The Ultimate FISH Guide

Advanced methods and approaches for solving Sudoku puzzles

Re: re: Franken Swordfish - "degenerate" cases

Postby ronk » Thu Dec 21, 2006 4:26 pm

Pat wrote:
ronk wrote:To what degenerate franken swordfish do you refer?
I see none in the exemplar catalog.
ccc\rrb
(...)
ccc\rbb
(...)

Well I sure didn't transfer those to the catalog.:( Thanks, I'll get busy.

Wondering if my subconcious dislikes degenerates, Ron:)
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Postby ronk » Thu Dec 21, 2006 4:45 pm

Here are five examples -- four finned franken and one finned mutant -- with the first three having two fins. For some prior history see daj's thread here.
Code: Select all
7..96.1....4..26.3...3.5.2.14......2..7.2.4..9......67.7.6.3...4.62..3....1.94..6 #B026 8
After SSTS ...
  .  .  . |  .  .  . |  .  .  .
 *8  8  . |  .  .  . |  . *8  .
  .  .  8 |  .  .  . |  .  . #8
 ---------+----------+----------
  .  .  8 |  .  8  . |  .  8  .
 *8  .  . | *8  .  . |  .  8 -8
  .  8  8 |  .  8  . | #8  .  .
 ---------+----------+----------
 *8  .  8 |  .  8  . | *8  8  8
  .  8  . |  .  8  . |  .  8  8
 *8  8  . | *8  .  . | *8  .  .
 2-finned franken jellyfish c147b3\r2579


6..9.4.....4.8...29...7......2..97.8.1.748.5.7.92..4......9...55...2.8.....4.5..7 #B107 3
After SSTS ...
 .  .  . |  . *1  . |  .  . *1
 .  .  . |  .  .  . |  .  .  .
 .  .  . | #1  .  . |  1  .  .
---------+----------+----------
 .  .  . |  1  1  . |  .  1  .
 .  .  . |  .  .  . |  .  .  .
 .  .  . |  .  . *1 |  .  1 *1
---------+----------+----------
 .  .  1 |  .  . #1 |  1  1  .
 .  .  1 | -1  . *1 |  .  . *1
 .  .  1 |  .  1  . |  1  .  .
 2-finned franken swordfish c69b2\r168 plus fins r3c4 and r7c6


Another 2-finned franken jellyfish from a Myth Jellies post that Mike Barker quoted here:
Code: Select all
..53..6...23.7..4.....1..383584....1.64251.8.21..38..443..2.....72.4..9...1..34..

After SSTS ...
*7  .  . |  .  .  . |  . *7 *7
 .  .  . |  .  .  . |  .  .  .
 7  .  7 |  .  .  . |  7  .  .
---------+----------+----------
 .  .  . |  .  . #7 |  7 -7  .
*7  .  . |  .  .  . | #7  . *7
 .  .  7 | *7  .  . |  7  7  .
---------+----------+----------
 .  .  . |  7  .  7 |  7  7  7
 .  .  . |  .  .  . |  .  .  .
 .  .  . | *7  .  . |  . *7 *7
 2-finned franken jellyfish r159b5\c1489 plus fins r4c6 and r5c7


Although the last is a finned mutant squirmbag, two perhaps less interesting examples with a single fin:
Code: Select all

.4.6.8....1..5.8..7.8.3....4....25..2...6...8..57....4....1.3.2..7.4..8....5.3.6. #B212 9
After SSTS ...
 .  . *2 |  . #2  . | -2 -2  .
 .  . *2 | *2  .  . |  .  2  .
 .  2  . |  .  .  . |  2  2  .
---------+----------+----------
 .  .  . |  .  .  . |  .  .  .
 .  .  . |  .  .  . |  .  .  .
 .  .  . |  .  .  . |  2  2  .
---------+----------+----------
 .  .  . |  .  .  . |  .  .  .
 .  2  . |  2  .  . |  .  .  .
 .  2 *2 |  . *2  . |  .  .  .
 finned franken swordfish c35b2\r129 with fin r1c5


39.......7.1.9...8.4.17..9.56.8.......3...7.......6.53.3..89.6.1...4.5.9.......87 #B195 2
After SSTS ...
 .  . -2 |  2  2  . |  2  .  2
 . *2  . |  2  .  . |  2 *2  .
*2  . *2 |  .  .  . | *2  . *2
---------+----------+----------
 .  . #2 |  .  .  . |  .  . *2
 2  .  . |  2  2  . |  . *2  .
 2  .  2 |  2  2  . |  .  .  .
---------+----------+----------
*2  .  . |  .  .  . | *2  . *2
 .  .  . |  .  .  . |  .  .  .
 2 *2 -2 |  .  .  . |  2  .  .
 finned mutant squirmbag r347c28\b13679 plus fin r4c3

Special thanks to daj for generating and filtering most of these puzzles and spotting some of the fish.

