.
- Code: Select all
Resolution state after Singles and whips[1]:
+----------------+----------------+----------------+
! 4 5 123 ! 6 237 127 ! 123 8 9 !
! 6 123 7 ! 1389 2389 12 ! 4 123 5 !
! 123 8 9 ! 1345 2345 1245 ! 6 7 123 !
+----------------+----------------+----------------+
! 8 1237 1234 ! 45 457 9 ! 1235 1234 6 !
! 235 2379 2346 ! 458 1 4567 ! 2358 2349 238 !
! 15 19 146 ! 2 4568 3 ! 7 149 18 !
+----------------+----------------+----------------+
! 123 4 5 ! 139 239 8 ! 123 6 7 !
! 7 123 8 ! 135 2356 1256 ! 9 123 4 !
! 9 6 123 ! 7 234 124 ! 1238 5 1238 !
+----------------+----------------+----------------+
158 candidates.
We find a
solution in W6, consistent with SER = 9.1.
1) Simplest first solution in W6: Show hidden-pairs-in-a-row: r2{n8 n9}{c4 c5} ==> r2c5≠3, r2c5≠2, r2c4≠3, r2c4≠1
t-whip[6]: r5n7{c2 c6} - r5n6{c6 c3} - r6n6{c3 c5} - b5n8{r6c5 r5c4} - r5n4{c4 c8} - r5n9{c8 .} ==> r5c2≠2, r5c2≠3
t-whip[6]: r5n9{c8 c2} - r5n7{c2 c6} - r5n6{c6 c3} - r6n6{c3 c5} - b5n8{r6c5 r5c4} - r5n4{c4 .} ==> r5c8≠2, r5c8≠3
whip[6]: r5n6{c6 c3} - r6n6{c3 c5} - b5n8{r6c5 r5c4} - r5n4{c4 c8} - r5n9{c8 c2} - r5n7{c2 .} ==> r5c6≠5
whip[6]: c6n7{r1 r5} - r5c2{n7 n9} - r6c2{n9 n1} - r2n1{c2 c8} - c9n1{r3 r9} - c3n1{r9 .} ==> r1c6≠1
whip[5]: r1n1{c7 c3} - c1n1{r3 r6} - b6n1{r6c8 r4c8} - r2n1{c8 c6} - r9n1{c6 .} ==> r7c7≠1
whip[5]: r1n1{c7 c3} - r2n1{c2 c6} - r9n1{c6 c7} - c7n8{r9 r5} - r6c9{n8 .} ==> r3c9≠1
t-whip[4]: b3n1{r1c7 r2c8} - r2c6{n1 n2} - r1c6{n2 n7} - r1c5{n7 .} ==> r1c7≠3
whip[4]: c4n3{r8 r3} - c9n3{r3 r5} - c7n3{r5 r7} - c1n3{r7 .} ==> r9c5≠3
z-chain[3]: r9c5{n2 n4} - r9c6{n4 n1} - r2c6{n1 .} ==> r8c6≠2
biv-chain[5]: c9n1{r9 r6} - r6n8{c9 c5} - r2c5{n8 n9} - c4n9{r2 r7} - r7n1{c4 c1} ==> r9c3≠1
z-chain[3]: b8n2{r9c5 r9c6} - r9c3{n2 n3} - r1n3{c3 .} ==> r1c5≠2
biv-chain[4]: c5n7{r4 r1} - r1n3{c5 c3} - r9c3{n3 n2} - r9c5{n2 n4} ==> r4c5≠4
z-chain[4]: r1c5{n3 n7} - r4n7{c5 c2} - c2n3{r4 r2} - r1n3{c3 .} ==> r8c5≠3
t-whip[4]: r9c3{n3 n2} - r9c5{n2 n4} - r9c6{n4 n1} - r7n1{c4 .} ==> r7c1≠3
biv-chain[5]: r1c5{n3 n7} - c6n7{r1 r5} - b5n6{r5c6 r6c5} - c5n8{r6 r2} - c5n9{r2 r7} ==> r7c5≠3
whip[1]: b8n3{r8c4 .} ==> r3c4≠3
biv-chain[4]: r7n3{c7 c4} - c4n9{r7 r2} - c4n8{r2 r5} - c7n8{r5 r9} ==> r9c7≠3
biv-chain[5]: c9n1{r9 r6} - r6n8{c9 c5} - r2c5{n8 n9} - r7c5{n9 n2} - r7c7{n2 n3} ==> r9c9≠3
singles ==> r9c3=3, r1c5=3, r1c6=7, r4c5=7, r5c2=7, r6c2=9, r5c8=9
x-wing-in-columns: n3{c1 c9}{r3 r5} ==> r5c7≠3
biv-chain[3]: r1n2{c3 c7} - r3c9{n2 n3} - b1n3{r3c1 r2c2} ==> r2c2≠2
biv-chain[3]: r4n5{c4 c7} - c7n3{r4 r7} - b8n3{r7c4 r8c4} ==> r8c4≠5
hidden-pairs-in-a-block: b8{n5 n6}{r8c5 r8c6} ==> r8c6≠1, r8c5≠2
