## The Ultimate FISH Guide

Advanced methods and approaches for solving Sudoku puzzles
We don't have many true examples yet. There are many over at the Benchmark Sudoku List, the Effortless Extreme Thread, and the Local Zoo. Here are a few from the zoo. Do we want to develop a complete set of true examples? If so I can continue to pull them out of the existing data bases.

Ron, interesting observation about the relationships between the base set, the cover set, and the difference between them. Also, its going to take me a while to get use to Frankenfish with a box in the base set, but you are correct about the swordfish. Of course the fact that the same eliminations can be done so many different ways begs the question, Is there a minimal set of fish which should be defined?

Code: Select all
`X-wing r26/c29:...7..8..7..5..6......8...2.2..4.....3......7..19..5..2...5...14....3........1983 +-------------------+------------+----------------+|    3   56-4    2  | 7  9   46  |  8     1  5-4  ||    7     49*   8  | 5  1    2  |  6     3   49* ||    1  569-4  456  | 3  8   46  | 47  4579    2  |+-------------------+------------+----------------+| 5689      2  567  | 1  4  578  |  3    69  689  ||  589      3   45  | 2  6   58  |  1    49    7  ||   68    467*   1  | 9  3   78  |  5     2  468* |+-------------------+------------+----------------+|    2      8    3  | 6  5    9  | 47    47    1  ||    4      1    9  | 8  7    3  |  2    56   56  ||   56    567  567  | 4  2    1  |  9     8    3  |+-------------------+------------+----------------+ . * . | . . . | . . * / X / | / / / | / / X . * . | . . . | . . . ------+-------+------ . . . | . . . | . . . . . . | . . . | . . . / X / | / / / | / / X ------+-------+------ . . . | . . . | . . . . . . | . . . | . . . . . . | . . . | . . .X-wing c58/r27:5..21..3.96...8....1.3.....6..15.......8.92.......3.1..86...9..1...3.57..2....... +-----------+------------------+-----------------+| 5   4  8  |    2   1     67  |  67   3      9  || 9   6  3  | 57-4  47*     8  |   1  24* 257-4  || 2   1  7  |    3   9    456  |  46   8    456  |+-----------+------------------+-----------------+| 6  37  2  |    1   5     47  |   8   9    347  || 4  37  1  |    8   6      9  |   2   5     37  || 8   5  9  |   47   2      3  | 467   1    467  |+-----------+------------------+-----------------+| 3   8  6  | 57-4  47* 157-4  |   9  24*  12-4  || 1   9  4  |    6   3      2  |   5   7      8  || 7   2  5  |    9   8     14  |   3   6     14  |+-----------+------------------+-----------------+ . . . | . / . | . / . . . . | * X . | . X * . . . | . / . | . / . ------+-------+------ . . . | . / . | . / . . . . | . / . | . / . . . . | . / . | . /. . ------+-------+------ . . . | * X * | . X * . . . | . / . | . / . . . . | . / . | . / .`
Mike Barker

Posts: 458
Joined: 22 January 2006

Here's an example of a Kraken Mutant X-wing. The links connect r5c13 and the fin, r2c5, to the candidate elimination cell, r3c3 resulting in the elimination.
Code: Select all
`Kraken Mutant X-Wing: r5c5/b45,fin=r2c5 (r5c134|r246c5=5)(r5c1-5-r1379c1-8-, r5c3-5-r24c3-8-, r2c5=8=r2c3-8-) => r3c3<>8+---------------------+------------------+-------------------+|  157@ 3457   13457  |  457    2   179  |   6     8   1459  ||    9     6    458\$% |    3  58#%   14  |   7   145      2  || 1578@    2  1457-8  | 4578    6  1479  |   3  1459   1459  |+---------------------+------------------+-------------------+|   28     9     458\$ |  124  345*    6  | 145   135      7  ||  257*    1     457* |  245* 379    34  |   8  3469    469  ||    3   457       6  |  147  579*    8  | 145     2   1459  |+---------------------+------------------+-------------------+|  167@   37       9  |  467  478     5  |   2   146   1348  ||    4   357       2  |  678    1    37  |   9    56    358  ||  156@    8     135  |    9   34     2  | 145     7  13456  |+---------------------+------------------+-------------------+ . . . | . / . | . . . . . . | . # . | . . . . . * | . / . | . . . ------+-------+------ . . . | . X . | . . . X / X | X / / | / / / . . . | . X . | . . . ------+-------+------ . . . | . / . | . . . . . . | . / . | . . . . . . | . / . | . . .`