[edit: The last grid was incorrectly identified as franken.]
Last edited by ronk on Thu Dec 21, 2006 3:23 pm, edited 1 time in total.
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

re: _finned_ Mutant Jellyfish example

Postby Pat » Thu Dec 21, 2006 5:21 pm

ronk wrote:B195 2
39.......7.1.9...8.4.17..9.56.8.......3...7.......6.53.3..89.6.1...4.5.9.......87

After SSTS ...
Code: Select all
 .  . -2 |  2  2  . |  2  .  2
 . *2  . |  2  .  . |  2 *2  .
*2  . *2 |  .  .  . | *2  . *2
---------+----------+----------
 .  . #2 |  .  .  . |  .  . *2
 2  .  . |  2  2  . |  . *2  .
 2  .  2 |  2  2  . |  .  .  .
---------+----------+----------
*2  .  . |  .  .  . | *2  . *2
 .  .  . |  .  .  . |  .  .  .
 2 *2 -2 |  .  .  . |  2  .  .


finned franken squirmbag r347c28\b13679 plus fin r4c3

      perhaps a finned Mutant Jellyfish ?
      • mixing Rows + Columns would make it Mutant
      • i expect a Squirmbag is complemented by a Jellyfish (or smaller)
User avatar
Pat
 
Posts: 3462
Joined: 18 July 2005

Re: re: _finned_ Mutant Jellyfish example

Postby ronk » Thu Dec 21, 2006 7:14 pm

Pat wrote:
ronk wrote:finned franken squirmbag r347c28\b13679 plus fin r4c3

      perhaps a finned Mutant Jellyfish ?
      • mixing Rows + Columns would make it Mutant
      • i expect a Squirmbag is complemented by a Jellyfish (or smaller)

Oops! That grid should have a different title -- finned mutant squirmbag r347c28\b13679 plus fin r4c3.
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Postby tarek » Thu Dec 21, 2006 8:37 pm

Degenerate patterns are valid.....

The way I see it....it is possible that someone might miss the smaller alternatives while fishing....

On the other hand, I can't recall someone using a naked quad that is actually 2 seperate naked doubles as an example of a naked quad !

I'm sure that you can construct a bigger MONSTER than the -already degenrate- pattern if you looked hard enough...... when should we STOP.

I favour not using degenerate patterns as examples unless they are the only available examples......

tarek
User avatar
tarek
 
Posts: 2631
Joined: 05 January 2006

Postby Mike Barker » Fri Dec 22, 2006 1:36 pm

A few finless Franken fish:
Code: Select all
Column Finless Franken Swordfish: r168c1|r126c2|r68c8 => r13c3<>1,r6c4<>1,r8c79<>1
+-------------------+-----------------+-------------------+
| 137* 167* 3467-1  |    9   5   346  |    18    2  1348  |
|   2   16*      8  |    7  13   346  |     5  346     9  |
|   9    5   346-1  |   12   8  2346  |     7  346   134  |
+-------------------+-----------------+-------------------+
|   5    3      16  |   16   7     9  |    28   48   248  |
|   4    8       9  |  123  12     5  |     6    7    13  |
|  17* 126*    267  | 36-1   4     8  |     9   13*    5  |
+-------------------+-----------------+-------------------+
|   8   27     237  |    5  23     1  |     4    9     6  |
|  13*   9       5  |    4   6     7  | 238-1   18* 28-1  |
|   6    4     123  |    8   9    23  |    13    5     7  |
+-------------------+-----------------+-------------------+

Column Finless Franken Swordfish: r2689c1|r289c2|r26c8 => r2c459<>6,r6c56<>6
+----------------+-----------------------+---------------+
|   3    7    5  |    469     69      2  | 8   1     46  |
| 169*  69* 149  |  458-6  158-6      3  | 2  67* 457-6  |
|   2    8  146  |    456      7    145  | 3   9    456  |
+----------------+-----------------------+---------------+
|   7    3    2  |      1      4     68  | 9   5     68  |
|   8    5   69  |      7      2     69  | 4   3      1  |
| 169*   4   19  |      3  589-6  589-6  | 7  68*     2  |
+----------------+-----------------------+---------------+
|   5  129    7  |    289      3    189  | 6   4     89  |
| 469* 269*   3  | 245689   5689   4569  | 1  78    789  |
| 469* 169*   8  |    469    169      7  | 5   2      3  |
+----------------+-----------------------+---------------+

