The hardest sudokus (new thread)

Everything about Sudoku that doesn't fit in one of the other sections

Re: The hardest sudokus (new thread)

Postby eleven » Thu Jul 28, 2011 8:45 am

dobrichev wrote:The puzzle has 0 cells solvable with all but one of the givens.

When i checked some sets for this property, i thought of it being just of statistical interest. However i was lucky enough now to find another 11.9 out of 23 clues, which have it. I will write more about it in some days.
Code: Select all
 +-------+-------+-------+
 | 1 2 . | . 3 . | . . . |
 | 4 . . | . . 1 | . 2 . |
 | . . 5 | 2 . . | 1 . . |
 +-------+-------+-------+
 | 5 . . | 4 . . | 2 . . |
 | . . . | . 6 . | . 7 . |
 | . . . | . . 3 | . . 8 |
 +-------+-------+-------+
 | . 5 . | . . . | 9 . . |
 | . . 9 | . 7 . | . 3 . |
 | . . . | . . 8 | . . 6 |
 +-------+-------+-------+
       Second Flush


11.9/11.9/11.3
eleven
 
Posts: 3151
Joined: 10 February 2008

Re: The hardest sudokus (new thread)

Postby champagne » Thu Jul 28, 2011 9:38 am

eleven wrote:
dobrichev wrote:The puzzle has 0 cells solvable with all but one of the givens.

When i checked some sets for this property, i thought of it being just of statistical interest. However i was lucky enough now to find another 11.9 out of 23 clues, which have it. I will write more about it in some days.
Code: Select all
 +-------+-------+-------+
 | 1 2 . | . 3 . | . . . |
 | 4 . . | . . 1 | . 2 . |
 | . . 5 | 2 . . | 1 . . |
 +-------+-------+-------+
 | 5 . . | 4 . . | 2 . . |
 | . . . | . 6 . | . 7 . |
 | . . . | . . 3 | . . 8 |
 +-------+-------+-------+
 | . 5 . | . . . | 9 . . |
 | . . 9 | . 7 . | . 3 . |
 | . . . | . . 8 | . . 6 |
 +-------+-------+-------+
       Second Flush


11.9/11.9/11.3


it seems to be a new one. Did you restart the search :)

champagne
champagne
2017 Supporter
 
Posts: 7455
Joined: 02 August 2007
Location: France Brittany

Re: The hardest sudokus (new thread)

Postby ronk » Thu Jul 28, 2011 1:15 pm

eleven wrote:However i was lucky enough now to find another 11.9 out of 23 clues, which have it. I will write more about it in some days.
Code: Select all
 +-------+-------+-------+
 | 1 2 . | . 3 . | . . . |
 | 4 . . | . . 1 | . 2 . |
 | . . 5 | 2 . . | 1 . . |
 +-------+-------+-------+
 | 5 . . | 4 . . | 2 . . |
 | . . . | . 6 . | . 7 . |
 | . . . | . . 3 | . . 8 |
 +-------+-------+-------+
 | . 5 . | . . . | 9 . . |
 | . . 9 | . 7 . | . 3 . |
 | . . . | . . 8 | . . 6 |
 +-------+-------+-------+
       Second Flush      11.9/11.9/11.3

Congratulations eleven. Is the "second" of the Second Flush name because it's your 2nd pass thru your 23s or because this is the 2nd known ER=11.9?

The Xsudo image below is for a "near" sk-loop with 8 eliminations, which uses what champagne likes to call an exocet (r12c3). The unusual thing for me is the "endofin" 6r7c4, a member of two of the strong sets, aka truths.

_____Image

17 Truths = {3678R4 3678R7 678C4 3678C7 12N3}
27 Links = {678r1 3678r2 3678c3 7n1 4n2 47n3 127n4 12n7 3b6 6b68 7b59 8b59}
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Re: The hardest sudokus (new thread)

Postby champagne » Thu Jul 28, 2011 1:54 pm

up to now, I have 6 11.9 ratings.


These 4 including the oldest, Golden nugget

Code: Select all
000000039000001005003050800008090006070002000100400000009080050020000600400700000    Golden-Nugget   11.9   11.9   11.3
.2.4...8.....8...68....71..2..5...9..95.......4..3.........1..7..28...4.....6.3..   elev   3   11.9   11.9   9.9
12.3.....4.5...6...7.....2.6..1..3....453.........8..9...45.1.........8......2..7   elev   1   11.9   11.9   2.6
..3..6.8....1..2......7...4..9..8.6..3..4...1.7.2.....3....5.....5...6..98.....5.   elev   2   11.9   1.2   1.2


plus the 2 last published

champagne
champagne
2017 Supporter
 
Posts: 7455
Joined: 02 August 2007
Location: France Brittany

Re: The hardest sudokus (new thread)

Postby champagne » Fri Jul 29, 2011 2:03 pm

I made a quick comparison of the 3 highest ratings, seen by my solver.
None of them can be seen as the "hardest"; 2 have a classical EXOCET pattern, the third one has something new to me.

I thought a while to find something similar to Platinum Blonde, that i added here, but it is still different.