Here's a Mutant Jellyfish which truely deserves the name of mutant
Code: Select all
`Mutant Jellyfish: r58c36/b1478,fins=r2c6,r5c1+------------------------+-----------------------+-------------------+|       5   12789   128* | 124689   12489     3  | 1467   167   147  || 13467-8   13678   138* |      5     148    48# |    2     9  1347  ||   12349    1239   123  |  12469       7    24  | 1456     8  1345  |+------------------------+-----------------------+-------------------+|    1238    1238     5  |      7    2489  2468* |  146    16   149  ||      78#      4     6  |     89*    589*    1  |    3     2   579  ||     127     127     9  |      3     245  2456  |    8  1567  1457  |+------------------------+-----------------------+-------------------+|    1268    1268     7  |   1248  123458  2458* |    9   135    28  ||     128*   1258*    4  |    128*  12358*    9  |  157  1357     6  ||   12389  123589  1238* |    128       6     7  |   15     4    28  |+------------------------+-----------------------+-------------------+ . . X | . . / | . . . * . X | . . # | . . . . . / | . . / | . . . ------+-------+------ . . / | . . X | . . . # / / | X X / | / / / . . / | . . / | . . . ------+-------+------ . . / | . . X | . . . X X / | X X / | / / / . . X | . . / | . . .`
Last edited by Mike Barker on Fri Nov 17, 2006 11:31 pm, edited 1 time in total.
Mike Barker

Posts: 458
Joined: 22 January 2006

Mike Barker wrote:We don't have many true examples yet. There are many over at the Benchmark Sudoku List, the Effortless Extreme Thread, and the Local Zoo. Here are a few from the zoo. Do we want to develop a complete set of true examples? If so I can continue to pull them out of the existing data bases.

A "complete set" would be my vote, but I think you should let others do the simpler patterns. You have one of the few solvers with frankenfish capabilities and you're obviously one of the better programmers around here ... so I'd like to see you search for the complex patterns.

For example, for starters would you pull together a small collection of unfinned franken jellyfish -- with only rows or only cols in the base set as you do now? If so, try to find a variety of placements ... say P=0,1,2,3. And then do the same for the unfinned franken squirmbag?

It would be nice if your solver would emulate the technique set of Simple Sudoku (SS) here ... so learners could cut & paste the puzzle into SS and just sit on the F11 key to get to the pencilmarks of the frankenfish. Obviously not necessary though.

Of course the fact that the same eliminations can be done so many different ways begs the question, Is there a minimal set of fish which should be defined?

I suspect we wouldn't be able to rule out any those four. Take another look at them in my post. The no-candidate (empty cell) requirements are different for each one. So add a candidate here or there ... and another here or there ... and suddenly you're left with only one of the four fish capable of making the eliminations.
ronk
2012 Supporter

Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

There are several similarities between fish and other techniques. We've seen line-box reductions, empty rectangles, grouped X-cycles and AIC.