Column Finless Franken Jellyfish: r568c14|r2356c7|r236c8 => r5c5<>9,r6c23<>9,r8c23<>9
+--------------------------+---------------------+---------------------+
|    46     2456     2456  |    3     8       9  |  245      7      1  |
|     8     2579    23579  |    4   567       1  | 2359* 23569*  2356  |
|     1     4579    34579  |   26   567    2567  | 3459* 35689* 34568  |
+--------------------------+---------------------+---------------------+
|     2     4789     4789  |    5  3479    3478  |    6      1     38  |
|   679*       3        1  | 2689* 67-9    2678  | 2579*     4    258  |
|  4679* 45678-9  45678-9  | 2689*    1  234678  | 2379*  2389*   238  |
+--------------------------+---------------------+---------------------+
|     5    24679    24679  |    1  3469     346  |    8    236  23467  |
| 34679*  4678-9   4678-9  |  689*    2   34568  |    1    356  34567  |
|   346        1     2468  |    7  3456   34568  | 2345   2356      9  |
+--------------------------+---------------------+---------------------+
Mike Barker
 
Posts: 458
Joined: 22 January 2006

Postby Mike Barker » Tue Dec 26, 2006 8:03 pm

We just about have descriptions of all types of fish. X-wings were already covered so here is a shot at other basic fish. I know Pat has been researching the history of fish. I've made a cut at this for Swordfish, but better links are always appreciated.

X-wing eliminations occur when a digit found in two columns is restricted to two rows. In this case the digit can be eliminated from any other cells in the rows. The same is true with rows and columns swapped. Rubylips expanded this concept to three columns and three rows which he called a Swordfish (named for the plane, the Fairey Swordfish, and not the sea creature). In the same thread IJ identifies similiar patterns with four columns or rows as a Jellyfish and five columns or rows as Squirmbags. Even though neither an X-wing, a Swordfish, a Jellyfish, nor a Squirmbag are fish, this collection of techniques is often referred to as N*N fish or Seafood.

Originally it was believed that each column of the fish could only contain two cells with the fish digit, but this restriction is not required. A Swordfish, for example, can be composed of up to nine cells with the fish digit. Not all of the cells need to contain the digit as a candidate.

The elimination logic is the same for each type of "fish". A column fish is defined by "n" columns each of which must contain the fish digit. Since these only occur in the corresponding "n" rows, no other cells in the rows can contain the digit. If so, one of the columns would not contain the digit. The following examples show column and row versions of Swordfish. In the first example the fish is defined by the digit 5 in columns 2, 4, and 7 which is limited to rows 4, 5, and 9. Thus "5" can be eliminated from any cells in rows 4, 5, and 9 except for columns 2, 4, and 7. In the row example, the fish is defined by the digit "9" in rows 1, 5, and 7 which is limited to columns 3, 5, and 9.
Code: Select all
Column Swordfish: r45c2|r459c4|r59c7 => r45c9<>5,r9c56<>5
+-----------------------+-----------------------+-----------------------+
|    5    167    12678  |  148     178       3  |     9  24678    2468  |
| 1246  13679  1236789  |  148    1789   14678  |   268      5   23468  |
|   46   3679    36789  |    2    5789   45678  |    68  34678       1  |
+-----------------------+-----------------------+-----------------------+
|    8    359*      39  |  345*      6      24  |     7      1   239-5  |
|    7   1356*       4  | 1358*    128       9  |  2568*  2368  2368-5  |
|   16      2     1369  |    7     158     158  |     4    368   35689  |
+-----------------------+-----------------------+-----------------------+
|  126      8     1267  |    9       4    1257  |     3     26      56  |
|    9     14        5  |    6       3     128  |   128    248       7  |
|    3   1467     1267  |  158* 1278-5  1278-5  | 12568*     9     468  |
+-----------------------+-----------------------+-----------------------+
 . / . | / . . | / . .
 . / . | / . . | / . .
 . / . | / . . | / . .
 ------+-------+------
 * X * | X * * | X * *
 * X * | X * * | X * *
 . / . | / . . | / . .
 ------+-------+------
 . / . | / . . | / . .
 . / . | / . . | / . .
 * X * | X * * | X * *

Row Swordfish: r17c359|r5c35 => r4c3<>9,r2c59<>9,r3c9<>9
+-------------------+------------------+-----------------+
|    5     1   789* |  4    79*     2  |   3   6     89* |
|    3   679   268  | 69  56-9  15679  |   4  27  158-9  |
| 2679   679     4  |  3     8  15679  |  59  27   15-9  |
+-------------------+------------------+-----------------+
|  679     8  56-9  |  2     1    569  | 567   4      3  |
|    4     2   569* |  7   569*     3  |   1   8     56  |
|    1   567     3  |  8     4     56  | 567   9      2  |
+-------------------+------------------+-----------------+
|    8     3   679* |  1   679*     4  |   2   5     69* |
|   69     4     1  |  5     2      8  |  69   3      7  |
| 2679  5679   256  | 69     3    679  |   8   1      4  |
+-------------------+------------------+-----------------+
 / / X | / X / | / / X
 . . * | . * . | . . *
 . . * | . * . | . . *
 ------+-------+------
 . . * | . * . | . . *
 / / X | / X / | / / X
 . . * | . * . | . . *
 ------+-------+------
 / / X | / X / | / / X
 . . * | . * . | . . *
 . . * | . * . | . . *

