Slightly on topic.
Since I tend automatically to look at "hidden patterns", I approached Don's 3 puzzles in the original post to see what would emerge, and indeed the same results are readily obtained.
(Puzzle 1 : hidden triple (457) r2c123
Puzzle 2 : hidden pair (37) r78c9
Puzzle 3 : hidden quad (1256) r6c123+r5c2).
Paths not posted (except on request !), because not relevant to what follows.
What was clear from those solutions is that they are driven in the "not hidden" part of the work by a useful incompatibility :
Puzzle 1 : 3 and 8 incompatible in r2c23 because of r2c7 (38)
Puzzle 2 : 1 and 2 incompatible in r7c89 because of r7c2+r7c5 (29)+(19)
Puzzle 3 : 8 and 9 incompatible in r6c13 because of r6c5 (89).
With the same approach to Ronk's puzzle Ruud50k #3284, the hidden triple r789c4 (146) produces the eliminations however without any incompatibility factor.
ie the "not hidden part" being merely r9c4 (7) needs only the resulting pair (25) r9c67 to proceed.
Since there was some debate about whether it wasn't or wasn't an SDC, extrapolating the above ie requirement for an incompatibility (yes not scientific
) might suggest that it wasn't.
But whatever about that, it would be interesting to see if general SDC is representable in "hidden" format. If so, then an equivalent approach might be easier to formulate such as : investigate hidden pairs/etc when the "not hidden" part has an incompatibility factor.