98.7.....7.....6....6.5.....4...5.3...79..5......2...1..85..9......1...4.....3.2. champagne dry 11.9 11.9 11.8

Code: Select all
1||9____ 8_____ 12345 |7____ 346__ 1246_ |1234__ 145__ 235__
2||7____ 1235__ 12345 |12348 3489_ 12489 |6_____ 14589 23589
3||1234_ 123___ 6____ |12348 5____ 12489 |123478 14789 23789

4||1268_ 4_____ 129__ |168__ 678__ 5____ |278___ 3____ 26789
5||12368 1236__ 7____ |9____ 3468_ 1468_ |5_____ 468__ 268__
6||3568_ 3569__ 359__ |3468_ 2____ 4678_ |478___ 46789 1____

7||12346 12367_ 8____ |5____ 467__ 2467_ |9_____ 167__ 367__
8||2356_ 235679 2359_ |268__ 1____ 26789 |378___ 5678_ 4____
9||1456_ 15679_ 1459_ |468__ 46789 3____ |178___ 2____ 5678_


EXOCET r3c12 r1c7 r2c4
XSUDO nothing found up to 5 floors
no identified multifloors fish


.......39.....1..5..3.5.8....8.9...6.7...2...1..4.......9.8..5..2....6..4..7..... Golden Nugget 11.9 11.9 11.3

Code: Select all
1||25678 14568 124567 |268__ 2467_ 4678_ |1247__ 3____ 9____
2||26789 4689_ 2467__ |23689 23467 1____ |247___ 2467_ 5____
3||2679_ 1469_ 3_____ |269__ 5____ 4679_ |8_____ 12467 1247_

4||235__ 345__ 8_____ |135__ 9____ 357__ |123457 1247_ 6____
5||3569_ 7____ 456___ |13568 136__ 2____ |13459_ 1489_ 1348_
6||1____ 3569_ 256___ |4____ 367__ 35678 |23579_ 2789_ 2378_

7||367__ 136__ 9_____ |1236_ 8____ 346__ |12347_ 5____ 12347
8||3578_ 2____ 157___ |1359_ 134__ 3459_ |6_____ 14789 13478
9||4____ 13568 156___ |7____ 1236_ 3569_ |1239__ 1289_ 1238_


EXOCET r12c7 r4c7 r7c8
XSUDO construction using 5 floors 12467, (136 permutations)
no identified multi floors fish

12..3....4....1.2...52..1..5..4..2......6..7......3..8.5....9....9.7..3......8..6 Second flush 11.9 11.9 11.3

Code: Select all
1||1____ 2_____ 678____ |56789 3____ 45679 |45678 45689 4579_
2||4____ 36789_ 3678___ |56789 589__ 1____ |35678 2____ 3579_
3||36789 36789_ 5______ |2____ 489__ 4679_ |1____ 4689_ 3479_

4||5____ 136789 13678__ |4____ 189__ 79___ |2____ 169__ 139__
5||2389_ 13489_ 12348__ |1589_ 6____ 259__ |345__ 7____ 13459
6||2679_ 14679_ 12467__ |1579_ 1259_ 3____ |456__ 14569 8____

7||23678 5_____ 1234678 |136__ 124__ 246__ |9____ 148__ 1247_
8||268__ 1468__ 9______ |156__ 7____ 2456_ |458__ 3____ 1245_
9||237__ 1347__ 12347__ |1359_ 12459 8____ |457__ 145__ 6____


EXOCET none
XSUDO logic using only 4 floors (72 permutations)
no identified multi floors fish

I tried to compare the XSUDO SLG working in that case to Platinum Blonde, a quasi EXOCET pattern,
In fact, we are here very far from the exocet pattern and from Platinum Blonde.

Platinium blonde summary in the following:

.......12........3..23..4....18....5.6..7.8.......9.....85.....9...4.5..47...6... Platinum Blonde

Code: Select all
1||35678 34589 34679 |4679__ 5689__ 4578__ |679___ 1_____ 2____
2||15678 14589 4679_ |124679 125689 124578 |679___ 56789_ 3____
3||15678 1589_ 2____ |3_____ 15689_ 1578__ |4_____ 56789_ 6789_

4||237__ 2349_ 1____ |8_____ 236___ 234___ |23679_ 234679 5____
5||235__ 6____ 349__ |124___ 7_____ 12345_ |8_____ 2349__ 149__
6||23578 23458 347__ |1246__ 12356_ 9_____ |12367_ 23467_ 1467_

7||1236_ 123__ 8____ |5_____ 1239__ 1237__ |123679 234679 14679
8||9____ 123__ 36___ |127___ 4_____ 12378_ |5_____ 23678_ 1678_
9||4____ 7____ 5____ |129___ 12389_ 6_____ |1239__ 2389__ 189__


EXOCET none
XSUDO multi fish pattern
sets 4679R4 4679R7 4679C3 4679C4 N r12c7
linksets 679C7 479B4 46B5 6B7 79B8 N r1c34 r2c34 r4c8 r7c89

=======================================================================

I dug in the path of my solver for "second flush".
It can do nearly nothing out of the SLG found by ronk. It is too far from the EXOCET pattern.
So at the end, it has been the most difficult to solve with the set of rules of my solver.

EDIT one

One remark regarding the "XSUDO" search.

The target here is to find something of added value, mainly big rank 0 or nearly rank 0 logic (multi fish)

to avoid useless prints, a multi floors is ignored as long as the number of potential eliminations does not pass 6.

An EXOCET pattern has always a corresponding XSUDO logic having the floors corresponding to the digits of the exocet.

If the number of elimination is below 7, it will not appear in the search.
Last edited by champagne on Sat Jul 30, 2011 6:37 am, edited 1 time in total.
champagne
2017 Supporter
 
Posts: 7455
Joined: 02 August 2007
Location: France Brittany

Re: The hardest sudokus (new thread)

Postby ronk » Fri Jul 29, 2011 4:18 pm

Due to my unfamiliarity with some terminology, my (now deleted) post here was irrelevant.

champagne wrote:EDIT one

One remark regarding the "XSUDO" search.

The target here is to find something of added value, mainly big rank 0 or nearly rank 0 logic (multi fish)

to avoid useless prints, a multi floors is ignored as long as the number of potential eliminations does not pass 6.

If you mean "rank 0 logic" I recommend you say "rank 0 logic", not "multi-floor fish" or "multi-fish."

