c8{r9c8=r45c8} - 8c8{r9c8=r13c8} - 9c7{r6c7=r12c7} - r3c9{n9=n3} - r6c9{n3=n9} - r4c9{n9=n4} - r7c9{n4=n5} - r2c9{n5=n1} - 1r9{r9c9=r9c2} - 7r9{r9c2=r9c7} - 4r9{r9c7=r9c4} - 9c4{r9c4=r12c4} - 9r3{r3c6=r3c12} - 9c3{r1c3=r9c3} - r7c2{n9=n7} - r7c1{n7=n2} - r7c5{n2=n1} - r8c5{n1=n8} - r9c6{n8=.}
Braid[18]: => r1c3<>6
6r1c3 - 4c3{r1c3=r5c3} - 6r2{r2c1=r2c6} - 6b7{r8c3=r8c1} - 3c3{r5c3=r6c3} - 4r4{r4c1=r4c9} - 6r5{r5c1=r5c8} - 1r5{r5c8=r5c7} - 3b6{r5c7=r4c8} - 2c8{r4c8=r7c8} - 1c8{r7c8=r9c8} - r9c2{n1=n7} - r9c7{n7=n4} - 4r7{r7c7=r7c5} - 4r3{r3c5=r3c1} - 2c1{r3c1=r2c1} - 7c1{r2c1=r1c1} - r1c5{n7=n8} - r1c8{n8=.}
g-Braid[20]: => r8c9<>3
3r8c9 - 3r7{r7c7=r7c6} - 6r8{r8c9=r8c13} - 8r8{r8c9=r8c45} - 9r7{r7c6=r7c12} - r9c3{n9=n2} - r9c6{n2=n9} - r9c4{n9=n4} - r9c7{n4=n7} - r9c2{n7=n1} - 1c9{r9c9=r2c9} - 5c9{r2c9=r7c9} - 4c9{r7c9=r4c9} - 9r4{r4c9=r4c12} - 9c3{r6c3=r12c3} - 9r3{r3c1=r3c9} - r2c7{n9=n5} - r1c7{n5=n3} - r5c7{n3=n1} - r5c8{n1=n6} - r6c9{n6=.}
Braid[18]: => r3c1<>8
8r3c1 - 4r3{r3c1=r3c5} - 8c2{r1c2=r6c2} - 8b3{r3c8=r1c8} - 2r3{r3c5=r3c6} - 4c4{r1c4=r9c4} - 8c5{r1c5=r8c5} - 1c5{r8c5=r7c5} - 2b8{r7c5=r8c4} - 3r8{r8c4=r8c7} - 1r8{r8c7=r8c9} - r2c9{n1=n5} - r7c9{n5=n4} - 4r4{r4c9=r4c1} - 4r1{r1c1=r1c3} - 3r1{r1c3=r1c2} - 5r1{r1c2=r1c1} - r5c1{n5=n6} - r8c1{n6=.}
g-Braid[23]: => r1c1<>6
6r1c1 - 6r2{r2c1=r2c6} - 6c2{r1c2=r46c2} - 6r5{r5c3=r5c8} - 1r5{r5c8=r5c7} - 1r2{r2c7=r2c9} - 4b6{r5c7=r4c9} - 5b3{r2c9=r12c7} - 9r4{r4c9=r4c12} - r6c3{n9=n3} - 3b6{r6c7=r4c8} - 2c8{r4c8=r7c8} - 1c8{r7c8=r9c8} - r9c2{n1=n7} - r8c7{n2=n3} - r7c9{n3=n5} - 3r1{r1c7=r1c2} - r7c1{n5=n9} - r4c1{n9=n5} - 9r4{r4c1=r4c2} - r3c2{n9=n8} - 8r2{r2c1=r2c4} - r8c4{n8=n2} - r8c1{n2=.}
Whip[9]: => r1c2<>9
9r1c2 - 6r1{r1c2=r1c5} - r4c5{n6=n2} - 2r6{r6c4=r6c7} - 9c7{r6c7=r2c7} - 9r3{r3c9=r3c6} - 2r3{r3c6=r3c1} - 4r3{r3c1=r3c5} - 4c4{r1c4=r9c4} - 9c4{r9c4=.}
Braid[16]: => r6c5<>8
8r6c5 - r5c4{n8=n3} - r8c5{n8=n1} - 7r6{r6c5=r6c4} - 2r6{r6c4=r6c7} - 2c8{r4c8=r7c8} - r7c5{n2=n4} - 4r3{r3c5=r3c1} - 4r4{r4c1=r4c9} - r5c7{n4=n1} - r5c8{n1=n6} - 1r7{r7c7=r7c2} - r9c2{n1=n7} - 7r7{r7c1=r7c7} - 7r2{r2c7=r2c1} - 2c1{r2c1=r8c1} - 6c1{r8c1=.}
Braid[11]: => r2c4<>8
8r2c4 - r5c4{n8=n3} - 8c5{r1c5=r8c5} - 8c6{r9c6=r5c6} - 3r8{r8c4=r8c7} - 5c6{r5c6=r4c6} - 1r8{r8c7=r8c9} - r2c9{n1=n5} - 5c7{r1c7=r7c7} - 5c2{r7c2=r1c2} - 6r1{r1c2=r1c5} - 6c6{r2c6=.}
Braid[13]: => r4c6<>2
