This thread seems as good as any for my query.
I'm wondering if this qualifies as one of Mike Barker's UR patterns ???
- Code: Select all
+--------------------------------------------------------------+
| 14 7 56 | 14 35 8 | 36 9 2 |
| *15+4 9 2 | 6 7 134 | 38 148 *15+4 |
| *15+46 3 8 | 145 9 2 | 7 14 *15+46 |
|--------------------+--------------------+--------------------|
| 26 26 9 | 7 4 5 | 1 3 8 |
| 8 5 4 | 3 1 9 | 2 6 7 |
| 3 1 7 | 8 2 6 | 4 5 9 |
|--------------------+--------------------+--------------------|
| 7 268 1 | 9 38 34 | 5 248 346 |
| 25 28 3 | 145 6 7 | 9 1248 14 |
| 9 4 56 | 2 58 13 | 68 7 13 |
+--------------------------------------------------------------+
# 46 eliminations remain
r2c9=1 => ( r2c1=5 and r3c9=5 ) => the following grid:
- Code: Select all
*-----------------------------------------------------------*
| 14 7 (6) | 14 35 8 | 36 9 2 |
| 5 9 2 | 6 7 34 | 38 48 1 |
| 146 3 8 | 14 9 2 | 7 (4) 5 |
|-------------------+-------------------+-------------------|
| 26 26 9 | 7 4 5 | 1 3 8 |
| 8 5 4 | 3 1 9 | 2 6 7 |
| 3 1 7 | 8 2 6 | 4 5 9 |
|-------------------+-------------------+-------------------|
| 7 268 1 | 9 38 34 | 5 248 346 |
| 2 28 3 | 145 6 7 | 9 1248 4 |
| 9 4 56 | 2 58 13 | 68 7 3 |
*-----------------------------------------------------------*
The exposed Naked Singles r1c3=6 and r3c8=4 => r3c1=1 ... and we have a <15> DP.
Thus, we can conclude that r2c9<>1.
I'm aware that the Naked Single r3c8=4 (alone) also forces r3c4=1. That's part of my quandry.
Regards, Danny
An interesting companion chain: (5)r2c9 = r3c9 - (5=416)r3c841 - (6=5)r1c3 - r2c1 = (5)r2c9