Also, it sounds like the "XSUDO search" is within your program, not Allan Barker's. That's confusing as well.
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Re: The hardest sudokus (new thread)

Postby eleven » Mon Aug 01, 2011 11:13 am

Since i am rather busy these weeks, just a quick summary, what i found out about these properties, which can be calculated with dobrichev's program.

Thanks for the permission to use it. It is very fast for what it does.

For others, which use it: Be careful, that with the --unav --minus1 option the puzzle is minimal, otherwise the program crashes. If you compile it yourself, this is easy to fix.
Hidden Text: Show
Replace
int maxUaSizeForClue = g.usetsBySize.rbegin()->nbits;
by
int maxUaSizeForClue = 0;
if (g.usetsBySize.size() > 0) maxUaSizeForClue = g.usetsBySize.rbegin()->nbits;
To compile it under linux, i had to make some changes, which hopefully dont affect the results.

Let me call it a dob-zero puzzle, when you can't derive any number, as soon as one of the givens is dropped.

I looked, how much of the puzzles with high ER had this property.
Clearly, the higher rated the known toughies are, the higher is the percentage of dob-0 puzzles.

For these dob-0 puzzles also the minimum and average sizes of the maxUA values are the higher, the higher the ER is (maxUA is the maximum size of the unavoidable sets you get, when a number is dropped from the givens).
Code: Select all
               #puzzles  #dob-0   perc.   min maxUA   avg maxUA
ER 11.9            5      3      60 %       46.0       51.1
ER 11.5+         271     52      19 %       46.2       50.7
ER 11+          8666    692       8 %       45.6       50.2   
ER 10.6-10.9   18772    870       4.6%      45.2       49.9



For non dob-0 puzzles these maxUA values are of minor interest for me. Often it is simple to find one or more numbers, in this case you would get different UA sizes after adding them.
I tried to modify the propram in the way that i added clues, which can be derived with n-1 givens. So you get a non mimimal puzzle. Removing a non mimimal clue will always allow to solve the whole puzzle. So i continued the procedure with dropping the minimal clues only and looked, if i came to a puzzle, where no clues could be added. However this happened all the time, because at some point no non minimal clues remained.
Nevertheless some non minimal puzzles with the dob-0 property are high rated (including Mauricio's 37). But compared to the minimal ones they are more common under puzzles with lower ER's.


On the other hand I tested some 100 dob-0 puzzles out of my step1 sets with 21-23 clues. The average ER of the dob-0's was always below 10.5 (in my search i had stopped to rate puzzles sets, when the avg ER was below 10.6). Also i found higher maxUA sizes in ER 10.2 puzzles than in the 11.9's.

The lower the number of clues, the more common are dob-0 puzzles in my step1 sets. This is, what i have so far:

Code: Select all
# clues  #puzzles  dob-0    perc.       expected #dob-0
  21       503367  22482    4.47 %         22482
  22      1414631  10605    0.75 %         33573
  23      6853073   2043    0.03 %          2233


So there will be more than 50000 dob-0 puzzles in my sets.

When i combined the dob-0 property with my 2 fast filters, the resulting puzzle sets gave an average ER around 10.6. This way i had found The "Second Flush" puzzle very soon (and luckily, because the next best rated puzzle had 11.5).
Probably in a week it should be finished to calculate the dob-0's in my sets and rate those, which also pass my 2 filters.
eleven
 
Posts: 3151
Joined: 10 February 2008

Re: The hardest sudokus (new thread)

Postby champagne » Mon Aug 01, 2011 3:18 pm

deleted
Last edited by champagne on Wed Aug 10, 2011 8:11 pm, edited 2 times in total.
champagne
2017 Supporter
 
Posts: 7455
Joined: 02 August 2007
Location: France Brittany

Re: The hardest sudokus (new thread)

Postby ronk » Mon Aug 01, 2011 7:00 pm

champagne wrote:This is the second lot in my search for high ratings in the 22 clues field

That lot includes "champagne dry", already posted

The file has 805 puzzles that should be new (except "champagne dry")

here

I see four that are not new, your numbers 12, 98, 172 and 292. Number 12 is attributed to eleven in tarek's Hardest 20101230. The others are listed in tarek's Pearly 6000.

I don't have an exhaustive list but, for 805 puzzles, only four morphs of older knowns is quite good.
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Re: The hardest sudokus (new thread)

Postby eleven » Tue Aug 02, 2011 8:15 am

champagne wrote:This is the second lot in my search for high ratings in the 22 clues field

Congrats to your fast progress.