When dealing with basic fish (as well as finned and Franken fish), the largest fish required to perform eliminations is the Jellyfish. This is because for each larger fish there will be one or more smaller fish which can perform the same eliminations. The combined size of the smaller fish will be 9-n-p where "n" is the size of the larger fish (n=5 for a squirmbag) and "p" are the number of placements (the number of cells which contain the fish digit - both initial clues and solved cells). In the following diagram, the Squirmbag is formed by the columns of "X"s, however, evaluation of the "."s shows that they form a row Jellyfish which performs the same elimination as the Squirmbag. The Jellyfish is said to be the "dual" of the Squirmbag.
Code: Select all
 X  *  X |  *  X  * |  X  *  X 
 /  .  / |  .  /  . |  /  .  /
 X  *  X |  *  X  * |  X  *  X
---------+----------+----------
 /  .  / |  .  /  . |  /  .  /
 X  *  X |  *  X  * |  X  *  X
 /  .  / |  .  /  . |  /  .  /
---------+----------+----------
 X  *  X |  *  X  * |  X  *  X
 /  .  / |  .  /  . |  /  .  /
 X  *  X |  *  X  * |  X  *  X
Last edited by Mike Barker on Tue Dec 26, 2006 7:20 pm, edited 1 time in total.
Mike Barker
 
Posts: 458
Joined: 22 January 2006

Postby ronk » Tue Dec 26, 2006 8:56 pm

Mike Barker wrote:We just about have descriptions of all types of fish. X-wings were already covered so here is a shot at other basic fish. I know Pat has been researching the history of fish. I've made a cut at this for Swordfish, but better links are always appreciated.

Mike, thanks for posting this description ... and your prior descriptions as well.
Last edited by ronk on Wed Dec 27, 2006 1:34 am, edited 2 times in total.
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Postby Mike Barker » Tue Dec 26, 2006 11:21 pm

Here's a installment on finned and sashimi fish which should give us descriptions of all the types of fish we've identified.

Finned and Sashimi Fish

Myth Jellies relaxed the constraints on a basic fish by introducing what has come to be known as finned fish (originally a fillet-o-fish). A fin consists of additional candidates in the column(s) or row(s) making up the fish which are in the same box as one of the cells of the fish. When a fin is present, normal fish eliminations which are also in the same box as the fin can be made. This is possible because if the candidate elimination cell is in the box then candidates making up the fin are eliminated reducing the structure to a standard unfinned fish.

Consider the following X-wings. The fin in the first example is r13c8 (cells in the same box and column as one of the fish cells, that is, box 3 and column 8). Normal fish eliminations would be in rows 2 and 6, but because of the fin they are limited to box 3 or r2c79. Candidates in either of these cells eliminate the fin and the candidates in row 2 which prevents placement of "2" in both columns 2 and 8. In the row X-wing example, the fin is r7c23 which limits normal fish eliminations to box 7.
Code: Select all
Column Finned X-Wing: r26c2|r1236c8 => r2c79<>2
+------------------+-------------+--------------------------+
| 134    7  12348  | 126  9   5  |    1236  23468#    1236  |
|   5  124*  1234  | 126  8   7  | 13469-2   2346* 13469-2  |
|   6    9    128  |  12  3   4  |       5     28#       7  |
+------------------+-------------+--------------------------+
|   8    3    246  |   7  1  69  |    2469      5     2469  |
| 149    5      7  |   3  2  69  |    1469     46        8  |
|  19   12*   126  |   4  5   8  |       7    236*   12369  |
+------------------+-------------+--------------------------+
|   2   46      9  |   8  7   3  |      46      1        5  |
|   7   48     34  |   5  6   1  |    2348      9      234  |
|  13  168      5  |   9  4   2  |     368      7       36  |
+------------------+-------------+--------------------------+
 . / . | . . . | . # .
 . X . | . . . | * X *
 . / . | . . . | . # .
 ------+-------+------
 . / . | . . . | . / .
 . / . | . . . | . / .
 . X . | . . . | . X .
 ------+-------+------
 . / . | . . . | . / .
 . / . | . . . | . / .
 . / . | . . . | . / .

Row Finned X-Wing: r3c19|r7c1239 => r89c1<>1
+-----------------+----------------+----------------+
|    8    3    4  |   5    1   69  |  2     7   69  |
|  127    6   12  |  79    8    4  | 15     3  159  |
|   17*   5    9  |   3    2   67  |  4     8   16* |
+-----------------+----------------+----------------+
|    3   19    5  |   8   69    2  |  7   169    4  |
|    6    2   17  |   4    5  179  |  8    19    3  |
|    4  179    8  | 179  679    3  | 15  1569    2  |
+-----------------+----------------+----------------+
|  125*  17# 127# |   6    3    8  |  9     4   15* |
|  9-1    4    6  | 179   79    5  |  3     2    8  |
| 59-1    8    3  |   2    4   19  |  6    15    7  |
+-----------------+----------------+----------------+
 . . . | . . . | . . .
 . . . | . . . | . . .
 X / / | / / / | / / X
 ------+-------+------
 . . . | . . . | . . .
 . . . | . . . | . . .
 . . . | . . . | . . .
 ------+-------+------
 X # # | / / / | / / X
 * . . | . . . | . . .
 * . . | . . . | . . .