2r4c6 - r4c5{n2=n6} - 2c8{r4c8=r7c8} - r4c8{n6=n3} - 2c5{r7c5=r3c5} - 4r3{r3c5=r3c1} - 4r4{r4c1=r4c9} - r5c7{n4=n1} - 1c8{r5c8=r9c8} - r9c2{n1=n7} - 7r3{r3c2=r3c8} - r1c8{n7=n8} - 8c5{r1c5=r8c5} - 1r8{r8c5=.}
Braid[13]: => r3c6<>9
9r3c6 - 9c4{r1c4=r9c4} - 4c4{r9c4=r1c4} - 4r3{r3c5=r3c1} - 2r3{r3c1=r3c5} - r4c5{n2=n6} - 2b5{r4c5=r6c4} - 6c6{r4c6=r2c6} - 8r6{r6c4=r6c2} - 8r2{r2c2=r2c1} - 2r2{r2c1=r2c3} - r9c3{n2=n6} - 6r6{r6c3=r6c9} - 6r8{r8c9=.}
Locked Candidates 1 (Pointing): 9 in b2 => r9c4<>9
Whip[9]: => r2c1<>9
9r2c1 - 9r3{r3c1=r3c9} - 9r4{r4c9=r4c2} - 9r7{r7c2=r7c6} - 3b8{r7c6=r8c4} - r5c4{n3=n8} - 8r6{r6c4=r6c2} - 8r2{r2c2=r2c6} - r3c6{n8=n2} - r9c6{n2=.}
Braid[9]: => r5c6<>8
8r5c6 - r3c6{n8=n2} - 8r6{r6c4=r6c2} - r9c6{n2=n9} - 8r2{r2c2=r2c1} - 2r2{r2c1=r2c3} - r9c3{n2=n6} - r8c3{n6=n5} - 5r5{r5c3=r5c1} - 6c1{r5c1=.}
Locked Candidates 1 (Pointing): 8 in b5 => r8c4<>8
Braid[9]: => r9c3<>6
6r9c3 - 6r8{r8c1=r8c9} - 8r8{r8c9=r8c5} - 1r8{r8c5=r8c7} - 1r5{r5c7=r5c8} - 3r8{r8c7=r8c4} - 6c8{r5c8=r4c8} - 2c8{r4c8=r7c8} - r7c6{n2=n9} - 9r9{r9c6=.}
Locked Candidates 1 (Pointing): 6 in b7 => r8c9<>6
Braid[10]: => r6c2<>3
3r6c2 - 3c3{r5c3=r1c3} - 8r6{r6c2=r6c4} - r5c4{n8=n3} - r8c4{n3=n2} - r9c4{n2=n4} - r7c5{n4=n1} - 1c2{r7c2=r9c2} - 1c8{r9c8=r5c8} - r5c7{n1=n4} - 4c3{r5c3=.}
Braid[5]: => r3c2<>8
8r3c2 - r6c2{n8=n6} - 6r1{r1c2=r1c5} - 6c9{r6c9=r9c9} - 8c5{r1c5=r8c5} - 8c9{r8c9=.}
Whip[7]: => r2c2<>8
8r2c2 - r6c2{n8=n6} - 6r1{r1c2=r1c5} - r2c6{n6=n2} - r3c6{n2=n8} - 8c5{r3c5=r8c5} - 8c9{r8c9=r9c9} - 6c9{r9c9=.}
Whip[5]: => r2c1<>7
7r2c1 - 8r2{r2c1=r2c6} - r3c6{n8=n2} - r9c6{n2=n9} - r9c3{n9=n2} - 2r2{r2c3=.}
Whip[5]: => r2c1<>6
6r2c1 - 8r2{r2c1=r2c6} - r3c6{n8=n2} - r9c6{n2=n9} - r9c3{n9=n2} - 2r2{r2c3=.}
Whip[5]: => r2c1<>5
5r2c1 - 8r2{r2c1=r2c6} - r3c6{n8=n2} - r9c6{n2=n9} - r9c3{n9=n2} - 2r2{r2c3=.}
Braid[8]: => r1c3<>9
9r1c3 - r9c3{n9=n2} - 9c4{r1c4=r2c4} - 9c7{r2c7=r6c7} - 2b6{r6c7=r4c8} - r4c5{n2=n6} - 6c6{r4c6=r2c6} - 2r2{r2c6=r2c1} - 8r2{r2c1=.}
g-Braid[10]: => r6c2<>6
6r6c2 - 6c1{r5c1=r8c1} - 8r6{r6c2=r6c4} - r5c4{n8=n3} - r8c4{n3=n2} - r8c3{n2=n5} - r5c3{n5=n4} - r1c3{n4=n3} - 4r4{r4c1=r4c9} - 9r4{r4c9=r4c12} - r6c3{n9=.}
Naked Single: r6c2=8
Hidden Single: 8 in r5 => r5c4=8
Braid[9]: => r9c8<>8
8r9c8 - 6r9{r9c8=r9c9} - 8c9{r8c9=r3c9} - r3c6{n8=n2} - r9c6{n2=n9} - r7c6{n9=n3} - 3c4{r8c4=r6c4} - r6c9{n3=n9} - 9c3{r6c3=r2c3} - 9r3{r3c1=.}