When i combined the 2 lists, canonicalized them and compared them to my hardest list published here, i found these 184 duplicates. 41 of them have an ER less 11 in my list, because i was rating with the FIXED6 version.
In my step1 sets i found 1307 of the puzzles.
Hidden Text: Show
.2...6......1...3...9.7...5..5....78.3.....1.8...4.5....4.9.8...6...2...9.......7 11.7 11.7 10.5
...4.67....67.9.......1......9.6.4..5......2..8......33......5...4.9.1...1...2..8 11.7 11.7 03.4
.2...6......1...3...9.7...5..5....78.3.....1.8...4.5....4.9.8...6.2.....9.......7 11.5 11.5 11.1
.2..5.7..4....9.....8....1...1....4..6..3.5..9.......8....6..57...2..3...7.3.5... 11.5 11.5 10.6
12..5.....5......6..6..3.....1.6...8.8.9...7......84.....7..8.......4.9...2.3...5 11.5 11.5 10.6
.2.4.6.....6.8.2..7....2....3.....9.5.......7..1..48....26..1...9..1..5.........3 11.5 11.5 09.9
..34..........9..6.9..7..1...4...8...7..6..2.5.....3......9...28..5.7....1...2.7. 11.5 11.5 02.6
....56...4....9.....92..5...1.8....73......4......28...4.6....37......1...8.2.6.. 11.5 01.2 01.2
1....6.8..5..8.2.....7....4.6...1.9...8.3....9.1..........4...7..5..8.6....2..3.. 11.4 11.4 11.3
.2...6.8.4.......1..9...5...6...3.7...1.9....5..6..4.......8..7.3.2........36..2. 11.4 11.4 10.6
...4...8..5...92..6...3.....7...89.....2...4...6.7...33.5........1....9..6..1...5 11.4 11.4 10.5
.2.4.....4...89........7..4..1..8.6....7....8.3..6.5...6.....1...5...3..9..8....7 11.4 11.4 06.6
1...5...9...7..12.......56.2...6..1...4..8....3.2......7...4...6...2.9....83..... 11.4 11.4 03.4
...4...8...7..92..6...2...5.6..1...3...8...9......24..3..2.....51.........6.3...1 11.4 01.2 01.2
..34....9.5..8....7....1....1......3..49...2.......6.4.3..7..9.8....5.....26..3.. 11.4 01.2 01.2
.2...6...4..1...3...8...5....5...8..3..7...9..6......2...9....7....4.91.9...13... 11.4 01.2 01.2
.......8...6...1.2...1..5.6.4..9....3....7.....86...2...52...1..7..4....9....3..8 11.3 11.3 11.2
...4....9....8.2..6....3.5...6..1...7.....3...15....7...4.2...85....4.6....9..4.. 11.3 11.3 11.1
.2......94......3...87..5....56..1...3......29...4..5....8.........678....6.15... 11.3 11.3 10.8
...4..7......8...6..9..2.1.2......5...53.....91...5.......6...8.7.2..4....1..3.2. 11.3 11.3 10.7
12...6...456...1...............7..3....9....8..5..42......3..9..7.8....2..1..24.. 11.3 11.3 10.7
.....67.....18...68.62.....2....8..1..9...4...3.....5..4.....9.7....2.....5.4.3.. 11.3 11.3 10.6
.2.4...8...7..9...8...3.1.......45.33...1.6..........1.9...7...6...4...5..42..... 11.3 11.3 10.6
1...5...9.......3..6...74....4...6...3.....2.7..5....1.7.89......2.1....9....5..8 11.3 11.3 10.6
..3..6..9...1..2......7..5..465......38.......9...8..3.6...4..8...6...7.....2.1.. 11.3 11.3 10.5
1....6.8..5.7.......9.1.4......3.9.4.1.........4....23..1.9.2..6..8......7...5... 11.3 11.3 10.5
1...5...9.5.....3..69...5..2....4.7...6.9...1...8..3...1..2.........3.4....7..8.. 11.3 11.3 10.5
1...5......7..9....8.2..4....5.7.....6.8....38....1.........6.8.4.3....29.....3.4 11.3 11.3 10.3
..3.5...94..1......8...7....1.......7.48.......5.6..2......4.52.......93..2.3.6.. 11.3 11.3 10.1
1..4......5..8...6..9..2.5.2....1....8..2...7..49......3..6..7....2..8........6.3 11.3 11.3 10.1
.2.4....9.....9...6...7.5...1..3..7.3..7....5..6...3..5...1.6....48.2...........8 11.3 11.3 10.0
1.3...7..4.....1.2.8.....6....9...5..3..4......7.2.4.33...7...1.9.6..........8... 11.3 11.3 10.0
..3.5.7..4....9....8.2.....2.....35...6.1...7......61......4.....5.3..7.9..8....3 11.3 11.3 09.9
1....67...5.1...3...9.3........4...3.7...18.....2...9.56...8.....2....4..1....5.. 11.3 11.3 07.8
1..4.6.8.....8.1.......2..4..5....9.6...2...1.3...7....9.....5...7...3..8...6...2 11.3 11.3 07.8
..34.6....5...9...6...2.1...9.........4..5..88...7..2.......61.7...6...2...3...7. 11.3 11.3 07.6
...4..7....6.8...2.....3.5......73...1..2...6...5...4.5.2......86..9....9.1.....8 11.3 11.3 03.4
..3.....9.5..8.1..7......4...4.....7.1..6.2..9....3.1....5.86...8.62............1 11.3 11.3 03.4
1.......9..67...2..8....5......47.3.........2..763.....9...12..5.......8..23...4. 11.3 11.3 03.4
1......8..5......3..9.2.4...3.....5...4.7.6.....8....1.92..7......2.49..6...9.... 11.3 11.3 03.4
....5.7..4....9..6...2...1...6.....83..89.....4...3....1.....2..3..7.5..9....4..3 11.3 11.3 02.6
..3...7..4...8..2..9...1..42..56...8....2..5....1.3...5..6...4...1...9...7....... 11.3 11.3 02.6
..3..67...56....2.7..2........9....16....2.5.....4.9...84.1....5....7.3.........8 11.3 11.3 02.6
.2.4....9..7.8....6....3.1...1....7.8.....6...3.5....4.....2......3..94..9...5..2 11.3 11.3 02.6