Since this is the ultimate fish guide, here are some other similarities:

2 Sashimi X-Wings = 1 Skyscraper.

Code: Select all
` .  /  .  | .  .  .  | .  /  .  .  X  .  | .  .  .  | * (X) *  .  /  .  | .  .  .  | .  #  . ----------+----------+--------- .  /  .  | .  .  .  | .  /  .  .  /  .  | .  .  .  | .  /  .  .  /  .  | .  .  .  | .  /  . ----------+----------+--------- .  /  .  | .  .  .  | .  /  .  .  X  .  | .  .  .  | .  X  .  .  /  .  | .  .  .  | .  /  .  Sashimi X-Wing c28\r28 .  /  .  | .  .  .  | .  /  .  .  #  .  | .  .  .  | .  /  .  * (X) *  | .  .  .  | .  X  . ----------+----------+--------- .  /  .  | .  .  .  | .  /  .  .  /  .  | .  .  .  | .  /  .  .  /  .  | .  .  .  | .  /  . ----------+----------+--------- .  /  .  | .  .  .  | .  /  .  .  X  .  | .  .  .  | .  X  .  .  /  .  | .  .  .  | .  /  .  Sashimi X-Wing c28\r38 .  /  .  | .  .  .  | .  /  .  .  X  .  | .  .  .  | *  /  *  *  /  *  | .  .  .  | .  X  . ----------+----------+--------- .  /  .  | .  .  .  | .  /  .  .  /  .  | .  .  .  | .  /  .  .  /  .  | .  .  .  | .  /  . ----------+----------+--------- .  /  .  | .  .  .  | .  /  .  .  X  .  | .  .  .  | .  X  .  .  /  .  | .  .  .  | .  /  .  Skyscraper`

Mutant fish rcb, when finned in the box, is a 2-string kite.

Code: Select all
` *  X  *  | .  .  .  | .  *  .  X  /  X  | /  /  /  | /  X  /  *  X  *  | .  .  .  | .  *  . ----------+----------+--------- .  /  .  | .  .  .  | .  *  .  .  /  .  | .  .  .  | .  *  .  .  /  .  | .  .  .  | .  *  . ----------+----------+--------- .  /  .  | .  .  .  | /  X  /  *  X  *  | *  *  *  | X *X  X  .  /  .  | .  .  .  | /  X  /  Mutant swordfish rcb\rcb .  X  .  | .  .  .  | .  .  .  X  /  X  | /  /  /  | /  X  /  .  X  .  | .  .  .  | .  .  . ----------+----------+--------- .  /  .  | .  .  .  | .  .  .  .  /  .  | .  .  .  | .  .  .  .  /  .  | .  .  .  | .  .  . ----------+----------+--------- .  /  .  | .  .  .  | #  X  #  .  X  .  | .  .  .  | X *X  X  .  /  .  | .  .  .  | #  X  #  Finned Mutant swordfish rcb\rcb .  X  .  | .  .  .  | .  .  .  X  /  X  | /  /  /  | /  X  /  .  X  .  | .  .  .  | .  .  . ----------+----------+--------- .  /  .  | .  .  .  | .  .  .  .  /  .  | .  .  .  | .  .  .  .  /  .  | .  .  .  | .  .  . ----------+----------+--------- .  /  .  | .  .  .  | .  .  .  .  X  .  | .  .  .  | .  *  .  .  /  .  | .  .  .  | .  .  .  2-string kite`

Well ... it could be a 2-string kite if each line had only one candidate in box 1. Seems that we can relax the definition of 2-string kite a little.