z-chain[3]: c3n1{r6 r1} - b1n2{r1c3 r3c1} - r7c1{n2 .} ==> r6c1≠1
naked-single ==> r6c1=5
whip[1]: b5n5{r5c4 .} ==> r3c4≠5
finned-x-wing-in-rows: n1{r1 r6}{c3 c7} ==> r4c7≠1
z-chain[3]: c2n2{r4 r8} - c8n2{r8 r2} - r1n2{c7 .} ==> r4c3≠2
t-whip[3]: r3c4{n4 n1} - c6n1{r3 r9} - r9n4{c6 .} ==> r3c5≠4
z-chain[4]: r1n2{c7 c3} - c1n2{r3 r5} - b4n3{r5c1 r4c2} - c7n3{r4 .} ==> r7c7≠2
naked-single ==> r7c7=3, r8c4=3
x-wing-in-columns: n1{c1 c4}{r3 r7} ==> r3c6≠1
finned-x-wing-in-columns: n1{c6 c7}{r9 r2} ==> r2c8≠1
singles ==> r1c7=1, r1c3=2
whip[1]: c3n1{r6 .} ==> r4c2≠1
naked-pairs-in-a-row: r5{c3 c6}{n4 n6} ==> r5c4≠4
z-chain[2]: b9n2{r9c9 r8c8} - r2n2{c8 .} ==> r9c6≠2
whip[1]: c6n2{r3 .} ==> r3c5≠2
singles ==> r3c5=5, r8c5=6, r8c6=5, r5c6=6, r5c3=4, r4c3=1, r6c3=6
finned-swordfish-in-columns: n2{c5 c1 c7}{r9 r7 r5} ==> r5c9≠2
biv-chain[3]: c6n2{r2 r3} - c9n2{r3 r9} - r9n1{c9 c6} ==> r2c6≠1
stte
2) Let's see if we can simplify this (other than by looking for fewer steps).
In the resolution state after Singles (and whips[1]), one can see the diagonals of 123 in the 4 corner blocks (with an additional 8 in the 4th). Moreover, digits 1,2,3 appear as givens only in the central block. This suggests using
eleven's digit replacement method.
But I'll do it in a way that doesn't require introducing any symbolic variables - so that I can still use SudoRules all the way to the solution.
First step: replace any occurrence of 1, 2 or 3 (including the givens) by 123:
- Code: Select all
+-------------------+-------------------+-------------------+
! 4 5 123 ! 6 1237 1237 ! 123 8 9 !
! 6 123 7 ! 12389 12389 123 ! 4 123 5 !
! 123 8 9 ! 12345 12345 12345 ! 6 7 123 !
+-------------------+-------------------+-------------------+
! 8 1237 1234 ! 45 457 9 ! 1235 1234 6 !
! 1235 12379 12346 ! 458 123 4567 ! 12358 12349 1238 !
! 1235 1239 12346 ! 123 4568 123 ! 7 12349 1238 !
+-------------------+-------------------+-------------------+
! 123 4 5 ! 1239 1239 8 ! 123 6 7 !
! 7 123 8 ! 1235 12356 12356 ! 9 123 4 !
! 9 6 123 ! 7 1234 1234 ! 1238 5 1238 !
+-------------------+-------------------+-------------------+
Second step: in any of the 4 corner blocks, replace each of the 3 diagonal 123s by one of 1, 2, 3 (all different).
Here is what it gives for the south-west corner:
- Code: Select all
+-------------------+-------------------+-------------------+
! 4 5 123 ! 6 1237 1237 ! 123 8 9 !
! 6 123 7 ! 12389 12389 123 ! 4 123 5 !
! 123 8 9 ! 12345 12345 12345 ! 6 7 123 !
+-------------------+-------------------+-------------------+
! 8 1237 1234 ! 45 457 9 ! 1235 1234 6 !
! 1235 12379 12346 ! 458 123 4567 ! 12358 12349 1238 !