..3.5.7..4....9....8.1....6.......71.1.2..6....5....2..7.8...6.....3....9....48.. 11.3 10.7 10.2
....5.7..4....9..3...1...6.2....4..8..7....1.8...6.5...3...8....84.....29...2.... 11.3 01.2 01.2
...4..7....6..9.2.....3...52.1.......8...2.6...9.7.....6..9...4...5..3..9....8.1. 11.3 01.2 01.2
..3.5.7..4....9.3..8.1....6..5.6..7..1...4...9..............25....8..3....2.3...7 11.3 01.2 01.2
.2.4....9..6.8....7......5..4.9....18....7.....5.6.....1....94......1..3...39.2.. 11.3 01.2 01.2
.2.4.......6.8....7....3..5.4.3..9..3....5.1...8.2...........71...6....39....15.. 11.3 01.2 01.2
1....6.8..5..89......2....5.7...1.9...4...3..9...7......5.....4...3..2..8...6..7. 11.3 01.2 01.2
1....6.8..5....2....9.....4......9..3...6..1..4.8....5.6..37.....2.1....8..6...7. 11.3 01.2 01.2
.....67.....18...6.6..2..1..1...8..73..5..4....5.9.....7...2..8..4......9.....3.. 11.2 11.2 10.7
.2.4....9.......237......4...1..8...5...7.6...7.9....2..7.1....8....5....4.6...3. 11.2 11.2 10.7
1...5......7..92...6.3.......4..7..85...1.....3.6.......2..8.14......9.2......87. 11.2 11.2 10.7
..3.5....4....9..6.8.7..1...7.8.....3....4.6...5.3.....3.....2........949....26.. 11.2 11.2 10.6
1....6.8..5.7.......9.3.......5.7..1....2.4..6....1.7.5..8...1...4...9...3......2 11.2 11.2 10.6
1...5..8......9..6.8.3..4..2.5..3...7...1..5...1.........6..9.......4..3..2.3..7. 11.2 11.2 10.6
.......894...8...2.....1.642...4...6.7...2.....53.......1..7....3.5.....8...6..9. 11.2 11.2 10.5
.2..5.7.....1..2.6..9....412...7.....3...8.....46....5..59...1.8...3............4 11.2 11.2 10.4
1..4....9.5..8..3...8..2..52..8......7..9.5....4..1.........67..6..3.........83.. 11.2 11.2 10.4
1.....7...5......6..8.2..1..6....3....9..4.2.7.......53...98.....2.1..9.....42... 11.2 11.2 10.1
...4...8..5...92..6...3...1.6..1...5..18..9....5..2...3.........7.....4...6.7...3 11.2 11.2 10.0
..3...7..4...8...6.9.....1...1...6...7.....9.5....4..2....483..8...2...5....65... 11.2 11.2 09.9
..3.5.7.....1....6.9.......24..3.....39...5..8..7...2......8.1..7..4.9.....6....2 11.2 11.2 09.9
..34....9..7.8.2...6...3.4....9..4..3....7.1.....2...85.......46....5.7..1....... 11.2 11.2 09.9
.2....78.4....9..6....7..14.......7..9..2.8....5..3...3..6......8..1..9...4..5... 11.2 11.2 09.9
.2.4...8...6.....37....25.....91.6...1...8.4.....4....3.........8..2..9...58....7 11.2 11.2 09.9
.23...78.4.........8...2.1...6.4.....7...13..9..5........9...2......813.....6...5 11.2 11.2 09.9
1....6.8..5.7.......9.3....2.......8.....26....4.1..2..3..9.2..6....4.1...7.....5 11.2 11.2 09.9
1...5.7.........36.8.7.......1.......6.3....29....74.....8...2.5...7.9....4.91... 11.2 11.2 09.7
.....67....71.9...6...7..4.2.......8.3.....5...9.1.4....1.9.6..5.......3.8.2..... 11.2 11.2 09.5
.2.4....9..7....3.6...7.5...9.......3...1..5...43....87....5.1.....3.6....28..... 11.2 11.2 09.4
.....6.8....1..2...9..3...4..1.7...38.....6.....6...5..19..4..75..2......4..1.... 11.2 11.2 07.8
.....6..94...8.2.....7...5.24.9.....3...1.4..81..........8....7.....5.6..3..2.8.. 11.2 11.2 03.4
..3..67..4...8.....9.1.........4....8..9..2....5..3..6......6.2.1....3.7..2..7.5. 11.2 11.2 03.4
.....6..9..6.8.1..7..2...5..4...1..83..5...7.....4.....72....9....9.....9.....3.5 11.2 11.2 02.6
...4.67..4..1......8..73........8.9...5.....2.9..3.6...3...79....2....5...4.....1 11.2 11.2 02.6
..34...8..5..89...6..3.....2.6.......1......7..4...36.....1.9..8..2...4......75.. 11.2 11.2 02.6
.2....7..4..1....6..9....54..65...4..9..2...5.....83...8.........16...9.....37... 11.2 11.2 02.6
1..4...8..5...9..2..9...6......41.6....6..8.36.........72...5..8..3...1.....7.... 11.2 11.2 02.6
...4..7...5..8...6.....2.1....8.....3.5.6....96......3..27..6...9......8.....142. 11.2 01.2 01.2
...4.67......8...6.8....41..7...1..8..5...3..9...2....3...9.....6...8..4..25..... 11.2 01.2 01.2
...4.6...4...8...2..92......9....5....7....1.6..8....33.5....7..1..3.9.......4..8 11.2 01.2 01.2
..3.....94..7...2..8..3....2..6...7..9...18..........15...6.4.......4.5..7.5....2 11.2 01.2 01.2
..34...8.4...8...2.....36....5...9..6....2.4..7.1........9....5.1..7....8....4.6. 11.2 01.2 01.2
.23......4....9.3..9....1..2..7..6......1...8..4..5.2.5..8......4...3.5.....6...7 11.2 01.2 01.2
1...5......7..9....8.2..4....5..1....4.6..3..9...4..7...........6.....43...3..628 11.2 01.2 01.2
1.34...8.4.6.....3.8........1.6....4.....72......9..7..4.3....1.....25..9.5...... 11.2 01.2 01.2
1...5......7..9....8.3..4....1..5.6..6.2....49...7.....3.8...4...2.....8......3.2 11.1 11.1 11.1
...4.....45...9.2...8...6..2..5...3..3...7..1.6....8......1...75....2....4.3...9. 11.1 11.1 11.0