Locked Candidates 2 (Claiming): 8 in c8 => r3c9<>8
g-Whip[5]: => r4c8<>6
6r4c8 - 2c8{r4c8=r7c8} - 2c7{r7c7=r6c7} - 9c7{r6c7=r12c7} - r3c9{n9=n3} - 3c8{r1c8=.}
Whip[2]: => r6c5<>6
6r6c5 - 6r1{r1c5=r1c2} - 6r4{r4c2=.}
Braid[5]: => r7c7<>1
1r7c7 - 1r5{r5c7=r5c8} - 1r8{r8c7=r8c5} - 6c8{r5c8=r9c8} - r9c9{n6=n8} - 8r8{r8c9=.}
Braid[7]: => r1c2<>7
7r1c2 - 6r1{r1c2=r1c5} - r4c5{n6=n2} - r4c8{n2=n3} - 2r6{r6c4=r6c7} - 3c2{r4c2=r3c2} - r3c9{n3=n9} - 9c7{r1c7=.}
Braid[7]: => r1c2<>5
5r1c2 - 6r1{r1c2=r1c5} - r4c5{n6=n2} - r4c8{n2=n3} - 2r6{r6c4=r6c7} - 3c2{r4c2=r3c2} - r3c9{n3=n9} - 9c7{r1c7=.}
Braid[8]: => r5c6<>6
6r5c6 - r5c8{n6=n1} - 5c6{r5c6=r4c6} - 3c6{r4c6=r7c6} - 3r8{r8c4=r8c7} - 1c7{r8c7=r2c7} - r2c9{n1=n5} - 5c2{r2c2=r7c2} - 5r8{r8c1=.}
Locked Candidates 1 (Pointing): 6 in b5 => r4c2<>6
Locked Candidates 2 (Claiming): 6 in c2 => r2c3<>6
Braid[7]: => r4c9<>9
9r4c9 - 4c9{r4c9=r7c9} - 9r6{r6c7=r6c3} - r9c3{n9=n2} - r2c3{n2=n5} - r8c3{n5=n6} - r8c1{n6=n5} - 5c9{r8c9=.}
Locked Candidates 2 (Claiming): 9 in r4 => r6c3<>9
Whip[5]: => r7c6<>3
3r7c6 - 3c4{r8c4=r6c4} - r6c3{n3=n6} - 6c9{r6c9=r9c9} - 8r9{r9c9=r9c6} - 9c6{r9c6=.}
Hidden Single: 3 in b8 => r8c4=3
Whip[2]: => r4c5<>2
2r4c5 - r6c4{n2=n7} - r6c5{n7=.}
Hidden Single: 2 in r4 => r4c8=2
Naked Single: r4c5=6
Hidden Single: 6 in r1 => r1c2=6
Hidden Single: 6 in r2 => r2c6=6
Hidden Single: 8 in r2 => r2c1=8
Whip[3]: => r3c1<>9
9r3c1 - r3c9{n9=n3} - 3c2{r3c2=r4c2} - 9r4{r4c2=.}
Whip[6]: => r7c1<>9
9r7c1 - r9c3{n9=n2} - r9c4{n2=n4} - r9c7{n4=n7} - 7r7{r7c7=r7c2} - 7r2{r2c2=r2c4} - 2r2{r2c4=.}
Whip[6]: => r1c7<>9
9r1c7 - r3c9{n9=n3} - r4c9{n3=n4} - r7c9{n4=n5} - 5c7{r7c7=r2c7} - 5c2{r2c2=r4c2} - 3c2{r4c2=.}
Whip[7]: => r7c7<>7
7r7c7 - 7r9{r9c7=r9c2} - 7r2{r2c2=r2c4} - 9c4{r2c4=r1c4} - 4c4{r1c4=r9c4} - 4r7{r7c5=r7c9} - 4r4{r4c9=r4c1} - 9c1{r4c1=.}
g-Whip[6]: => r6c9<>9
9r6c9 - r3c9{n9=n3} - 3c8{r1c8=r7c8} - 7r7{r7c8=r7c12} - r9c2{n7=n1} - 1c8{r9c8=r5c8} - 6b6{r5c8=.}
Hidden Single: 9 in r6 => r6c7=9
Hidden Single: 9 in c9 => r3c9=9
Whip[6]: => r1c8<>7
7r1c8 - 7c7{r1c7=r9c7} - r9c2{n7=n1} - r9c8{n1=n6} - r9c9{n6=n8} - 8r8{r8c9=r8c5} - 8r1{r1c5=.}
Whip[7]: => r7c7<>5
5r7c7 - 5c9{r7c9=r2c9} - 5c2{r2c2=r4c2} - 9r4{r4c2=r4c1} - 4r4{r4c1=r4c9} - 4r7{r7c9=r7c5} - 4c4{r9c4=r1c4} - 9r1{r1c4=.}
Whip[5]: => r8c1<>5
5r8c1 - 5r7{r7c1=r7c9} - 4c9{r7c9=r4c9} - 3c9{r4c9=r6c9} - r6c3{n3=n6} - 6r8{r8c3=.}