In a fish each column or row must contain at least two candidates (otherwise it degenerates into a hidden single). In the case of a finned fish, one of these two candidates may be part of the fin. Myth Jellies refers to this as the "Sashimi Observation". A Sashimi fish differs from a finned fish in that if the fins are removed from a finned fish then a viable basic fish of the original size remains. If they are removed from a Sashimi fish then the resulting fish is non-viable at the original size.

Consider the following column and row X-wings. In the first example, r3c7 is not part of the basic X-wing, but does satisfy the sashimi observation (it is part of a fin) and thus the eliminations in r1c89 are possible. Similarly, r4c56 are part of a fin for the row X-wing making the elimination in r6c4 possible.
Code: Select all
Sashimi Column Finned X-Wing: r19c1|r39c7 => r1c89<>9
+---------------+-------------+------------------+
| 189* 4  1279  | 3  278   5  |   6  8-9  178-9  |
|  18  3   127  | 6  278   9  |   4    5    178  |
|   6  5    79  | 4   78   1  | 389#   2   3789  |
+---------------+-------------+------------------+
|   3  1     8  | 2    9   7  |   5    6      4  |
|   4  9     5  | 1    6  38  |  38    7      2  |
|   2  7     6  | 5    4  38  |   1  389    389  |
+---------------+-------------+------------------+
|   7  8     3  | 9    5   4  |   2    1      6  |
|   5  6    19  | 8   13   2  |   7    4     39  |
|  19* 2     4  | 7   13   6  | 389* 389      5  |
+---------------+-------------+------------------+
 X . . | . . . | / * *
 / . . | . . . | . . .
 / . . | . . . | # . .
 ------+-------+------
 / . . | . . . | / . .
 / . . | . . . | / . .
 / . . | . . . | / . .
 ------+-------+------
 / . . | . . . | / . .
 / . . | . . . | / . .
 X . . | . . . | X . .

Sashimi Row Finned X-Wing: r1c48|r4c568 => r6c4<>9
+-----------------+------------------+----------------+
|  137  4    357  |  359*    6    8  |   2  159*  37  |
|  123  9   2358  |    7    25   13  |   4    6   38  |
| 1237  6  23578  | 3459  2459  139  |  59  159  378  |
+-----------------+------------------+----------------+
|    8  7      4  |    1    59#  39# |   6  359*   2  |
|    9  3      6  |  458   458    2  |  58    7    1  |
|    5  2      1  | 38-9     7    6  | 389  389    4  |
+-----------------+------------------+----------------+
|  247  8     27  |    6     3    5  |   1   24    9  |
|    6  1     39  |    2    89    4  |   7   38    5  |
|  234  5    239  |   89     1    7  |  38   24    6  |
+-----------------+------------------+----------------+
 / / / | X / / | / X /
 . . . | . . . | . . .
 . . . | . . . | . . .
 ------+-------+------
 / / / | / # # | / X /
 . . . | * . . | . . .
 . . . | * . . | . . .
 ------+-------+------
 . . . | . . . | . . .
 . . . | . . . | . . .
 . . . | . . . | . . .

The logic is the same for Swordfish and Jellyfish. The following examples demonstrate row and column, finned and sashimi Swordfish. Note in the first column Swordfish example the two eliminations are in separate rows. This occurs because the rows share the same band. Had the columns shared the same stack, then the fish may become a Franken fish making other eliminations possible.
Code: Select all
Column Finned Swordfish: r1234c3|r12c4|r124c7 => r12c1<>7
+-------------------+---------------+----------------+
| 125-7    9  1247* | 267*  56   3  | 257* 458  578  |
| 258-7    6   278* |  27*   9   4  | 257*   1    3  |
|     3  257   247# |   1  258  58  |   9  457    6  |
+-------------------+---------------+----------------+
|     4    3    78* |  26   26   1  |  57* 578    9  |
|   157  157     6  |   8    3   9  |   4    2   17  |
|     9  128   128  |   5    4   7  |   3    6   18  |
+-------------------+---------------+----------------+
|  2678  278     5  |   3   78  68  |   1    9    4  |
|   167   17     9  |   4  157  56  |   8    3    2  |
|    18    4     3  |   9   18   2  |   6   57   57  |
+-------------------+---------------+----------------+

