.
Not the simplest tridagon but the next simplest case: with 2 guardians.
As in many cases, replacement leads to an easy solution:
- Code: Select all
Resolution state after Singles and whips[1]:
+----------------------+----------------------+----------------------+
! 126 267 3 ! 4 5 167 ! 167 8 9 !
! 1456 4567 1567 ! 167 8 9 ! 2 3 167 !
! 168 678 9 ! 3 167 2 ! 4 167 5 !
+----------------------+----------------------+----------------------+
! 12456 24567 1567 ! 12679 124679 167 ! 8 167 3 !
! 12468 234678 167 ! 1267 123467 1367 ! 9 5 167 !
! 9 367 167 ! 8 1367 5 ! 167 2 4 !
+----------------------+----------------------+----------------------+
! 3 9 2 ! 167 167 1678 ! 5 4 1678 !
! 56 1 8 ! 25679 23679 4 ! 367 679 267 !
! 7 56 4 ! 12569 12369 1368 ! 136 169 1268 !
+----------------------+----------------------+----------------------+
178 candidates.
- Code: Select all
Trid-OR2-relation for digits 1, 7 and 6 in blocks:
b2, with cells (marked #): r1c6, r2c4, r3c5
b3, with cells (marked #): r1c7, r2c9, r3c8
b5, with cells (marked #): r4c6, r5c4, r6c5
b6, with cells (marked #): r4c8, r5c9, r6c7
with 2 guardians (in cells marked @): n2r5c4 n3r6c5
+----------------------+----------------------+----------------------+
! 126 267 3 ! 4 5 167# ! 167# 8 9 !
! 1456 4567 1567 ! 167# 8 9 ! 2 3 167# !
! 168 678 9 ! 3 167# 2 ! 4 167# 5 !
+----------------------+----------------------+----------------------+
! 12456 24567 1567 ! 12679 124679 167# ! 8 167# 3 !
! 12468 234678 167 ! 1267#@ 123467 1367 ! 9 5 167# !
! 9 367 167 ! 8 1367#@ 5 ! 167# 2 4 !
+----------------------+----------------------+----------------------+
! 3 9 2 ! 167 167 1678 ! 5 4 1678 !
! 56 1 8 ! 25679 23679 4 ! 367 679 267 !
! 7 56 4 ! 12569 12369 1368 ! 136 169 1268 !
+----------------------+----------------------+----------------------+
Trid-OR2-whip[2]: OR2{{n2r5c4 | n3r6c5}} - c2n3{r6 .} ==> r5c2≠2
Trid-OR2-whip[3]: OR2{{n2r5c4 | n3r6c5}} - c2n3{r6 r5} - r5n8{c2 .} ==> r5c1≠2
whip[1]: r5n2{c5 .} ==> r4c4≠2, r4c5≠2
Trid-OR2-whip[4]: OR2{{n2r5c4 | n3r6c5}} - c6n3{r5 r9} - r9n8{c6 c9} - r9n2{c9 .} ==> r8c4≠2
Trid-OR2-whip[4]: OR2{{n2r5c4 | n3r6c5}} - r5n3{c6 c2} - r5n4{c2 c1} - r5n8{c1 .} ==> r5c5≠2
hidden-single-in-a-block ==> r5c4=2
z-chain[3]: r9n2{c5 c9} - c9n8{r9 r7} - r7n6{c9 .} ==> r9c5≠6
z-chain[3]: r9n2{c5 c9} - c9n8{r9 r7} - r7n1{c9 .} ==> r9c5≠1
z-chain[4]: r9n2{c5 c9} - r9n8{c9 c6} - b8n3{r9c6 r8c5} - c5n2{r8 .} ==> r9c5≠9
***** STARTING ELEVEN_S REPLACEMENT TECHNIQUE *****
RELEVANT DIGIT REPLACEMENTS WILL BE NECESSARY AT THE END, based on the original givens.
Trying in block 6
AFTER APPLYING ELEVEN''S REPLACEMENT METHOD to 3 digits 1, 6 and 7 in 3 cells r6c7, r5c9 and r4c8,
the resolution state is:
- Code: Select all
+----------------------+----------------------+----------------------+
! 1672 2167 3 ! 4 5 167 ! 167 8 9 !
! 16745 45167 1675 ! 167 8 9 ! 2 3 167 !
! 1678 1678 9 ! 3 167 2 ! 4 167 5 !
+----------------------+----------------------+----------------------+
! 167245 245167 1675 ! 1679 16749 167 ! 8 7 3 !
! 16748 341678 167 ! 2 16734 1673 ! 9 5 6 !
! 9 3167 167 ! 8 1673 5 ! 1 2 4 !
+----------------------+----------------------+----------------------+
! 3 9 2 ! 167 167 1678 ! 5 4 1678 !
