When I coded them, I was not aware of the zoo thread
and also not of the Mike Barker 'May 16 2006' post which ronk recently linked as addendum.
When I submit yor mentioned examples on UR+3C/2SL (= hidden UR acccording to hodoku; = hidden UR of type 1 according to scanraid)
to my code, I get:
- Code: Select all
000000008000008630090130400047300000000510090000000000620800010078000005000625800 #1
singles
UR+3C/2SL (HUR1) (79)[14|66] cancel 9[66]
orig/ha M-wing WeakLinkInDiscontLoop-7 2[64]-2[69]=1[69]-1[63]=1[23]-2[23]=2[24]-2[64] cancel 2[64]
singles
002090000004607000090004300708000009040020800050030100000500000006008900000000037 #2
singles
UR+3x/1SL yb (46)[95|77] cancel 6[77]
orig/ha M-wing WeakLinkInDiscontLoop-7 1[81]-1[88]=2[88]-2[97]=2[96]-1[96]=1[91]-1[81] cancel 1[81]
singles
000030040000206030102090000000003890003000027054000000500087200001600000400000005 #3
singles
UR+3C/2SL (HUR1) (68)[12|51] cancel 8[51]
orig/ha M-wing WeakLinkInDiscontLoop-7 7[11]-7[21]=9[21]-9[61]=9[64]-7[64]=7[14]-7[11] cancel 7[11]
singles
201000008000003000000000062603007000052094700700300100400006051900500040007010000 #4
singles, line-block, naked triplet in row 1
UR+3X (27)[75|24] cancel 9[3][4]
pointing pair : 9 in block 2 aligned in row 1 : cancel 9[12]
UR+3x/1SL yb (27)[75|24] cancel 7[24]
xy-chain WeakLinkInDiscontLoop-13 7[74]-7[34]=8[34]-8[54]=6[54]-6[59]=3[59]-3[99]=9[99]-9[77]=2[77]-2[75]=7[75]-7[74] cancel 7[74]
singles
Yes, the UR+3C/2SL is not the bottleneck of the puzzles. In two of the cases, easier UR methods (methods with higher preference; higher application priority)
apply before the UR+3C/2SL got its chance.
When I switch off the UR+3x/1SL in #2, I get
UR+3C/2SL (HUR1) (46)[95|77] cancel 6[77]
When I switch off UR+3X for #4, I get
UR+3x/1SL yb (27)[75|24] cancel 7[24]
When I switch off UR+3x/1SL for #4, I get finally the
UR+3C/2SL (HUR1) (27)[75|24] cancel 7[24]
surbier