Row Finned Swordfish: r1c13|r4c1379|r7c139 => r56c9<>1
+------------------+-------------------+---------------------+
|   17*   8   123* |   9  23567     4  |   357    56   3567  |
|  479    5  2349  | 278   2367  2378  |  3789     1  34678  |
|  479    6   349  |  78    357     1  | 35789  4589      2  |
+------------------+-------------------+---------------------+
| 1468*   9   146* |   5    247   278  |  1278#    3   1678* |
|    2  134   145  | 178    347     6  | 15789   589  578-1  |
| 1568   13     7  | 128      9   238  |     4  2568  568-1  |
+------------------+-------------------+---------------------+
|  145*   2   145* |   3      8     9  |     6     7     14* |
|    3   14     8  |   6     27    27  |    15    45      9  |
|   69    7    69  |   4      1     5  |   238    28     38  |
+------------------+-------------------+---------------------+

Just as with basic fish the largest finned fish that need be considered is the Jellyfish. Consider the following finned column Squirmbag, identified by the "X"s and "#"s for the fins. The dual row finned Jellyfish is identified by the "s"s and "#"s.
Code: Select all
 X  .  X |  .  X  . |  X  .  X 
 /  s  / |  s  /  s |  /  s  /
 X  .  X |  .  X  . |  X  .  X
---------+----------+----------
 /  s  / |  s  #  s |  /  s  /
 X  .  X |  *  X  * |  X  .  X
 /  s  / |  s  #  s |  /  s  /
---------+----------+----------
 X  .  X |  .  X  . |  X  .  X
 /  s  / |  s  /  s |  /  s  /
 X  .  X |  .  X  . |  X  .  X
Last edited by Mike Barker on Thu Dec 28, 2006 9:40 pm, edited 2 times in total.
Mike Barker
 
Posts: 458
Joined: 22 January 2006

Postby ronk » Wed Dec 27, 2006 7:31 am

Mike Barker wrote:The dual (not conjugate) to the finned squirmbag is interesting. It seems to imply the existance of a big fin fish which is not a Franken Fish.
(...)
Just as with basic fish the largest finned fish that need be considered is the Jellyfish. Consider the following finned column Squirmbag, identified by the "X"s and "#"s for the fins. The dual row Jellyfish, identified by the "s"s and "#"s, contains two fins, but because they are located in the same box, they act as one big fin.
Code: Select all
 X  .  X |  .  X  . |  X  .  X 
 /  s  / |  s  /  s |  /  s  /
 X  .  X |  .  X  . |  X  .  X
---------+----------+----------
 /  s  / |  s  #  s |  /  s  /
 X  .  X |  *  X  * |  X  .  X
 /  s  / |  s  #  s |  /  s  /
---------+----------+----------
 X  .  X |  .  X  . |  X  .  X
 /  s  / |  s  /  s |  /  s  /
 X  .  X |  .  X  . |  X  .  X

Illustrating the duals side-by-side, we have:
Code: Select all
 X  *  X |  *  X  * |  X  *  X        .  *  . |  *  .  * |  .  *  . 
 /  .  / |  .  /  . |  /  .  /        /  X  / |  X  /  X |  /  X  /
 X  *  X |  *  X  * |  X  *  X        .  *  . |  *  .  * |  .  *  .
---------+----------+----------      ---------+----------+----------
 /  .  / |  .  #  . |  /  .  /        /  X  / |  X  #  X |  /  X  /
 X  *  X | **  X ** |  X  *  X        .  *  . | **  . ** |  .  *  .
 /  .  / |  .  #  . |  /  .  /        /  X  / |  X  #  X |  /  X  /
---------+----------+----------      ---------+----------+----------
 X  *  X |  *  X  * |  X  *  X        .  *  . |  *  .  * |  .  *  .
 /  .  / |  .  /  . |  /  .  /        /  X  / |  X  /  X |  /  X  /
 X  *  X |  *  X  * |  X  *  X        .  *  . |  *  .  * |  .  *  .
 (dual) finned squirmbag              dual finned squirmbag

Only the ** exclusions apply if one or more fin cells are true.
The * and ** exclusions apply if all fin cells are false.

Except for the Kraken fish, the general rule is that an exclusion cell must directly see all the fin cells.

In each dual the exclusion cells and fin cells must share a box -- they can't share rows and columns -- so the "big fin" distinction is moot IMO. Furthermore, the opening post of this thread does not even define "big fin", and I think the term should be deprecated, if not deep-sixed.
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

finned leviathan

Postby ronk » Wed Dec 27, 2006 1:46 pm

Is this finned leviathan (N=7) for real:?:

For this puzzle generated by daj95376:
Code: Select all
4...5..3997..6.2.5..3...6...4.2.3.5.5...9...4.3.6.5.7...5...4..7.4.3..2636..8...7 #B049 1