...4....9....8.2..6....7.1..36....5.57...3.......1....3....4.6...4.9...8...2..4.. 11.1 11.1 10.7
1....67....7.8...6.6.3.....2......9.....4.5...7...1..8.3...8..1...5...2.9.....4.. 11.1 11.1 10.7
.......8.4....92.....3....12.4.....65.9.7....6....49....2..56......1..3....8....7 11.1 11.1 10.6
..3...789...7...32...........79..3...4..1....8....5..65....4.....28..9...1..6.... 11.1 11.1 10.6
1...5......7..9....8.2..4......7..5..4.8..6..9....1....3.....42..23...6.8.....3.. 11.1 11.1 10.6
............18...3.8.237....3...1..7..6....5.9.....4....4.6..7.5.....9...7...3..2 11.1 11.1 10.5
...4..7...5...9.3.6...2....2...7.....3...81....46.............7..1..589..8....31. 11.1 11.1 10.4
1...5...9..71.9....8...2...2....5..3...9.......6.3.4..3..5....2..4....6..7....8.. 11.1 11.1 10.0
1...5.7.......9.3....2....4.........785.6.....16...5.......4.9...23....78...7.6.. 11.1 11.1 10.0
.....678...6.....27..2...5.2....8..7.9.....1...43.....5....2..8.3.9.......1.4.... 11.1 11.1 09.9
....5.7..4....9..6...3...1.2....4....9..1..5..1.7..3...48.....2.......6.9.2..8... 11.1 11.1 09.9
..3.....94.....2...8.7...5..6...8.1....6.1...9..5.7....7...5.6...2...4........5.3 11.1 11.1 09.9
.2...6...4...8......97...1.2....1..8...3...92..5...37..6...4..........3...15..9.. 11.1 11.1 09.9
.2.4....9..7.8....6......1...49....7.3.27.........53..3.....5....9.2...8.....1.6. 11.1 11.1 09.9
.2.4....9.......237....2.64..1.7....5....8....6.2...9...8.1.........5....4.3....6 11.1 11.1 09.9
1....6.8....7....3....2.5......3...7..75..2..8....7.9.........6.48..1...9.1....4. 11.1 11.1 09.9
1...5.7.......9.3....2....4.......675.1.7......8...5.......4..2.4.3...9.8...6.4.. 11.1 11.1 09.9
...4...8..5...92..6...3...1...5..9..3...2...6.....84...........716.....2.32.7.... 11.1 11.1 09.8
.2.4.......6.8....7....15....8.1.....4.6.....5....7..3......9.5....2.3.79....3.1. 11.1 11.1 09.6
.2......94......3...67..1....86..9...3..9..4.9.......2..1.67...5..8.........1.8.. 11.1 11.1 09.5
.2.4.6.......8..2..8.1....6....6...83.....9....5....7.....4...1..78.3.5.9.....3.. 11.1 11.1 09.5
.2.4...8...6..9...7...1......1.6.....4.3..2..9....7..........51.8....3.2...5..84. 11.1 11.1 03.4
.......89..71..2.6....2.1...8...3.7...6.1...45...............9...2.7.4..93...5... 11.1 11.1 02.6
.....6.8...67....3.8.13.....1...3..8..4...2..9......4..7...1..65.....9.....52.... 11.1 11.1 02.6
...4...8...6.8...2.7...15..2....53.1.......98.3....2....46......1...3..7....9.... 11.1 11.1 02.6
..3.5....4..7..1...9.....6.2..8..4......7..96.....4.5....1.8...8....7..2.6..3.... 11.1 11.1 02.6
.2......94......3...8..71....567.......51.6..8............9...2..1..59..93.....4. 11.1 11.1 02.6
.2..5.....571....68.9...........369....67...5.....48...1.7....2.......4.9.....3.. 11.1 11.1 02.6
1...5......7..9....8.3..4..2.....8...6......4...2...63.3.8..6..8....7.5.9...1.... 11.1 11.1 02.6
...4....9....8.2..6....3.5..6...5.1.7.59....8....2....37........1....4....6..1.7. 11.1 01.5 01.5
....5..8..5....1.3...1....62....7....3.8...1...4.9......7..4...5..6...3.9...2.4.. 11.1 01.2 01.2
....5..8.4....9..6...2..1...7...5..4...8..5....6.1..2.7..5......4...7..393....... 11.1 01.2 01.2
...4.6..94..7.......9.3....2...9...7..5...2...8...2.1...2...8..6...7...3.1.....5. 11.1 01.2 01.2
..3..6..9.5.1.....8...7..4..6....3....1..5...9...4..2.....2.897.........7.....4.2 11.1 01.2 01.2
..3..6....5.1.....8...7...42......7......8..2....2.94..6....5..7...9...8..1..3.2. 11.1 01.2 01.2
..3..6...4.6.8.1...8.1......3...48......2..9....5....7....7...5.4...86..9......2. 11.1 01.2 01.2
..34....9.5...9..........1....6..8....6..4..2.7.32.....8....1....2.4...37..2..5.. 11.1 01.2 01.2
..34..7..4....9.3..8......1..1.....3.7....8..5...2..4.....9.3......65...9....2.6. 11.1 01.2 01.2
..34..7..4...8...3.9.....1...1....3..7....9..5....2..4.....83..8...2...6....65... 11.1 01.2 01.2
.2......9...1...3.6....74.....3....17....48....9.2.....7...5...5...4..6..84...5.. 11.1 01.2 01.2
.2...6....567...3.7...3.......1..9..5....7.6.....4...83....2.7....8..4...9......1 11.1 01.2 01.2
1.......9..7.8.2...6.....5.2............743....48.3......5....1..2.4.8..9....8.6. 11.1 01.2 01.2
1.......9..6....2..9.1..56..7..4....3....8.....92....5.....3.4...25....6....7.8.. 11.1 01.2 01.2
1....6.8.4.....2....9.3...1.157.....3...1...4.9..........8...7..3..9...5.....26.. 11.1 01.2 01.2
1....678.....8..2....1....62...6...8..9..4....3.5......4.....9.6...7...1..5..3... 11.1 01.2 01.2
1.....7...5...9....89.1...5...3......3..2.4..9....1..8.......6...264....8....5..7 11.0 11.0 10.8