Ruud
Ruud

Posts: 664
Joined: 28 October 2005

Here's a few finless Franken Jellyfish (one column version and one row version). Note I'm using "." where a candidate could exist, but does not. Let me know if there is a preferred way.
Code: Select all
`Column Finless Franken Jellyfish: c1478/r568b3 => r5c5<>9,r6c23<>9,r8c23<>9...3.9.7.8..4.....1........2..5..6...3.....4.....1....5.....8......2.1.....7....9+--------------------------+---------------------+---------------------+|    46     2456     2456  |    3     8       9  |  245      7      1  ||     8     2579    23579  |    4   567       1  | 2359* 23569*  2356  ||     1     4579    34579  |   26   567    2567  | 3459* 35689* 34568  |+--------------------------+---------------------+---------------------+|     2     4789     4789  |    5  3479    3478  |    6      1     38  ||   679*       3        1  | 2689* 67-9    2678  | 2579*     4    258  ||  4679* 45678-9  45678-9  | 2689*    1  234678  | 2379*  2389*   238  |+--------------------------+---------------------+---------------------+|     5    24679    24679  |    1  3469     346  |    8    236  23467  || 34679*  4678-9   4678-9  |  689*    2   34568  |    1    356  34567  ||   346        1     2468  |    7  3456   34568  | 2345   2356      9  |+--------------------------+---------------------+---------------------+ / . . | / . . | . . . / . . | / . . | X X . / . . | / . . | X X . ------+-------+------ / . . | / . . | / / . X . . | X * . | X . . X * * | X . . | X X . ------+-------+------ / . . | / . . | / / . X * * | X . . | . . . / . . | / . . | / / .Row Finless Franken Jellyfish: r1368/c125b3 => r7c5<>5..7.3.......5..2...4...89.183..2........4.........9.12.81.....4..97...2....4.3..9+-----------------+-------------------+---------------------+| 1259* 1259*  7  | 1269     3  1246  |  568*  4568*   568* ||  169   169   8  |    5   179    14  |    2    347     37  ||   25*    4   3  |   26    67     8  |    9    567*     1  |+-----------------+-------------------+---------------------+|    8     3  56  |   16     2  1567  |    4      9    567  ||   19    19   2  |   38     4   567  |  567  35678  35678  ||  567*  567*  4  |   38    56*    9  |   38      1      2  |+-----------------+-------------------+---------------------+|    3     8   1  |  269   9-5   256  |  567    567      4  ||    4    56*  9  |    7  1568*   16  |  138      2     38  ||   27    27  56  |    4    18     3  | 1568    568      9  |+-----------------+-------------------+---------------------+ X X / | / . / | X X X . . . | . . . | . . . X . / | / . / | . X . ------+-------+------ . . . | . . . | . . . . . . | . . . | . . . X X / | / X / | / / / ------+-------+------ . . . | . * . | . . . . X / | / X / | / / / . . . | . . . | . . .`

Here's a few finless franken swordfish as well:
Code: Select all
`Column Finless Franken Swordfish: c134/r14b7 => r8c2<>7,r14c5<>7.....1...9.468...1..6.3...7......6..6....9..44.25...83...8...4.3..19...........78+----------------------+---------------------+-----------------+| 2578*    235    357* | 2479* 245-7      1  | 48  23569  256  ||    9    2357      4  |    6      8    257  | 25    235    1  || 1258     125      6  |  249      3    245  | 48    259    7  |+----------------------+---------------------+-----------------+|  157*   1359  13579* | 2347* 124-7      8  |  6    125   25  ||    6    1358   1358  |   23     12      9  |  7    125    4  ||    4      17      2  |    5    167     67  |  9      8    3  |+----------------------+---------------------+-----------------+| 1257*   1256    157* |    8   2567  23567  | 13      4    9  ||    3    48-7     78* |    1      9     47  | 25    256  256  ||  125  124569    159  |   24   2456  23456  | 13      7    8  |+----------------------+---------------------+-----------------+ X . X | X * . | . . . / . / | / . . | . . . / . / | / . . | . . . ------+-------+------ X . X | X * . | . . . / . / | / . . | . . . / . / | / . . | . . . ------+-------+------ X . X | / . . | . . . . * X | / . . | . . . . . . | / . . | . . .Row Finless Franken Swordfish: r568/c26b6 => r23c2<>5,r4c7<>5.135.........7.4...........1......892.4.6....7.........8.1.....6.....2.....9.3...+---------------------+------------------+----------------------+|   48       1     3  |    5    9   248  |   78    267    2678  ||  589    26-5   256  |  268    7   128  |    4  12359   12358  || 4589  2467-5  2567  | 2468    3  1248  | 1589   1259    1258  |+---------------------+------------------+----------------------+|    1      36    56  |  247   45   247  |367-5      8       9  ||    2     359*    4  |   78    6  5789* | 1357*   157*    157* ||    7     569*    8  |    3    1    59* |   56*    24      24  |+---------------------+------------------+----------------------+|    3       8   279  |    1  245     6  |  579   4579     457  ||    6      45*   19  |   47    8    57* |    2    139      13  ||   45      27   127  |    9  245     3  | 1578  14567  145678  |+---------------------+------------------+----------------------+ . . . | . . . | . . . . * . | . . . | . . . . * . | . . . | . . . ------+-------+------ . . . | . . . | * . . / X / | / / X | X X X / X / | / / X | X . . ------+-------+------ . . . | . . . | . . . / X / | / / . | / / / . . . | . . . | . . .`
Mike Barker