Using Simple Sudoku techniques gets us to:
 4     128   6     | 18    5     128   | 7     3     9
 9     7     18    | 3     6     148   | 2     148   5
 128   5     3     | 14789 127   14789 | 6     148   18
-------------------+-------------------+------------------
 6     4     1789  | 2     17    3     | 189   5     18
 5     12    127   | 178   9     178   | 3     6     4
 18    3     189   | 6     4     5     | 189   7     2
-------------------+-------------------+------------------
 128   189   5     | 179   127   6     | 4     189   3
 7     189   4     | 159   3     19    | 158   2     6
 3     6     12    | 1459  8     1249  | 15    19    7

Looking at just the 1s candidates, one can make the following exclusions:

 .  1  . |  1  .  1 |  .  .  .
 .  .  1 |  .  .  1 |  .  1  .
*1  .  . |  1 *1  1 |  .  1 *1
---------+----------+----------
 .  . -1 |  . *1  . |  1  . *1
 .  1  1 |  1  .  1 |  .  .  .
#1  .  1 |  .  .  . |  1  .  .
---------+----------+----------
*1  1  . |  1 *1  . |  .  1  .
 .  1  . |  1  .  1 |  1  .  .
 .  .  1 |  1  .  1 |  1  1  .
 finned swordfish c159\r347 plus fin r6c1 implies r4c3<>1

 .  1  . |  1  .  1 |  .  .  .
 .  .  1 |  .  .  1 |  .  1  .
*1  .  . |  1 *1  1 |  .  1 *1
---------+----------+----------
 .  .  1 |  . *1  . | *1  . *1
 .  1  1 |  1  .  1 |  .  .  .
*1  .  1 |  .  .  . | *1  .  .
---------+----------+----------
*1  1  . |  1 *1  . |  . -1  .
 .  1  . |  1  .  1 | #1  .  .
 .  .  1 |  1  .  1 | #1  1  .
 finned jellyfish c1579\r3467 plus fin r89c7 imples r7c8<>1

 . #1  . | *1  . *1 |  .  .  .
 .  .  1 |  .  .  1 |  .  1  .
*1  .  . |  1 *1  1 |  .  1 *1
---------+----------+----------
 .  .  1 |  . *1  . |  1  . *1
 . *1 *1 | *1  . *1 |  .  .  .
*1  .  1 |  .  .  . |  1  .  .
---------+----------+----------
*1 -1  . |  1 *1  . |  .  1  .
 . #1  . | *1  . *1 | *1  .  .
 .  . #1 | *1  . *1 | *1 *1  .
 finned mutant leviathan r1589c159\r347c46b49 plus fins r18c2 and r9c3 implies r7c2<>1

Is there actually not a smaller fish to make the exclusion r7c2<>1:?:

[edit: fins weren't denoted for the finned jellyfish]
Last edited by ronk on Thu Dec 28, 2006 8:02 am, edited 1 time in total.
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Postby Mike Barker » Wed Dec 27, 2006 3:42 pm

I've pulled out the reference to the big fin, but it still looks like two fins to me in that there are extra candidates in two rows of the fish. The elimination is, of course, valid because the CECs see both fins. Maybe a different way to look at it is as a remora Franken Jellyfish r2468/c268b5 with fins r28c4 and the second as a Franken Jellyfish r2468/c248b5 with fins r28c6, however, this has the fins in separate boxes. All of this is fine when refering to mutants, however, I'm trying to describe a classic finned fish and neither description seems to fit my understanding.
Code: Select all
 . . . | . . . | . . .
 / X / | # / X | / X /
 . . . | . . . | . . .
-------+-------+-------
 / X / | X X X | / X /
 . . . | * . . | . . .
 / X / | X X X | / X /
-------+-------+-------
 . . . | . . . | . . .
 / X / | # / X | / X /
 . . . | . . . | . . .

 . . . | . . . | . . .
 / X / | X / # | / X /
 . . . | . . . | . . .
-------+-------+-------
 / X / | X X X | / X /
 . . . | . . * | . . .
 / X / | X X X | / X /
-------+-------+-------
 . . . | . . . | . . .
 / X / | X / # | / X /
 . . . | . . . | . . .

I guess the same question occurs for the following fish. Is it a basic finned fish or a finned Franken fish or something else:
Code: Select all
. . . | . / . | X X .
. . . | . # . | X X *
. . . | . / . | X X .
------+-------+------
. . . | . / . | / / .
. . . | . X . | X X .
. . . | . / . | / / .
------+-------+------
. . . | . / . | / / .
. . . | . / . | / / .
. . . | . X . | X X .
Mike Barker
 
Posts: 458
Joined: 22 January 2006

re: fins

Postby Pat » Thu Dec 28, 2006 2:28 pm

Mike Barker wrote:
finned Franken Jellyfish r2468\c268b5
with two fins r28c4

Code: Select all
 . . . | . . . | . . .
 / X / | # / X | / X /
 . . . | . . . | . . .
-------+-------+-------
 / X / | X X X | / X /
 . . . | * . . | . . .
 / X / | X X X | / X /
-------+-------+-------
 . . . | . . . | . . .
 / X / | # / X | / X /
 . . . | . . . | . . .



finned Franken Jellyfish r2468\c248b5
with two fins r28c6

Code: Select all
 . . . | . . . | . . .
 / X / | X / # | / X /
 . . . | . . . | . . .
-------+-------+-------
 / X / | X X X | / X /
 . . . | . . * | . . .
 / X / | X X X | / X /
-------+-------+-------
 . . . | . . . | . . .
 / X / | X / # | / X /
 . . . | . . . | . . .