.2...6...4...8.2...98...........1.6.3..5....7.4..9.3...3......5..4.2.9.....7...1. 11.0 11.0 10.6
1.....789....8.12............53......6...4...9...2...1.9.6..4...34..5...8.......7 11.0 11.0 10.4
.....6.8...6.8.1.2...1..5...3...4.....85...2.9...7....3.......7.4..9......26...5. 11.0 11.0 10.1
.2...6....567...3.7...3....2....3.5....1....8....4....5....7.6..9.8....4..1...9.. 11.0 11.0 07.8
.2...6....567...3.7...3.....9..1.4..6....2.5.........1..8.4.9..5....3.7.........8 11.0 11.0 03.4
.2..5......71....6....7..4...8..1..7.3.....2.9.....4....5.1...8.9.8...1....6..3.. 11.0 11.0 02.6
...4..7......89..3.9..3..4.2....5....3.8....4..1...2...7.9....86..........5.6..1. 10.9 10.9 10.9
1.3..6...4.6.8.1...8........1...86.....2....5..7....9.....9...7...5...2..3...14.. 10.9 10.9 10.9
...4....9....8.1...9..31.4..1.3..4....5..7...6.......2.3.8..9..7......5...2.....6 10.9 10.9 10.6
..3..6...45.7.....7...3..4.2.......8......2....56...7.......9.1.1..98.....75...3. 10.9 10.9 10.5
...4...89......1....9.1..452....7....3.....6...48..5....19..8...7..3....6....2... 10.9 10.9 10.4
.2..5....4.67.....7....2..4..1.98.........81..7.2....63.....9.........3..6.5....7 10.9 10.9 10.4
1....6.8..5.7....3..9.2.....3.5..8......9..37.......45..2.......4.8...7.6....1... 10.9 10.9 10.1
..3..6....5..8.1..7..2......4..9..1.6.....9........8.4.1..4...8...3.......2..745. 10.9 10.9 09.9
........9.5....13...91..56.2....8....1.9....6..4.7......7..4...8......2..3.6....5 10.9 10.9 03.4
1.3..6.8.4.6...1...8........6...84......2...7...5...9...29.........7...5.1...43.. 10.9 10.9 03.4
1.....7....6.8.1...89....6......3..5.3.2.....6...1..7......4...8...7..9...25..4.. 10.9 10.9 02.6
1....6..9.5.7...2...9.3.....3..........3..2.5....74.3..7.5...4...8......6...1.8.. 10.9 10.9 02.6
12....7....7....36....7.....4...5.9....9....7..1.3.6..5....4..8...8.......6.2.1.. 10.9 10.9 02.6
.....6..9.5.1..2......7...4..9.....7.3.2..1..8....4.6.3.....8..5.28......8...1... 10.9 10.7 02.6
......7...5.....327....3.54..19.....6.......8.3...72...7...54....81.....9...6.... 10.9 01.2 01.2
.....67..4..78...3.9.....4...5.....83..82..7.......3.2....6.....1.......8..34.2.. 10.9 01.2 01.2
...4...8...7..92......3...529...1.....1.6....7.....1..5...9..4...6..29.....8....3 10.9 01.2 01.2
..34..7...5......68......1...9.7.3..6.........1.9.3..8...29......2..79......4..5. 10.9 01.2 01.2
.2..5....4....91.........6.........78....149.9....38..3..9......4.31.9.......4..8 10.9 01.2 01.2
.2.4.......6.8....7....3.5...46.....3....7.1..8....2...7.....9......15.79.....3.1 10.9 01.2 01.2
1....6.8..5..8.2....9.....4......9..3...6..1..4.8....5....37.....2.1....8..6...7. 10.9 01.2 01.2
1....6.......8..3..8.2.1..62...6...3..59...........4..3...17..8.......7.8...2...1 10.9 01.2 01.2
1....6.......8.13..8.2....62...6...3..59...........4..3...17..8.......7.8...2...1 10.9 01.2 01.2
1...56.......89...8..3..5....1....4..7......29....83....4.....75...6.9...1.....2. 10.8 10.8 10.8
.2..5...9...1..26......3.5.......5...4..6..9.7....8..4.6..4.9..8..3.......1..7... 10.8 10.8 10.6
.2.....8.4..1....6..9...5....5..1...3...7...1.8.6...2....36.9..6....4..3...7..... 10.8 10.8 10.5
1....6.....7.8...6.6.37....2......5...4...9...1...3..7...5...2..3...8..19.....4.. 10.8 10.8 10.4
....56.....71....69...27....4....8..3......9...5..2..1..2.6...7.....53...8.....4. 10.8 10.8 10.3
...4....9..7.8..3......25....1.3..7......5..29.....4....68.....73..6.....1...7.6. 10.8 10.8 10.0
...4...8..5...92..6...3...1.6..1...5..18..9....5..2...37.....4............6.7...3 10.8 10.8 07.8
....5.7.9.5.....2.7..1....6..48.....5...6..7..3...1........48..6......9..183..... 10.8 10.8 03.4
.2.4.......6...1..7...3..6......4..8.9..2..7....5....137......5..2.7..9.9..8..... 10.8 10.8 02.6
.....678....1....6.6..7..4..7...1..8..5....2.9..5..3..3.........1...8..4..29..... 10.7 10.7 10.6
..34....9....8.2..6....3.5..6...5.1...59....8....2.....1....4..73.........6..1.7. 10.7 10.7 10.1
...4...8....1.9..6.9..3.1...3.6..4..5......7...8.....2..2.....57...6.....1...43.. 10.7 10.7 09.9
.2...6.8.4.....1....7.....5...9.8......3.2....3..6..9...1.....75..6..4...6.8...3. 10.7 10.7 09.9
..3.5.7..4....91...8......62....4....9.8.......5.6..1....2...7...7.3...1......35. 10.7 10.7 03.4
1...5.....5.7...3......2..6..19..8...3...7.2...4.2..........6...9..7..5.8..3..4.. 10.7 01.2 01.2
...4..7......8...6.9...2.1.2..8.....31....6....9..3.2...5.7......1...4..9....1.5. 10.6 10.6 10.6
.2.....8.4...8.1.3.....3..42....8.1..6..........5....73....1.4.......9..8.9..2.3. 10.6 01.2 01.2
.23....8.4...8.1.......3..42....8.1..6..........5....73....1.4.......9..8.9..2.3. 10.6 01.2 01.2
eleven
 