g-Whip[6]: => r9c6<>9
9r9c6 - r9c3{n9=n2} - 2r8{r8c1=r8c7} - 5c7{r8c7=r12c7} - r2c9{n5=n1} - 1r8{r8c9=r8c5} - 8b8{r8c5=.}
Hidden Single: 9 in r9 => r9c3=9
Hidden Single: 9 in r7 => r7c6=9
Braid[5]: => r4c2<>3
3r4c2 - r4c9{n3=n4} - 3r6{r6c3=r6c9} - r7c9{n3=n5} - 5c2{r7c2=r2c2} - 9c2{r2c2=.}
Hidden Single: 3 in c2 => r3c2=3
Whip[4]: => r2c4<>2
2r2c4 - r3c6{n2=n8} - r3c8{n8=n7} - 7r2{r2c7=r2c2} - 9r2{r2c2=.}
Hidden Single: 2 in r2 => r2c3=2
Braid[5]: => r5c3<>6
6r5c3 - r6c3{n6=n3} - r8c3{n6=n5} - 5r7{r7c1=r7c9} - 3c9{r7c9=r4c9} - 4c9{r4c9=.}
Whip[3]: => r5c1<>5
5r5c1 - r5c6{n5=n3} - 3c3{r5c3=r6c3} - 6b4{r6c3=.}
Braid[5]: => r3c5<>8
8r3c5 - r3c6{n8=n2} - r3c8{n8=n7} - 7c7{r1c7=r9c7} - 2r9{r9c7=r9c4} - 4r9{r9c4=.}
Whip[3]: => r1c5<>7
7r1c5 - r6c5{n7=n2} - 2r3{r3c5=r3c6} - 8b2{r3c6=.}
Braid[5]: => r8c1<>6
6r8c1 - r5c1{n6=n4} - 2c1{r8c1=r7c1} - 4r3{r3c1=r3c5} - 2c5{r3c5=r6c5} - 7c5{r6c5=.}
Hidden Single: 6 in r8 => r8c3=6
Hidden Single: 6 in r6 => r6c9=6
Hidden Single: 6 in r5 => r5c1=6
Hidden Single: 3 in r6 => r6c3=3
Hidden Single: 6 in r9 => r9c8=6
Naked Single: r5c8=1
Naked Single: r8c1=2
Locked Candidates 1 (Pointing): 5 in b7 => r7c9<>5
Whip[3]: => r2c7<>7
7r2c7 - 1r2{r2c7=r2c9} - 1r9{r9c9=r9c2} - 7r9{r9c2=.}
Whip[2]: => r1c7<>5
5r1c7 - r2c7{n5=n1} - r2c9{n1=.}
Locked Candidates 2 (Claiming): 5 in r1 => r2c2<>5
Braid[3]: => r5c3<>5
5r5c3 - r4c2{n5=n9} - 5r1{r1c3=r1c1} - 9c1{r1c1=.}
Hidden Single: 5 in r5 => r5c6=5
Hidden Single: 3 in r5 => r5c7=3
Full House: r5c3=4
Full House: r1c3=5
Full House: r4c9=4
Hidden Single: 3 in r1 => r1c8=3
Hidden Single: 8 in r1 => r1c5=8
Hidden Single: 8 in r3 => r3c8=8
Full House: r7c8=7
Hidden Single: 3 in r4 => r4c6=3
Hidden Single: 3 in r7 => r7c9=3
Hidden Single: 8 in r8 => r8c9=8
Hidden Single: 5 in r8 => r8c7=5
Full House: r8c5=1
Hidden Single: 5 in r2 => r2c9=5
Full House: r9c9=1
Hidden Single: 1 in r2 => r2c7=1
Full House: r1c7=7
Hidden Single: 1 in r7 => r7c2=1
Hidden Single: 5 in r7 => r7c1=5
Full House: r9c2=7
Hidden Single: 7 in r2 => r2c4=7
Full House: r2c2=9
Full House: r4c2=5
Full House: r4c1=9
Hidden Single: 9 in r1 => r1c4=9
Full House: r1c1=4
Full House: r3c1=7
Hidden Single: 4 in r3 => r3c5=4
Full House: r3c6=2
Full House: r9c6=8
Hidden Single: 7 in r6 => r6c5=7
Full House: r6c4=2
Full House: r9c4=4
Full House: r9c7=2
Full House: r7c5=2
Full House: r7c7=4