Posts: 458
Joined: 22 January 2006

Ruud wrote:Well ... it could be a 2-string kite if each line had only one candidate in box 1. Seems that we can relax the definition of 2-string kite a little.
Ruud

This reminds me of a post long forgotten: http://forum.enjoysudoku.com/viewtopic.php?p=22737#p22737

Havard
Havard

Posts: 377
Joined: 25 December 2005

Here's a Finless Franken Squirmbag. Normally I try to find puzzles where the highlighted technique is in some sense the next logical one. To find this guy I dumbed down my solver so there are lots of other techniques possible. If you throw it into simple sudoku you still don't quite get the same pencil marks because SS doesn't do finned fish. Some of of the previous fish also don't quite resolve in SS, however, you can get pretty close.
Code: Select all
`Row Finless Franken Squirmbag: r12359/c1246b3 => r78c6<>78.3.9.56..49.8...3....6.......5..8......4.9...51..2...2.......55..4.......4..1..9+--------------+-----------------+-----------------+|  8  27*   3  |   1   9     47* |    5    6  247* ||  6   4    9  |  27*  8      5  |   17* 127*   3  ||  1  27*   5  | 237*  6    347* |   47*   9    8  |+--------------+-----------------+-----------------+|  4  36   67  |   5   1      9  |    8  237   27  || 37*  8    2  | 367*  4    367* |    9    5    1  ||  9   5    1  |   8  37      2  | 3467  347  467  |+--------------+-----------------+-----------------+|  2   1  678  |   9  37  368-7  | 3467  347    5  ||  5   9  678  |   4   2  368-7  | 1367  137   67  || 37* 36    4  |  67*  5      1  |    2    8    9  |+--------------+-----------------+-----------------+ . X / | . / X | . . X  . . . | X / . | X X .  . X / | X / X | X . .  ------+-------+------  . . . | . . . | . . .  X . / | X / X | / / /  . . . | . . . | . . .  ------+-------+------  . . . | . . * | . . .  . . . | . . * | . . .  X . / | X / . | / / / `

Not surprising this guy has a mutant alternative (as opposed to the dual which is a c35b69 finless Franken Jellyfish):
Code: Select all
`Mutant Swordfish: r59c5/c1b58 => r78c6<>7+--------------+------------------+-----------------+|  8  27    3  |   1    9     47  |    5    6  247  ||  6   4    9  |  27    8      5  |   17  127    3  ||  1  27    5  | 237    6    347  |   47    9    8  |+--------------+------------------+-----------------+|  4  36   67  |   5    1      9  |    8  237   27  || 37*  8    2  | 367*   4    367* |    9    5    1  ||  9   5    1  |   8   37*     2  | 3467  347  467  |+--------------+------------------+-----------------+|  2   1  678  |   9   37* 368-7  | 3467   47    5  ||  5   9  678  |   4    2  368-7  | 1367  137   67  || 37* 36    4  |  67*   5      1  |    2    8    9  |+--------------+------------------+-----------------+`
Last edited by Mike Barker on Sat Nov 18, 2006 1:50 pm, edited 1 time in total.
Mike Barker