Posts: 3151
Joined: 10 February 2008

Re: The hardest sudokus (new thread)

Postby champagne » Tue Aug 02, 2011 8:50 am

eleven wrote:When i combined the 2 lists, canonicalized them and compared them to my hardest list published here, i found these 184 duplicates. 41 of them have an ER less 11 in my list, because i was rating with the FIXED6 version.
In my step1 sets i found 1307 of the puzzles.


I have to check again what I have done. I should have entered in my data base what you published as "elevens_ER11(2)" zip file, so, I should have filtered what was in that file.

I'll process your entire file of "hardest" to put them in my data base (and check as well the tarek pearly 6000 file) to avoid redundancy as much as possible

champagne
champagne
2017 Supporter
 
Posts: 7455
Joined: 02 August 2007
Location: France Brittany

Re: The hardest sudokus (new thread)

Postby ronk » Tue Aug 02, 2011 1:31 pm

I did a neighborhood search of the six known 11.9s and found the below, which don't seem to be in any list. Is there a reason they might have been found but then rejected for not passing some other rating criteria? (I used Explainer v1.2)

Code: Select all
..8..3.9....1..2......7...4..9..8.6..3..4...1.7.2.....3....5.....5...6..98.....3. 11.0 11.0 9.8
.2.4...8.....8...68....71..2..5...4..95.......4..3.........1..7..92...5.....6.3.. 10.7 10.7 9.5
.5.4...2.....3...68....71..2..5...9..95.......4..6.........1..7..28...4.....4.3.. 10.7 10.7 10.0
98.7.....7.....6....6.5.....2...5.3...86..5......4...1..75..9......1...4.....3.2. 10.9 10.9 9.8
98.7.....7.....6....6.5.....3...4.9...79..8......2...1..85..9......1...4.....3.2. 10.6 10.6 9.3
21..3....4....6.2...52..1..5..4..9......6..7......3..8.5....2....9.7..3......8..6 10.5 10.5 10.0
ronk
2012 Supporter
 
Posts: 4764
Joined: 02 November 2005
Location: Southeastern USA

Re: The hardest sudokus (new thread)

Postby eleven » Tue Aug 02, 2011 4:35 pm

ronk wrote:I did a neighborhood search of the six known 11.9s and found the below, which don't seem to be in any list. Is there a reason they might have been found but then rejected for not passing some other rating criteria?

Though 5 of them are step1 puzzles, i dont have them in my list. I guess, that i never generated at least 3 of them, maybe 2 did not pass my weak filter (the hurdle changed over the time).
eleven
 
Posts: 3151
Joined: 10 February 2008

Re: The hardest sudokus (new thread)

Postby champagne » Wed Aug 03, 2011 6:26 am

ronk wrote:I did a neighborhood search of the six known 11.9s and found the below, which don't seem to be in any list. Is there a reason they might have been found but then rejected for not passing some other rating criteria? (I used Explainer v1.2)


two of them, including the first one are in my database of puzzles to be analysed as potential hardest;
Likely the first one did not pass my filter for SE rating

The other ones would not have passed my first filter except the third one that I likely did not see up to now.

champagne
champagne
2017 Supporter
 
Posts: 7455
Joined: 02 August 2007
Location: France Brittany

Re: The hardest sudokus (new thread)

Postby champagne » Wed Aug 03, 2011 12:57 pm

I made a preliminary processing of eleven's entire file of hardests.

I found in my database some of them with the following origin
(first item is the source, second is the count)

Code: Select all
col 08 05   57
col0906   17
col5a   6
col5z   9
cola2   4
colBF2   1
colBF3   3
colc   5
colefg   8
colx   3
coly   8
GP22cy1   49
GP22cy2   138
GP22K3   103
h54autres   2
tarekdb   5
taxonomy   11


families GP.. are coming out of my generation in the 22 field
all col... have been generated years ago by coloin (col 08 05 is may 2008)
taxonomy is gsf's file, a very old one
h45autres is page 45 in the first thread of hardests
tarekdb refers to the hardest database produced by tarek.

No problem to switch for my puzzles to eleven's ones.
I'll keep the others unchanged

champagne
champagne
2017 Supporter
 
Posts: 7455
Joined: 02 August 2007
Location: France Brittany

PreviousNext

Return to General