132 Steps! Time elapsed: 199823.3 ms,Most difficult g-Braid[23]
g-Braid's search is about 53 times slower than Braid's search.
StrmCkr wrote:want to test this new stuff out, but the English translations are still missing so i have no idea what button does what?
yup that fixed it for me thanks.If YZF_Sudoku is not showing English, you can go to the menu bar. The third column is actually Options (in English). The last in that list is Language. Then the first choice is English. YZF_Sudoku should remember the change.
+-------------------------+--------------------------+-------------------------+
| 5 17(3) 1467 | 23468 234678 378 | 12 46(8) 9 |
| 46(3) 2 46(9) | 1 -46(389) (3589) | 46(5) 7 46(8) |
| 1467 17(9) 8 | 24569 24679 579 | 3 46(5) 12 |
+-------------------------+--------------------------+-------------------------+
| 13678 4 15679 | 389 1389 2 | 5679 -6(3589) 3678 |
| 123678 -17(389) 12679 | 3489 5 1389 | 24679 -46(389) 234678 |
| 238 (3589) 259 | 7 3489 6 | 2459 1 2348 |
+-------------------------+--------------------------+-------------------------+
| 24 17(5) 3 | 2569 12679 1579 | 8 46(9) 1467 |
| 17(8) 6 17(5) | (3589) -17(389) 4 | 17(9) 2 17(3) |
| 9 17(8) 24 | 2368 123678 1378 | 1467 46(3) 5 |
+-------------------------+--------------------------+-------------------------+
+---------------------------+--------------------------+---------------------------+
| 5 17(3) 1467 | 23468 2467-38 378 | 12 46(8) 9 |
| 46(3) 2 46(9) | 1 -46(389) (3589) | 46(5) 7 46(8) |
| 1467 17(9) 8 | 24569 2467-9 579 | 3 46(5) 12 |
+---------------------------+--------------------------+---------------------------+
| 13678 4 15679 | (389) 1(389) 2 | 5679 -6(3589) 3678 |
| 1267-38 -17(389) 1267-9 | 4(389) 5 1(389) | 2467-9 -46(389) 2467-38 |
| 238 (3589) 259 | 7 4(389) 6 | 2459 1 2348 |
+---------------------------+--------------------------+---------------------------+
| 24 17(5) 3 | 2569 1267-9 1579 | 8 46(9) 1467 |
| 17(8) 6 17(5) | (3589) -17(389) 4 | 17(9) 2 17(3) |
| 9 17(8) 24 | 2368 1267-38 1378 | 1467 46(3) 5 |
+---------------------------+--------------------------+---------------------------+
StrmCkr wrote:missing "hidden SK-loop" :
aals [20,236] 44 Candidates
24 Truths = {3589R2 3589R8 3589C2 3589C8 3B19 5B37 8B37 9B19}
8 Links = {56n2 8n4 28n5 2n6 45n8}
9 Eliminations --> r45c8<>6, r2c5<>46, r5c2<>17, r8c5<>17, r5c8<>4,
so I can only say sorry for now.