Posts: 458
Joined: 22 January 2006

Here are a few additional Kraken Fish as well. The last one is the most interesting since it is not only cannibalistic, but also uses part of the fish in creating the nice links.
Code: Select all
`1-link Kraken Row X-Wing: r38/c1b2,fins=r8c34(r8c4|r3c6|r3c5-3-r12c4-8-, r8c3=8=r8c8-8-): r3c156|r8c134=3 => r2c8<>88...2.1.......9....651...2....5....3.3..61....874......1.24.3......169.4......7..+--------------------+------------------+----------------------+|     8  479    349  |  36@    2  3457  |    1    34579  5679  ||  1234  247   1234  | 368@ 3578     9  | 4568  34567-8  5678  ||   349*   6      5  |   1   378* 3478* |   48        2   789  |+--------------------+------------------+----------------------+| 12469  249  12469  |   5   789   278  | 2468    46789     3  ||  2459    3    249  | 789     6     1  | 2458    45789  5789  ||  2569    8      7  |   4    39    23  |  256      569     1  |+--------------------+------------------+----------------------+|    79    1     89  |   2     4   578  |    3      568   568  ||   237*  25   238#\$ |  37#    1     6  |    9       58\$    4  ||   346   45   3468  | 389  3589   358  |    7        1     2  |+--------------------+------------------+----------------------+ . . . | . . . | . . . . . . | . . . | . * . X . / | . X X | / / / ------+-------+------ . . . | . . . | . . . . . . | . . . | . . . . . . | . . . | . . . ------+-------+------ . . . | . . . | . . . X / # | # / / | / / / . . . | . . . | . . .1-link Kraken Column X-Wing: c57/r3b6,fins=r1c7,r6c5 (r45c7|r6c5-4-r6c8|r45c9-5-, r1c7-4-r1c28-5-) => r1c9<>5..7..8.....6.2.3...3......9.1..5..6.....1.....7.9....2........4.83..4...26....51.+------------------+---------------------+----------------------+|  1459  245\$   7  |   1356    39     8  |   246#    245\$ 16-5  || 14589  459    6  |   1457     2  1579  |     3    4578   158  ||  1458    3  128  |   4567    47* 1567  | 24678*  24578     9  |+------------------+---------------------+----------------------+|  3489    1  289  |  23478     5   237  |  4789*      6    38@ || 34689  249  289  | 234678     1  2367  |  4789* 345789   358@ || 34568    7   58  |      9    48#   36  |     1     348@    2  |+------------------+---------------------+----------------------+|     7   59  159  |    125   368   125  |    68      38     4  ||    15    8    3  |     15    67     4  |    29      29    67  ||     2    6    4  |    378  3789   379  |     5       1   378  |+------------------+---------------------+----------------------+ . . . | . / . | # . * . . . | . / . | / . . . . . | . X . | X . . ------+-------+------ . . . | . / . | X . . . . . | . / . | X . . . . . | . # . | . . . ------+-------+------ . . . | . / . | / . . . . . | . / . | / . . . . . | . / . | / . .1-link Kraken Row Swordfish: r258/c356,fins=r2c2,r5c8,r8c9(r2c2=7=r1c3-7-, r5c8=7=r5c7-7-, r8c3-3-r1c3-7-, r8c9=7=r2c9-7-): r2c256|r5c68|r8c3569=3 => r1c7<>7.5..9......12.......6..73.8....2...4...98...53.....91.7.....6...4.8..1..1.8.7....+-------------------+----------------------+---------------------+|  248     5   37@% |   346     9    3468  | 24-7   2467      1  ||  489   37#@    1  |     2  3456*  34568* |   45   4679    679& ||  249    29     6  |   145   145       7  |    3   2459      8  |+-------------------+----------------------+---------------------+|  569  1679   579  | 13567     2    1356  |    8     36      4  ||   26   126    24  |     9     8     134* |   27\$ 2367#\$     5  ||    3     8  2457  |  4567   456     456  |    9      1     26  |+-------------------+----------------------+---------------------+|    7   239  2359  |  1345  1345  123459  |    6      8    239  || 2569     4  2359* |     8   356*  23569* |    1   2579  2379#& ||    1   369     8  |   356     7   23569  |  245   2459    239  |+-------------------+----------------------+---------------------+ . . . | . . . | * . . / # . | / X X | / / / . . . | . . . | . . . ------+-------+------ . . . | . . . | . . . / / . | / . X | / # / . . . | . . . | . . . ------+-------+------ . . . | . . . | . . . / / X | / X X | / / # . . . | . . . | . . .1-link Kraken Column Swordfish: c346/r1b58,fins=r3c6,r9c3(r346c6|r9c3-7-r9c6-4-, r6c4-7-r128c4-4-): r19c3|r1678c4|r34679c6=7 => r7c4<>46....38......2...7..95.....96.18....7.........8.....49.........3.2.95...1..6..2.5+--------------------+----------------------+------------------------+|   6  12457    157* |   479*\$  147      3  |      8    1259    124  || 458   1345  13458  |    489\$    2  14689  | 134569   13569      7  || 248  12347      9  |      5  1467  14678# |   1346    1236  12346  |+--------------------+----------------------+------------------------+|   9      6    345  |      1     8    247* |    357    2357     23  ||   7  12345   1345  |   2349  3456   2469  |   1356  123568  12368  ||  25      8    135  |    237* 3567    267* |  13567       4      9  |+--------------------+----------------------+------------------------+| 458   4579      6  | 2378-4* 1347  12478* |   3479    3789    348  ||   3     47      2  |   478*\$    9      5  |   1467    1678   1468  ||   1    479    478# |      6   347    47*@ |      2    3789      5  |+--------------------+----------------------+------------------------+ . . X | X . . | . . . . . / | / . / | . . . . . / | / . # | . . . ------+-------+------ . . / | . . X | . . . . . / | . . . | . . . . . / | X . X | . . . ------+-------+------ . . / |*X . X | . . . . . / | X . . | . . . . . # | . . X | . . .`
Mike Barker