! 1235 1239 12346 ! 123 4568 123 ! 7 12349 1238 !
+-------------------+-------------------+-------------------+
! 1 4 5 ! 1239 1239 8 ! 123 6 7 !
! 7 2 8 ! 1235 12356 12356 ! 9 123 4 !
! 9 6 3 ! 7 1234 1234 ! 1238 5 1238 !
+-------------------+-------------------+-------------------+
Third step: solve as any Sukaku puzzle:
- Code: Select all
(solve-sukaku-grid
+-------------------+-------------------+-------------------+
! 4 5 123 ! 6 1237 1237 ! 123 8 9 !
! 6 123 7 ! 12389 12389 123 ! 4 123 5 !
! 123 8 9 ! 12345 12345 12345 ! 6 7 123 !
+-------------------+-------------------+-------------------+
! 8 1237 1234 ! 45 457 9 ! 1235 1234 6 !
! 1235 12379 12346 ! 458 123 4567 ! 12358 12349 1238 !
! 1235 1239 12346 ! 123 4568 123 ! 7 12349 1238 !
+-------------------+-------------------+-------------------+
! 1 4 5 ! 1239 1239 8 ! 123 6 7 !
! 7 2 8 ! 1235 12356 12356 ! 9 123 4 !
! 9 6 3 ! 7 1234 1234 ! 1238 5 1238 !
+-------------------+-------------------+-------------------+
)
hidden-pairs-in-a-row: r2{n8 n9}{c4 c5} ==> r2c5≠3, r2c5≠2, r2c5≠1, r2c4≠3, r2c4≠2, r2c4≠1
z-chain[3]: r5n9{c8 c2} - c2n7{r5 r4} - r4n3{c2 .} ==> r5c8≠3
z-chain[3]: b5n3{r6c6 r5c5} - c9n3{r5 r3} - c1n3{r3 .} ==> r6c2≠3
z-chain[3]: b5n3{r6c6 r5c5} - c1n3{r5 r3} - c9n3{r3 .} ==> r6c8≠3
z-chain[3]: r4n3{c8 c2} - c1n3{r6 r3} - c9n3{r3 .} ==> r5c7≠3
t-whip[3]: c8n9{r5 r6} - r6c2{n9 n1} - b5n1{r6c6 .} ==> r5c8≠1
whip[3]: c1n3{r6 r3} - c9n3{r3 r6} - b5n3{r6c4 .} ==> r5c2≠3
biv-chain[4]: b1n1{r1c3 r2c2} - c2n3{r2 r4} - b4n7{r4c2 r5c2} - c6n7{r5 r1} ==> r1c6≠1
z-chain[4]: c2n3{r4 r2} - b1n1{r2c2 r1c3} - r1c7{n1 n2} - r7c7{n2 .} ==> r4c7≠3
biv-chain[3]: r2c2{n1 n3} - r4n3{c2 c8} - r8c8{n3 n1} ==> r2c8≠1
biv-chain[3]: r2c8{n2 n3} - r2c2{n3 n1} - r1c3{n1 n2} ==> r1c7≠2
biv-chain[3]: r1c7{n3 n1} - r1c3{n1 n2} - r3c1{n2 n3} ==> r3c9≠3
whip[1]: c9n3{r6 .} ==> r4c8≠3
singles ==> r4c2=3, r2c2=1, r1c3=2, r3c1=3, r6c2=9, r5c2=7, r4c5=7, r1c6=7, r5c8=9
whip[1]: r4n2{c8 .} ==> r5c7≠2, r5c9≠2, r6c8≠2, r6c9≠2
finned-x-wing-in-rows: n3{r1 r7}{c7 c5} ==> r8c5≠3
biv-chain[2]: c9n2{r9 r3} - r2n2{c8 c6} ==> r9c6≠2
biv-chain[3]: b3n1{r1c7 r3c9} - c9n2{r3 r9} - b9n8{r9c9 r9c7} ==> r9c7≠1
biv-chain[3]: c8n3{r2 r8} - b9n1{r8c8 r9c9} - c9n2{r9 r3} ==> r2c8≠2
stte
4th step: if the digits 123 are not correctly placed in the given places (central block), make the relevant permutation of 1, 2, 3 everywhere (not necessary here). I chose this corner block for two reasons:
- I get the correct result without needing any permutation;
- it has the lowest rating (Z4, same as northeast block; northwest block is in Z5)
Notice that one may not do this in the SE block, because r9c9 could be 8 (which it is indeed).
Finally, the method allowed to significantly decrease the difficulty (from W6 to Z4).