! 5167 167 8 ! 51679 231679 4 ! 3167 1679 2167 !
! 167 5167 4 ! 16759 23 16738 ! 1673 1679 16728 !
+----------------------+----------------------+----------------------+
THIS IS THE PUZZLE THAT WILL NOW BE SOLVED.
RELEVANT DIGIT REPLACEMENTS WILL BE NECESSARY AT THE END, based on the original givens.
- Code: Select all
Resolution state after Singles:
+----------------------+----------------------+----------------------+
! 1267 1267 3 ! 4 5 167 ! 67 8 9 !
! 14567 14567 1567 ! 167 8 9 ! 2 3 17 !
! 1678 1678 9 ! 3 167 2 ! 4 16 5 !
+----------------------+----------------------+----------------------+
! 12456 12456 156 ! 169 1469 16 ! 8 7 3 !
! 1478 13478 17 ! 2 1347 137 ! 9 5 6 !
! 9 367 67 ! 8 367 5 ! 1 2 4 !
+----------------------+----------------------+----------------------+
! 3 9 2 ! 167 167 1678 ! 5 4 178 !
! 1567 167 8 ! 15679 123679 4 ! 367 169 127 !
! 167 1567 4 ! 15679 23 13678 ! 367 169 1278 !
+----------------------+----------------------+----------------------+
whip[1]: r7n6{c6 .} ==> r9c6≠6, r8c4≠6, r8c5≠6, r9c4≠6
z-chain[3]: c3n7{r6 r2} - r3n7{c2 c5} - r6n7{c5 .} ==> r5c1≠7
z-chain[3]: c3n7{r6 r2} - r3n7{c1 c5} - r6n7{c5 .} ==> r5c2≠7
whip[4]: r5c3{n1 n7} - r6n7{c3 c5} - r3c5{n7 n6} - r7c5{n6 .} ==> r5c5≠1
z-chain[3]: r5n1{c3 c6} - r1n1{c6 c1} - c3n1{r2 .} ==> r4c2≠1
z-chain[3]: r5n1{c3 c6} - r1n1{c6 c2} - c3n1{r2 .} ==> r4c1≠1
whip[5]: r5c3{n7 n1} - r5c6{n1 n3} - r6c5{n3 n6} - r3c5{n6 n1} - r7c5{n1 .} ==> r5c5≠7
whip[5]: r4c6{n6 n1} - r1c6{n1 n7} - r5n7{c6 c3} - c3n1{r5 r2} - r1n1{c1 .} ==> r7c6≠6
z-chain[6]: b5n7{r6c5 r5c6} - c6n3{r5 r9} - c6n8{r9 r7} - r7c9{n8 n1} - r2c9{n1 n7} - c4n7{r2 .} ==> r7c5≠7
t-whip[5]: c6n6{r4 r1} - b3n6{r1c7 r3c8} - b3n1{r3c8 r2c9} - b2n1{r2c4 r3c5} - r7c5{n1 .} ==> r6c5≠6, r4c5≠6
whip[1]: b5n6{r4c6 .} ==> r4c1≠6, r4c2≠6, r4c3≠6
z-chain[5]: r3n7{c2 c5} - r6n7{c5 c3} - c3n6{r6 r2} - r2c4{n6 n1} - r2c9{n1 .} ==> r2c2≠7
z-chain[5]: r3n8{c2 c1} - r3n7{c1 c5} - r6c5{n7 n3} - c2n3{r6 r5} - c2n8{r5 .} ==> r3c2≠1, r3c2≠6
t-whip[5]: c5n6{r7 r3} - b3n6{r3c8 r1c7} - b3n7{r1c7 r2c9} - b2n7{r2c4 r1c6} - r7n7{c6 .} ==> r7c4≠6
hidden-single-in-a-block ==> r7c5=6
biv-chain[3]: r3c5{n7 n1} - r3c8{n1 n6} - r1c7{n6 n7} ==> r1c6≠7
naked-pairs-in-a-column: c6{r1 r4}{n1 n6} ==> r9c6≠1, r7c6≠1, r5c6≠1
whip[1]: r5n1{c3 .} ==> r4c3≠1
naked-single ==> r4c3=5
naked-pairs-in-a-block: b4{r4c1 r4c2}{n2 n4} ==> r5c2≠4, r5c1≠4
hidden-single-in-a-row ==> r5c5=4
hidden-pairs-in-a-block: b1{n4 n5}{r2c1 r2c2} ==> r2c2≠6, r2c2≠1, r2c1≠7, r2c1≠6, r2c1≠1
biv-chain[3]: r1c6{n1 n6} - r1c7{n6 n7} - r2c9{n7 n1} ==> r2c4≠1
biv-chain[3]: r6c3{n7 n6} - r2n6{c3 c4} - b2n7{r2c4 r3c5} ==> r6c5≠7
easy end in BC3
.