Posts: 458
Joined: 22 January 2006

Mike Barker wrote:Here are a few additional Kraken Fish as well.

Mike, for a "pattern" that includes a chain to be a fish, don't you think we should be able to make the exclusion(s) based on only the candidates of a single digit?

I certainly do ... and also think the exclusion(s) neet to be true if all the fin cells are false.
ronk
2012 Supporter

Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

As long as we are clear about the definitions being used, what titles we give things is a process of mutually agreeing on the words. Myth's "Kraken Fish" used the same digit throughout; Anne's did not. Kraken fish, as I use the term, are closely related to Almost fish. In fact, they are my way of understanding how to construct an Almost Fish nice loop expanded to allow multiple chains. In this context the links clearly do not have to contain only one digit. We can use one term to identify "Kraken Fish" with only one digit and another to identify eliminations when the CEC uses a different candidate then the fish. My personal opinion is that the former catagory may be too restrictive since it eliminates most of the linking element options (ALS/bivalues and 8 of 9 strong link options in a 1-link fish).
Mike Barker

Posts: 458
Joined: 22 January 2006

Mike Barker wrote:Here ... Row Finless Franken Squirmbag: r12359/c1246b3 => r78c6<>7
8.3.9.56..49.8...3....6.......5..8......4.9...51..2...2.......55..4.......4..1..9
...
Code: Select all
` . X / | . / X | . . X  . . / | X / . | X X .  . X / | X / X | X . .  ------+-------+------  . . . | . . . | . . .  X . / | X / X | / / /  . . . | . . . | . . .  ------+-------+------  . . . | . . * | . . .  . . . | . . * | . . .  X . / | X / . | / / / `

Not surprising this guy has a mutant alternative (as opposed to the dual which is a c35b69 finless Franken Jellyfish):
Mutant Swordfish: r59c5/c1b58 => r78c6<>7