+-------------------------+--------------------------+-------------------------+
| 5 17(3) 1467 | 23468 234678 378 | 12 46(8) 9 |
| 46(3) 2 46(9) | 1 -46(389) (3589) | 46(5) 7 46(8) |
| 1467 17(9) 8 | 24569 24679 579 | 3 46(5) 12 |
+-------------------------+--------------------------+-------------------------+
| 13678 4 15679 | 389 1389 2 | 5679 -6(3589) 3678 |
| 123678 -17(389) 12679 | 3489 5 1389 | 24679 -46(389) 234678 |
| 238 (3589) 259 | 7 3489 6 | 2459 1 2348 |
+-------------------------+--------------------------+-------------------------+
| 24 17(5) 3 | 2569 12679 1579 | 8 46(9) 1467 |
| 17(8) 6 17(5) | (3589) -17(389) 4 | 17(9) 2 17(3) |
| 9 17(8) 24 | 2368 123678 1378 | 1467 46(3) 5 |
+-------------------------+--------------------------+-------------------------+
StrmCkr wrote: 16 Truths = {3589R2 3589R8 3589C2 3589C8}
16 Links = {56n2 8n4 28n5 2n6 45n8 3b19 5b37 8b37 9b19}
9 Eliminations --> r45c8<>6, r2c5<>46, r5c2<>17, r8c5<>17, r5c8<>4,
Multi-Fish: 16 Truths:1467r1,1467r3,1467r7,1467r9,16 Links:17c2,46c8,467b2,1b3,4b7,167b8+r1c3,r3c1,r7c9,r9c7 => 9 eliminations
r5c2<>17, r4c8<>6, r5c8<>46, r2c5<>46, r8c5<>17
Multi-Fish: 16 Truths:1467c1,1467c3,1467c7,1467c9,16 Links:46r2,17r8,1b3,167b4,467b6,4b7+r1c3,r3c1,r7c9,r9c7 => 9 eliminations
r2c5<>46, r8c5<>17, r5c2<>17, r4c8<>6, r5c8<>46
Multi-Fish: 16 Truths:3589r2,3589r4,3589r6,3589r8,16 Links:38c1,59c3,389c5,59c7,38c9+r4c48,r2c6,r6c2,r8c4 => 13 eliminations
r4c8<>6, r5c1<>38, r5c3<>9, r1c5<>38, r3c5<>9, r7c5<>9, r9c5<>38, r5c7<>9, r5c9<>38
Multi-Fish: 16 Truths:3589c2,3589c4,3589c6,3589c8,16 Links:38r1,59r3,389r5,59r7,38r9+r4c48,r2c6,r6c2,r8c4 => 13 eliminations
r4c8<>6, r1c5<>38, r3c5<>9, r5c1<>38, r5c3<>9, r5c7<>9, r5c9<>38, r7c5<>9, r9c5<>38
.618..9.38..6..2419.4....8.7.5....9.....5.....9....5.7.8....4.9142..6..83.9..816.
1....5..9.8.....4...23..7....5.....2....6....3.....9....7..83...9.....6.8..2....1
:0000:x:9+1+5.4+8.6+3+47+65.+3+9.8+2+83+6.94.+5.6+4.+8+53+9...89+3..4.3..1.4..7+54.8..1+3.+8.7+3.1..+46+3+1+4+5+2..9:657 259 267 675::