- yes, valid with two fins;
but simpler as:
finned Jellyfish r2468\c2468
with one fin r46c5

Code: Select all
 . . . | . . . | . . .
 / X / | X / X | / X /
 . . . | . . . | . . .
-------+-------+-------
 / X / | X # X | / X /
 . . . | * . * | . . .
 / X / | X # X | / X /
-------+-------+-------
 . . . | . . . | . . .
 / X / | X / X | / X /
 . . . | . . . | . . .



Mike Barker wrote:
finned Franken Swordfish

Code: Select all
. . . | . / . | X X .
. . . | . # . | X X *
. . . | . / . | X X .
------+-------+------
. . . | . / . | / / .
. . . | . X . | X X .
. . . | . / . | / / .
------+-------+------
. . . | . / . | / / .
. . . | . / . | / / .
. . . | . X . | X X .


yes;
or equally:
finned Swordfish

Code: Select all
. . . | . / . | # # .
. . . | . X . | X X *
. . . | . / . | # # .
------+-------+------
. . . | . / . | / / .
. . . | . X . | X X .
. . . | . / . | / / .
------+-------+------
. . . | . / . | / / .
. . . | . / . | / / .
. . . | . X . | X X .




~ Pat
User avatar
Pat
 
Posts: 3462
Joined: 18 July 2005

Re: re: fins

Postby ronk » Thu Dec 28, 2006 7:28 pm

Pat wrote:
Mike Barker wrote:finned Franken Jellyfish r2468\c248b5
with two fins r28c6

Code: Select all
 . . . | . . . | . . .
 / X / | X / # | / X /
 . . . | . . . | . . .
-------+-------+-------
 / X / | X X X | / X /
 . . . | . . * | . . .
 / X / | X X X | / X /
-------+-------+-------
 . . . | . . . | . . .
 / X / | X / # | / X /
 . . . | . . . | . . .

- yes, valid with two fins;

My viewpoint is that one fin r28c6 is comprised of two fin cells r2c6 and r8c6. I think the criteria for one fin should be (already is ??) that one or more fin cells share one sector -- be it row, column or box -- not that one or more fin cells be members of one base sector.

Pat wrote:but simpler as:
finned Jellyfish r2468\c2468
with one fin r46c5

As that's where we started, we've come full circle ... but I'm happy to see you regard that as one fin.:D

Pat wrote:
Mike Barker wrote:
finned Franken Swordfish

Code: Select all
. . . | . / . | X X .
. . . | . # . | X X *
. . . | . / . | X X .
------+-------+------
. . . | . / . | / / .
. . . | . X . | X X .
. . . | . / . | / / .
------+-------+------
. . . | . / . | / / .
. . . | . / . | / / .
. . . | . X . | X X .


yes;
or equally:
finned Swordfish

Code: Select all
. . . | . / . | # # .
. . . | . X . | X X *
. . . | . / . | # # .
------+-------+------
. . . | . / . | / / .
. . . | . X . | X X .
. . . | . / . | / / .
------+-------+------
. . . | . / . | / / .
. . . | . / . | / / .
. . . | . X . | X X .


or equally:
finned mutant swordfish cbb\rrc
Code: Select all
. . . | . / . | . . .
. . . | . # . | . . *
. . . | . / . | . . .
------+-------+------
. . . | . / . | / / X
. . . | . X . | X X X
. . . | . / . | / / X
------+-------+------
. . . | . / . | / / X
. . . | . / . | / / X
. . . | . X . | X X X

But it seems reasonable to consider a a (finned) mutant fish more complex than a franken fish ... and a franken fish more complex that a basic fish ... so your basic fish is "preferred" IMO.
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Postby ronk » Thu Dec 28, 2006 10:06 pm

tarek wrote:take the fin(s) out:
1. if you have a viable basic fish -----------> Finned Fish
2. if you have a non-viable basic fish -----> Sashimi Fish

There's likely a less wordy way to phrase this but, strictly speaking, shouldn't that be:?:

take the fin(s) out:
1. if you have a viable basic fish of the original size -----------> Finned Fish
2. if you have a non-viable basic fish of the original size -------> Sashimi Fish

Otherwise some might think it's OK for a swordfish to shrink to an x-wing, for example.
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

PreviousNext

Return to Advanced solving techniques