Based on just the "empty cells" in your grid above, an equivalent alternative would be r59c14\b4578
Code: Select all
` X X / | X / X | X X X                . . / | . / . | . . .  X X / | X / X | X X X                . . / | . / . | . . .  X X / | X / X | X X X                . . / | . / . | . . . -------+-------+-------              -------+-------+------- * * . | * . * | . . .                * * X | * X * | . . .  X X / | X / X | / / /                X X / | X / X | / / /  * * . | * . * | . . .                * * X | * X * | . . . -------+-------+-------              -------+-------+------- * * . | * . * | . . .                * * X | * X * | . . .  * * . | * . * | . . .                * * X | * X * | . . .  X X / | X / X | / / /                X X / | X / X | / / /  finless                              finless franken squirmbag rrrrr\ccccb        mutant jellyfish rrcc\bbbb`

This suggests that every franken squirmbag with 3 lines in one band and 1 line in each of the other 2 bands ... has 4 empty rectangles as an equivalent.
ronk
2012 Supporter

Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

So, is the Finned Mutant Jellyfish .... the biggest fish to catch in the vanilla ocean

tarek

Posts: 2685
Joined: 05 January 2006

I believe there should always be a finless mutant Jellyfish (or smaller fish) to perform the same eliminations as a finless Franken Squirmbag given the new definition of a Franken fish. I'm not so sure about finned Franken Squirmbags, but I haven't seen any yet given Mutant fish alternatives. There are, however, plenty of Finned Mutant Squirmbags. I've posted a couple here. Here's another:
Code: Select all
`Finned Mutant Squirmbag: r259c3b9/r18c269,fins=r2c8,r7c7 => r1c7<>1+---------------------+---------------------+---------------------+|     4   1267   127* |  2378     5   3678  | 36-1   1236      9  ||  2679  12679*    3  |     4   267    267  |    8   1256# 12567* ||   267      8     5  |     1  2367      9  |  346    236   2467  |+---------------------+---------------------+---------------------+| 23679  23679   278  |  2357  1237      4  | 1356   1356   1568  ||   367   3467    47  |   357     8   1357* |    2      9   1456* ||     1      5   248  |     6     9     23  |   34      7     48  |+---------------------+---------------------+---------------------+|     8   1237     6  | 23579  1237  12357  |  159#     4    125* ||     5    124  1247* |  2789  1267  12678  |  169*   126*     3  ||    23    123*    9  |   235     4  12356* |    7      8    256  |+---------------------+---------------------+---------------------+ . . X | . . . | * . . . X . | . . . | . # X . . . | . . . | . . . ------+-------+------ . . . | . . . | . . . . . . | . . X | . . X . . . | . . . | . . . ------+-------+------ . . . | . . . | # . X . . X | . . . | X X . . X . | . . X | . . .`
Last edited by Mike Barker on Wed Nov 22, 2006 9:27 am, edited 1 time in total.
Mike Barker

Posts: 458
Joined: 22 January 2006

Mike Barker wrote:There are, however, plenty of Finned Mutant Squirmbags

This just proves how powerful fish can be....because of the mixing of rows & columns....I'm not sure how big the fish can get

tarek

tarek

Posts: 2685
Joined: 05 January 2006

Mike Barker wrote:I believe there should always be a finless Franken Jellyfish (or smaller fish) to perform the same eliminations as a finless Franken Squirmbag given the new definition of a Franken fish. I'm not so sure about finned Franken Squirmbags, but I haven't seen any yet given Mutant fish alternatives.

I'm not sure of the meaning of your second sentence but I believe ...

Given a franken fish, there is always a smaller alternative fish that yields the same eliminations. The franken fish may be either finned or unfinned and the alternative will be either franken or mutant.

There are, however, plenty of Finned Mutant Squirmbags. I've posted a couple here. Here's another ...

It appears no such statement will apply to the mutants.
ronk
2012 Supporter

Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

PreviousNext